Structural elucidation of recombinant Trichomonas vaginalis 20S proteasome bound to covalent inhibitors

. 2024 Oct 04 ; 15 (1) : 8621. [epub] 20241004

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39366995

Grantová podpora
P30 DK120515 NIDDK NIH HHS - United States
R01 AI158612 NIAID NIH HHS - United States
R21 AI146387 NIAID NIH HHS - United States
T32 GM007752 NIGMS NIH HHS - United States

Odkazy

PubMed 39366995
PubMed Central PMC11452676
DOI 10.1038/s41467-024-53022-w
PII: 10.1038/s41467-024-53022-w
Knihovny.cz E-zdroje

The proteasome is a proteolytic enzyme complex essential for protein homeostasis in mammalian cells and protozoan parasites like Trichomonas vaginalis (Tv), the cause of the most common, non-viral sexually transmitted disease. Tv and other protozoan 20S proteasomes have been validated as druggable targets for antimicrobials. However, low yields and purity of the native proteasome have hindered studies of the Tv 20S proteasome (Tv20S). We address this challenge by creating a recombinant protozoan proteasome by expressing all seven α and seven β subunits of Tv20S alongside the Ump-1 chaperone in insect cells. The recombinant Tv20S displays biochemical equivalence to its native counterpart, confirmed by various assays. Notably, the marizomib (MZB) inhibits all catalytic subunits of Tv20S, while the peptide inhibitor carmaphycin-17 (CP-17) specifically targets β2 and β5. Cryo-electron microscopy (cryo-EM) unveils the structures of Tv20S bound to MZB and CP-17 at 2.8 Å. These findings explain MZB's low specificity for Tv20S compared to the human proteasome and demonstrate CP-17's higher specificity. Overall, these data provide a structure-based strategy for the development of specific Tv20S inhibitors to treat trichomoniasis.

Před aktualizací

PubMed

Zobrazit více v PubMed

Munoz, C., San Francisco, J., Gutierrez, B. & Gonzalez, J. Role of the Ubiquitin-Proteasome systems in the biology and virulence of protozoan parasites. Biomed. Res. Int.2015, 141526 (2015). PubMed PMC

Edwards, T., Burke, P., Smalley, H. & Hobbs, G. Trichomonas vaginalis: Clinical relevance, pathogenicity and diagnosis. Crit. Rev. Microbiol.42, 406–417 (2016). PubMed

Rowley, J. et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull. World Health Organ.97, 548–562P (2019). PubMed PMC

Bouchemal, K., Bories, C. & Loiseau, P. M. Strategies for prevention and treatment of Trichomonas vaginalis Infections. Clin. Microbiol. Rev.30, 811–825 (2017). PubMed PMC

Van Gerwen, O. T., Camino, A. F., Sharma, J., Kissinger, P. J. & Muzny, C. A. Epidemiology, natural history, diagnosis, and treatment of Trichomonas vaginalis in men. Clin. Infect. Dis.73, 1119–1124 (2021). PubMed PMC

Alessio, C. & Nyirjesy, P. Management of resistant Trichomoniasis. Curr. Infect. Dis. Rep.21, 31 (2019). PubMed

Marques-Silva, M., Lisboa, C., Gomes, N. & Rodrigues, A. G. Trichomonas vaginalis and growing concern over drug resistance: a systematic review. J. Eur. Acad. Dermatol. Venereol.35, 2007–2021 (2021). PubMed

Xie, S. C., Dick, L. R., Gould, A., Brand, S. & Tilley, L. The proteasome as a target for protozoan parasites. Expert Opin. Ther. Targets.10.1080/14728222.2019.1685981 (2019). PubMed

Winzeler, E. A. & Ottilie, S. The proteasome as a target: How not tidying up can have toxic consequences for parasitic protozoa. Proc. Natl Acad. Sci. USA116, 10198–10200 (2019). PubMed PMC

O’Donoghue, A. J. et al. 20S Proteasome as a drug target in Trichomonas vaginalis. Antimicrob. Agents Chemother.63, e00448–19 (2019). PubMed PMC

Petrin, D., Delgaty, K., Bhatt, R. & Garber, G. Clinical and microbiological aspects of Trichomonas vaginalis. Clin. Microbiol. Rev.11, 300–317 (1998). PubMed PMC

Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem.78, 477–513 (2009). PubMed PMC

Collins, G. A. & Goldberg, A. L. The logic of the 26S Proteasome. Cell169, 792–806 (2017). PubMed PMC

Lecker, S. H., Goldberg, A. L. & Mitch, W. E. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol.17, 1807–1819 (2006). PubMed

Majumder, P. & Baumeister, W. Proteasomes: unfoldase-assisted protein degradation machines. Biol. Chem.401, 183–199 (2019). PubMed

Budenholzer, L., Cheng, C. L., Li, Y. & Hochstrasser, M. Proteasome structure and assembly. J. Mol. Biol.429, 3500–3524 (2017). PubMed PMC

Mao, Y. Structure, dynamics and function of the 26S Proteasome. Sub-Cell. Biochem.96, 1–151 (2021). PubMed

Xie, S. C. et al. The structure of the PA28-20S proteasome complex from Plasmodium falciparum and implications for proteostasis. Nat. Microbiol.4, 1990–2000 (2019). PubMed

Li, H. et al. Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature530, 233–236 (2016). PubMed PMC

Fajtova, P. et al. Development of subunit selective substrates for Trichomonas vaginalis proteasome. bioRxiv. 10.1101/2023.04.05.535794 (2023).

Zwickl, P., Lottspeich, F. & Baumeister, W. Expression of functional Thermoplasma acidophilum proteasomes in Escherichia coli. FEBS Lett.312, 157–160 (1992). PubMed

Toste Rego, A. & da Fonseca, P. C. A. Characterization of fully recombinant Human 20S and 20S-PA200 proteasome complexes. Mol. Cell76, 138–147.e135 (2019). PubMed PMC

Le Tallec, B. et al. 20S proteasome assembly is orchestrated by two of chaperones in yeast distinct pairs and in mammals. Mol. Cell27, 660–674 (2007). PubMed

Schnell, H. M., Walsh, R. M., Rawson, S. & Hanna, J. Chaperone-mediated assembly of the proteasome core particle - recent developments and structural insights. J. Cell Sci.135, jcs259622 (2022). PubMed PMC

Livneh, I., Cohen-Kaplan, V., Cohen-Rosenzweig, C., Avni, N. & Ciechanover, A. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res.26, 869–885 (2016). PubMed PMC

Huber, E. M. et al. A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nat. Commun.7, 10900 (2016). PubMed PMC

Escobar-Henriques, M., Altin, S. & Brave, F. D. Interplay between the Ubiquitin Proteasome system and mitochondria for protein homeostasis. Curr. Issues Mol. Biol.35, 35–58 (2020). PubMed

Koga, H., Kaushik, S. & Cuervo, A. M. Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res. Rev.10, 205–215 (2011). PubMed PMC

Ito, S. Proteasome Inhibitors for the Treatment of Multiple Myeloma. Cancers12. 10.3390/cancers12020265 (2020). PubMed PMC

LaMonte, G. M. et al. Development of a potent inhibitor of the plasmodium proteasome with reduced mammalian toxicity. J. Med. Chem.60, 6721–6732 (2017). PubMed PMC

Almaliti, J. et al. Development of potent and highly selective Epoxyketone-based plasmodium proteasome inhibitors. Chemistry29, e202203958 (2023). PubMed PMC

Khare, S. et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature537, 229–233 (2016). PubMed PMC

Wyllie, S. et al. Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proc. Natl Acad. Sci. USA116, 9318–9323 (2019). PubMed PMC

Nagle, A. et al. Discovery and characterization of clinical candidate LXE408 as a Kinetoplastid-selective proteasome inhibitor for the treatment of Leishmaniases. J. Med Chem.63, 10773–10781 (2020). PubMed PMC

Pereira, A. R. et al. The Carmaphycins: New proteasome inhibitors exhibiting an alpha,beta-epoxyketone warhead from a marine cyanobacterium. Chembiochem13, 810–817 (2012). PubMed PMC

Bibo-Verdugo, B. et al. The proteasome as a drug target in the metazoan pathogen. ACS Infect. Dis.5, 1802–1812 (2019). PubMed PMC

Ishii, A., Matsui, M., Terano, Y. & Miura, Y. Establishment and characterization of a novel human-malignant melanoma cell-line Aki. Cell Mol. Biol.34, 255–264 (1988). PubMed

Feling, R. H. et al. Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew. Chem. Int Ed.42, 355–357 (2003). PubMed

Roth, P., Mason, W. P., Richardson, P. G. & Weller, M. Proteasome inhibition for the treatment of glioblastoma. Expert Opin. Investig. Drugs29, 1133–1141 (2020). PubMed

Di, K. J. et al. Marizomib activity as a single agent in malignant gliomas: ability to cross the blood-brain barrier. Neuro-Oncol.18, 840–848 (2016). PubMed PMC

Manton, C. A. et al. Induction of cell death by the novel proteasome inhibitor marizomib in glioblastoma in vitro and in vivo. Sci. Rep.6, 18953 (2016). PubMed PMC

Groll, M., Huber, R. & Potts, B. C. M. Crystal structures of salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding. J. Am. Chem. Soc.128, 5136–5141 (2006). PubMed

Hirano, Y. et al. Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J.27, 2204–2213 (2008). PubMed PMC

Murata, S., Yashiroda, H. & Tanaka, K. Molecular mechanisms of proteasome assembly. Nat. Rev. Mol. Cell Bio10, 104–115 (2009). PubMed

Satoh, T. et al. Molecular and structural basis of the proteasome subunit assembly mechanism mediated by the proteasome-assembling Chaperone PAC3-PAC4 Heterodimer. Int. J. Mol. Sci.20, 2231 (2019). PubMed PMC

Velez, B. et al. Mechanism of autocatalytic activation during proteasome assembly. Nat. Struct. Mol. Biol.10.1038/s41594-024-01262-1 (2024). PubMed PMC

Koester, D. C. et al. Discovery of Novel Quinoline-based proteasome inhibitors for Human African Trypanosomiasis (HAT). J. Med. Chem.10.1021/acs.jmedchem.2c00791 (2022). PubMed PMC

Borissenko, L. & Groll, M. 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem. Rev.107, 687–717 (2007). PubMed

Marques, A. J., Glanemann, C., Ramos, P. C. & Dohmen, R. J. The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J. Biol. Chem.282, 34869–34876 (2007). PubMed

Jalovecka, M. et al. Validation of Babesia proteasome as a drug target. Int J. Parasitol. Drugs Drug Resist.8, 394–402 (2018). PubMed PMC

Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci.30, 70–82 (2021). PubMed PMC

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D. Biol. Crystallogr.66, 486–501 (2010). PubMed PMC

Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D.74, 519–530 (2018). PubMed PMC

Meng, E. C. et al. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci.32, e4792 (2023). PubMed PMC

Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D.75, 861–877 (2019). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...