Structural elucidation of recombinant Trichomonas vaginalis 20S proteasome bound to covalent inhibitors
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P30 DK120515
NIDDK NIH HHS - United States
R01 AI158612
NIAID NIH HHS - United States
R21 AI146387
NIAID NIH HHS - United States
T32 GM007752
NIGMS NIH HHS - United States
PubMed
39366995
PubMed Central
PMC11452676
DOI
10.1038/s41467-024-53022-w
PII: 10.1038/s41467-024-53022-w
Knihovny.cz E-zdroje
- MeSH
- elektronová kryomikroskopie * MeSH
- inhibitory proteasomu * farmakologie chemie MeSH
- lidé MeSH
- molekulární modely MeSH
- proteasomový endopeptidasový komplex * metabolismus MeSH
- protozoální proteiny metabolismus antagonisté a inhibitory genetika chemie MeSH
- rekombinantní proteiny * metabolismus genetika MeSH
- Trichomonas vaginalis * účinky léků genetika enzymologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inhibitory proteasomu * MeSH
- proteasomový endopeptidasový komplex * MeSH
- protozoální proteiny MeSH
- rekombinantní proteiny * MeSH
The proteasome is a proteolytic enzyme complex essential for protein homeostasis in mammalian cells and protozoan parasites like Trichomonas vaginalis (Tv), the cause of the most common, non-viral sexually transmitted disease. Tv and other protozoan 20S proteasomes have been validated as druggable targets for antimicrobials. However, low yields and purity of the native proteasome have hindered studies of the Tv 20S proteasome (Tv20S). We address this challenge by creating a recombinant protozoan proteasome by expressing all seven α and seven β subunits of Tv20S alongside the Ump-1 chaperone in insect cells. The recombinant Tv20S displays biochemical equivalence to its native counterpart, confirmed by various assays. Notably, the marizomib (MZB) inhibits all catalytic subunits of Tv20S, while the peptide inhibitor carmaphycin-17 (CP-17) specifically targets β2 and β5. Cryo-electron microscopy (cryo-EM) unveils the structures of Tv20S bound to MZB and CP-17 at 2.8 Å. These findings explain MZB's low specificity for Tv20S compared to the human proteasome and demonstrate CP-17's higher specificity. Overall, these data provide a structure-based strategy for the development of specific Tv20S inhibitors to treat trichomoniasis.
Department of Medicine School of Medicine University of California San Diego La Jolla CA USA
Department Pharmaceutical Sciences College of Pharmacy The University of Jordan Amman Jordan
Institute of Organic Chemistry and Biochemistry AS CR v v i Prague Czech Republic
Scripps Institution of Oceanography University of California San Diego La Jolla CA USA
Zobrazit více v PubMed
Munoz, C., San Francisco, J., Gutierrez, B. & Gonzalez, J. Role of the Ubiquitin-Proteasome systems in the biology and virulence of protozoan parasites. Biomed. Res. Int.2015, 141526 (2015). PubMed PMC
Edwards, T., Burke, P., Smalley, H. & Hobbs, G. Trichomonas vaginalis: Clinical relevance, pathogenicity and diagnosis. Crit. Rev. Microbiol.42, 406–417 (2016). PubMed
Rowley, J. et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull. World Health Organ.97, 548–562P (2019). PubMed PMC
Bouchemal, K., Bories, C. & Loiseau, P. M. Strategies for prevention and treatment of Trichomonas vaginalis Infections. Clin. Microbiol. Rev.30, 811–825 (2017). PubMed PMC
Van Gerwen, O. T., Camino, A. F., Sharma, J., Kissinger, P. J. & Muzny, C. A. Epidemiology, natural history, diagnosis, and treatment of Trichomonas vaginalis in men. Clin. Infect. Dis.73, 1119–1124 (2021). PubMed PMC
Alessio, C. & Nyirjesy, P. Management of resistant Trichomoniasis. Curr. Infect. Dis. Rep.21, 31 (2019). PubMed
Marques-Silva, M., Lisboa, C., Gomes, N. & Rodrigues, A. G. Trichomonas vaginalis and growing concern over drug resistance: a systematic review. J. Eur. Acad. Dermatol. Venereol.35, 2007–2021 (2021). PubMed
Xie, S. C., Dick, L. R., Gould, A., Brand, S. & Tilley, L. The proteasome as a target for protozoan parasites. Expert Opin. Ther. Targets.10.1080/14728222.2019.1685981 (2019). PubMed
Winzeler, E. A. & Ottilie, S. The proteasome as a target: How not tidying up can have toxic consequences for parasitic protozoa. Proc. Natl Acad. Sci. USA116, 10198–10200 (2019). PubMed PMC
O’Donoghue, A. J. et al. 20S Proteasome as a drug target in Trichomonas vaginalis. Antimicrob. Agents Chemother.63, e00448–19 (2019). PubMed PMC
Petrin, D., Delgaty, K., Bhatt, R. & Garber, G. Clinical and microbiological aspects of Trichomonas vaginalis. Clin. Microbiol. Rev.11, 300–317 (1998). PubMed PMC
Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem.78, 477–513 (2009). PubMed PMC
Collins, G. A. & Goldberg, A. L. The logic of the 26S Proteasome. Cell169, 792–806 (2017). PubMed PMC
Lecker, S. H., Goldberg, A. L. & Mitch, W. E. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol.17, 1807–1819 (2006). PubMed
Majumder, P. & Baumeister, W. Proteasomes: unfoldase-assisted protein degradation machines. Biol. Chem.401, 183–199 (2019). PubMed
Budenholzer, L., Cheng, C. L., Li, Y. & Hochstrasser, M. Proteasome structure and assembly. J. Mol. Biol.429, 3500–3524 (2017). PubMed PMC
Mao, Y. Structure, dynamics and function of the 26S Proteasome. Sub-Cell. Biochem.96, 1–151 (2021). PubMed
Xie, S. C. et al. The structure of the PA28-20S proteasome complex from Plasmodium falciparum and implications for proteostasis. Nat. Microbiol.4, 1990–2000 (2019). PubMed
Li, H. et al. Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature530, 233–236 (2016). PubMed PMC
Fajtova, P. et al. Development of subunit selective substrates for Trichomonas vaginalis proteasome. bioRxiv. 10.1101/2023.04.05.535794 (2023).
Zwickl, P., Lottspeich, F. & Baumeister, W. Expression of functional Thermoplasma acidophilum proteasomes in Escherichia coli. FEBS Lett.312, 157–160 (1992). PubMed
Toste Rego, A. & da Fonseca, P. C. A. Characterization of fully recombinant Human 20S and 20S-PA200 proteasome complexes. Mol. Cell76, 138–147.e135 (2019). PubMed PMC
Le Tallec, B. et al. 20S proteasome assembly is orchestrated by two of chaperones in yeast distinct pairs and in mammals. Mol. Cell27, 660–674 (2007). PubMed
Schnell, H. M., Walsh, R. M., Rawson, S. & Hanna, J. Chaperone-mediated assembly of the proteasome core particle - recent developments and structural insights. J. Cell Sci.135, jcs259622 (2022). PubMed PMC
Livneh, I., Cohen-Kaplan, V., Cohen-Rosenzweig, C., Avni, N. & Ciechanover, A. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res.26, 869–885 (2016). PubMed PMC
Huber, E. M. et al. A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nat. Commun.7, 10900 (2016). PubMed PMC
Escobar-Henriques, M., Altin, S. & Brave, F. D. Interplay between the Ubiquitin Proteasome system and mitochondria for protein homeostasis. Curr. Issues Mol. Biol.35, 35–58 (2020). PubMed
Koga, H., Kaushik, S. & Cuervo, A. M. Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res. Rev.10, 205–215 (2011). PubMed PMC
Ito, S. Proteasome Inhibitors for the Treatment of Multiple Myeloma. Cancers12. 10.3390/cancers12020265 (2020). PubMed PMC
LaMonte, G. M. et al. Development of a potent inhibitor of the plasmodium proteasome with reduced mammalian toxicity. J. Med. Chem.60, 6721–6732 (2017). PubMed PMC
Almaliti, J. et al. Development of potent and highly selective Epoxyketone-based plasmodium proteasome inhibitors. Chemistry29, e202203958 (2023). PubMed PMC
Khare, S. et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature537, 229–233 (2016). PubMed PMC
Wyllie, S. et al. Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proc. Natl Acad. Sci. USA116, 9318–9323 (2019). PubMed PMC
Nagle, A. et al. Discovery and characterization of clinical candidate LXE408 as a Kinetoplastid-selective proteasome inhibitor for the treatment of Leishmaniases. J. Med Chem.63, 10773–10781 (2020). PubMed PMC
Pereira, A. R. et al. The Carmaphycins: New proteasome inhibitors exhibiting an alpha,beta-epoxyketone warhead from a marine cyanobacterium. Chembiochem13, 810–817 (2012). PubMed PMC
Bibo-Verdugo, B. et al. The proteasome as a drug target in the metazoan pathogen. ACS Infect. Dis.5, 1802–1812 (2019). PubMed PMC
Ishii, A., Matsui, M., Terano, Y. & Miura, Y. Establishment and characterization of a novel human-malignant melanoma cell-line Aki. Cell Mol. Biol.34, 255–264 (1988). PubMed
Feling, R. H. et al. Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew. Chem. Int Ed.42, 355–357 (2003). PubMed
Roth, P., Mason, W. P., Richardson, P. G. & Weller, M. Proteasome inhibition for the treatment of glioblastoma. Expert Opin. Investig. Drugs29, 1133–1141 (2020). PubMed
Di, K. J. et al. Marizomib activity as a single agent in malignant gliomas: ability to cross the blood-brain barrier. Neuro-Oncol.18, 840–848 (2016). PubMed PMC
Manton, C. A. et al. Induction of cell death by the novel proteasome inhibitor marizomib in glioblastoma in vitro and in vivo. Sci. Rep.6, 18953 (2016). PubMed PMC
Groll, M., Huber, R. & Potts, B. C. M. Crystal structures of salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding. J. Am. Chem. Soc.128, 5136–5141 (2006). PubMed
Hirano, Y. et al. Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J.27, 2204–2213 (2008). PubMed PMC
Murata, S., Yashiroda, H. & Tanaka, K. Molecular mechanisms of proteasome assembly. Nat. Rev. Mol. Cell Bio10, 104–115 (2009). PubMed
Satoh, T. et al. Molecular and structural basis of the proteasome subunit assembly mechanism mediated by the proteasome-assembling Chaperone PAC3-PAC4 Heterodimer. Int. J. Mol. Sci.20, 2231 (2019). PubMed PMC
Velez, B. et al. Mechanism of autocatalytic activation during proteasome assembly. Nat. Struct. Mol. Biol.10.1038/s41594-024-01262-1 (2024). PubMed PMC
Koester, D. C. et al. Discovery of Novel Quinoline-based proteasome inhibitors for Human African Trypanosomiasis (HAT). J. Med. Chem.10.1021/acs.jmedchem.2c00791 (2022). PubMed PMC
Borissenko, L. & Groll, M. 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem. Rev.107, 687–717 (2007). PubMed
Marques, A. J., Glanemann, C., Ramos, P. C. & Dohmen, R. J. The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J. Biol. Chem.282, 34869–34876 (2007). PubMed
Jalovecka, M. et al. Validation of Babesia proteasome as a drug target. Int J. Parasitol. Drugs Drug Resist.8, 394–402 (2018). PubMed PMC
Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci.30, 70–82 (2021). PubMed PMC
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D. Biol. Crystallogr.66, 486–501 (2010). PubMed PMC
Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D.74, 519–530 (2018). PubMed PMC
Meng, E. C. et al. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci.32, e4792 (2023). PubMed PMC
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D.75, 861–877 (2019). PubMed PMC