Structural elucidation of recombinant Trichomonas vaginalis 20S proteasome bound to covalent inhibitors
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu preprinty, časopisecké články
Grantová podpora
R01 AI158612
NIAID NIH HHS - United States
R21 AI146387
NIAID NIH HHS - United States
T32 GM007752
NIGMS NIH HHS - United States
PubMed
37645851
PubMed Central
PMC10462138
DOI
10.1101/2023.08.17.553660
PII: 2023.08.17.553660
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Proteasomes are essential for protein homeostasis in mammalian cells1-4 and in protozoan parasites such as Trichomonas vaginalis (Tv).5 Tv and other protozoan 20S proteasomes have been validated as druggable targets.6-8 However, in the case of Tv 20S proteasome (Tv20S), biochemical and structural studies were impeded by low yields and purity of the native proteasome. We successfully made recombinant Tv20S by expressing all seven α and seven β subunits together with the Ump-1 chaperone in insect cells. We isolated recombinant proteasome and showed that it was biochemically indistinguishable from the native enzyme. We confirmed that the recombinant Tv20S is inhibited by the natural product marizomib (MZB)9 and the recently developed peptide inhibitor carmaphycin-17 (CP-17)8,10. Specifically, MZB binds to the β1, β2 and β5 subunits, while CP-17 binds the β2 and β5 subunits. Next, we obtained cryo-EM structures of Tv20S in complex with these covalent inhibitors at 2.8Å resolution. The structures revealed the overall fold of the Tv20S and the binding mode of MZB and CP-17. Our work explains the low specificity of MZB and higher specificity of CP-17 towards Tv20S as compared to human proteasome and provides the platform for the development of Tv20S inhibitors for treatment of trichomoniasis.
Zobrazit více v PubMed
Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annual review of biochemistry 78, 477–513 (2009). 10.1146/annurev.biochem.78.081507.101607 PubMed DOI PMC
Collins G. A. & Goldberg A. L. The Logic of the 26S Proteasome. Cell 169, 792–806 (2017). 10.1016/j.cell.2017.04.023 PubMed DOI PMC
Lecker S. H., Goldberg A. L. & Mitch W. E. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17, 1807–1819 (2006). 10.1681/ASN.2006010083 PubMed DOI
Majumder P. & Baumeister W. Proteasomes: unfoldase-assisted protein degradation machines. Biological chemistry 401, 183–199 (2019). 10.1515/hsz-2019-0344 PubMed DOI
Munoz C., San Francisco J., Gutierrez B. & Gonzalez J. Role of the Ubiquitin-Proteasome Systems in the Biology and Virulence of Protozoan Parasites. Biomed Res Int 2015, 141526 (2015). 10.1155/2015/141526 PubMed DOI PMC
Xie S. C., Dick L. R., Gould A., Brand S. & Tilley L. The proteasome as a target for protozoan parasites. Expert Opin Ther Tar (2019). 10.1080/14728222.2019.1685981 PubMed DOI
Winzeler E. A. & Ottilie S. The proteasome as a target: How not tidying up can have toxic consequences for parasitic protozoa. Proceedings of the National Academy of Sciences of the United States of America 116, 10198–10200 (2019). 10.1073/pnas.1904694116 PubMed DOI PMC
O’Donoghue A. J. et al. 20S Proteasome as a Drug Target in Trichomonas vaginalis. Antimicrobial agents and chemotherapy 63 (2019). 10.1128/AAC.00448-19 PubMed DOI PMC
Feling R. H. et al. Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Edit 42, 355-+ (2003). 10.1002/anie.200390115 PubMed DOI
Pereira A. R. et al. The Carmaphycins: New Proteasome Inhibitors Exhibiting an alpha,beta-Epoxyketone Warhead from a Marine Cyanobacterium. Chembiochem : a European journal of chemical biology 13, 810–817 (2012). 10.1002/cbic.201200007 PubMed DOI PMC
Edwards T., Burke P., Smalley H. & Hobbs G. Trichomonas vaginalis: Clinical relevance, pathogenicity and diagnosis. Crit Rev Microbiol 42, 406–417 (2016). 10.3109/1040841x.2014.958050 PubMed DOI
Rowley J. et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. B World Health Organ 97, 548-+ (2019). 10.2471/Blt.18.228486 PubMed DOI PMC
Bouchemal K., Bories C. & Loiseau P. M. Strategies for Prevention and Treatment of Trichomonas vaginalis Infections. Clin Microbiol Rev 30, 811–825 (2017). 10.1128/CMR.00109-16 PubMed DOI PMC
Van Gerwen O. T., Camino A. F., Sharma J., Kissinger P. J. & Muzny C. A. Epidemiology, Natural History, Diagnosis, and Treatment of Trichomonas vaginalis in Men. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 73, 1119–1124 (2021). 10.1093/cid/ciab514 PubMed DOI PMC
Alessio C. & Nyirjesy P. Management of Resistant Trichomoniasis. Curr Infect Dis Rep 21, 31 (2019). 10.1007/s11908-019-0687-4 PubMed DOI
Marques-Silva M., Lisboa C., Gomes N. & Rodrigues A. G. Trichomonas vaginalis and growing concern over drug resistance: a systematic review. J Eur Acad Dermatol Venereol 35, 2007–2021 (2021). 10.1111/jdv.17461 PubMed DOI
Petrin D., Delgaty K., Bhatt R. & Garber G. Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev 11, 300–317 (1998). 10.1128/CMR.11.2.300 PubMed DOI PMC
Budenholzer L., Cheng C. L., Li Y. & Hochstrasser M. Proteasome Structure and Assembly. J Mol Biol 429, 3500–3524 (2017). 10.1016/j.jmb.2017.05.027 PubMed DOI PMC
Mao Y. Structure, Dynamics and Function of the 26S Proteasome. Sub-cellular biochemistry 96, 1–151 (2021). 10.1007/978-3-030-58971-4_1 PubMed DOI
Xie S. C. et al. The structure of the PA28–20S proteasome complex from Plasmodium falciparum and implications for proteostasis. Nature Microbiology 4, 1990–2000 (2019). 10.1038/s41564-019-0524-4 PubMed DOI
Li H. et al. Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature 530, 233–236 (2016). 10.1038/nature16936 PubMed DOI PMC
Fajtova P. et al. Development of subunit selective substrates for Trichomonas vaginalis proteasome. bioRxiv (2023). 10.1101/2023.04.05.535794 DOI
Zwickl P., Lottspeich F. & Baumeister W. Expression of functional Thermoplasma acidophilum proteasomes in Escherichia coli. FEBS Lett 312, 157–160 (1992). 10.1016/0014-5793(92)80925-7 PubMed DOI
Toste Rego A. & da Fonseca P. C. A. Characterization of Fully Recombinant Human 20S and 20S-PA200 Proteasome Complexes. Mol Cell 76, 138–147 e135 (2019). 10.1016/j.molcel.2019.07.014 PubMed DOI PMC
Le Tallec B. et al. 20S proteasome assembly is orchestrated by two of chaperones in yeast distinct pairs and in mammals. Molecular cell 27, 660–674 (2007). 10.1016/j.molcel.2007.06.025 PubMed DOI
Schnell H. M., Walsh R. M., Rawson S. & Hanna J. Chaperone-mediated assembly of the proteasome core particle - recent developments and structural insights. Journal of cell science 135 (2022). 10.1242/jcs.259622 PubMed DOI PMC
Livneh I., Cohen-Kaplan V., Cohen-Rosenzweig C., Avni N. & Ciechanover A. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell research 26, 869–885 (2016). 10.1038/cr.2016.86 PubMed DOI PMC
Huber E. M. et al. A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nature communications 7, 10900 (2016). 10.1038/ncomms10900 PubMed DOI PMC
Escobar-Henriques M., Altin S. & Brave F. D. Interplay between the Ubiquitin Proteasome System and Mitochondria for Protein Homeostasis. Curr Issues Mol Biol 35, 35–58 (2020). 10.21775/cimb.035.035 PubMed DOI
Koga H., Kaushik S. & Cuervo A. M. Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res Rev 10, 205–215 (2011). 10.1016/j.arr.2010.02.001 PubMed DOI PMC
Ito S. Proteasome Inhibitors for the Treatment of Multiple Myeloma. Cancers (Basel) 12 (2020). 10.3390/cancers12020265 PubMed DOI PMC
LaMonte G. M. et al. Development of a Potent Inhibitor of the Plasmodium Proteasome with Reduced Mammalian Toxicity. J Med Chem 60, 6721–6732 (2017). 10.1021/acs.jmedchem.7b00671 PubMed DOI PMC
Almaliti J. et al. Development of Potent and Highly Selective Epoxyketone-Based Plasmodium Proteasome Inhibitors. Chemistry 29, e202203958 (2023). 10.1002/chem.202203958 PubMed DOI PMC
Khare S. et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 537, 229–233 (2016). 10.1038/nature19339 PubMed DOI PMC
Wyllie S. et al. Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proc Natl Acad Sci U S A 116, 9318–9323 (2019). 10.1073/pnas.1820175116 PubMed DOI PMC
Nagle A. et al. Discovery and Characterization of Clinical Candidate LXE408 as a Kinetoplastid-Selective Proteasome Inhibitor for the Treatment of Leishmaniases. J Med Chem 63, 10773–10781 (2020). 10.1021/acs.jmedchem.0c00499 PubMed DOI PMC
Bibo-Verdugo B. et al. The Proteasome as a Drug Target in the Metazoan Pathogen, Schistosoma mansoni. ACS Infect Dis 5, 1802–1812 (2019). 10.1021/acsinfecdis.9b00237 PubMed DOI PMC
Ishii A., Matsui M., Terano Y. & Miura Y. Establishment and characterization of a novel human malignant melanoma cell line AKI. Cell Mol Biol 34, 255–264 (1988). PubMed
Roth P., Mason W. P., Richardson P. G. & Weller M. Proteasome inhibition for the treatment of glioblastoma. Expert Opin Investig Drugs 29, 1133–1141 (2020). 10.1080/13543784.2020.1803827 PubMed DOI
Di K. J. et al. Marizomib activity as a single agent in malignant gliomas: ability to cross the blood-brain barrier. Neuro-Oncology 18, 840–848 (2016). 10.1093/neuonc/nov299 PubMed DOI PMC
Manton C. A. et al. Induction of cell death by the novel proteasome inhibitor marizomib in glioblastoma in vitro and in vivo. Scientific reports 6 (2016). 10.1038/srep18953 PubMed DOI PMC
Groll M., Huber R. & Potts B. C. M. Crystal structures of salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding. Journal of the American Chemical Society 128, 5136–5141 (2006). 10.1021/ja058320b PubMed DOI
Koester D. C. et al. Discovery of Novel Quinoline-Based Proteasome Inhibitors for Human African Trypanosomiasis (HAT). Journal of medicinal chemistry (2022). 10.1021/acs.jmedchem.2c00791 PubMed DOI PMC
Pettersen E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein science : a publication of the Protein Society 30, 70–82 (2021). 10.1002/pro.3943 PubMed DOI PMC
Emsley P., Lohkamp B., Scott W. G. & Cowtan K. Features and development of Coot. Acta crystallographica. Section D, Biological crystallography 66, 486–501 (2010). 10.1107/S0907444910007493 PubMed DOI PMC
Croll T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D 74, 519–530 (2018). 10.1107/S2059798318002425 PubMed DOI PMC
Hirano Y. et al. Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. Embo Journal 27, 2204–2213 (2008). 10.1038/emboj.2008.148 PubMed DOI PMC
Murata S., Yashiroda H. & Tanaka K. Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Bio 10, 104–115 (2009). 10.1038/nrm2630 PubMed DOI
Satoh T. et al. Molecular and Structural Basis of the Proteasome Subunit Assembly Mechanism Mediated by the Proteasome-Assembling Chaperone PAC3-PAC4 Heterodimer. International Journal of Molecular Sciences 20 (2019). 10.3390/ijms20092231 PubMed DOI PMC
Borissenko L. & Groll M. 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem Rev 107, 687–717 (2007). 10.1021/cr0502504 PubMed DOI
O’Donoghue A. J. et al. 20S Proteasome as a Drug Target in Trichomonas vaginalis. Antimicrob Agents Chemother 63 (2019). 10.1128/AAC.00448-19 PubMed DOI PMC
Jalovecka M. et al. Validation of Babesia proteasome as a drug target. Int J Parasitol Drugs Drug Resist 8, 394–402 (2018). 10.1016/j.ijpddr.2018.08.001 PubMed DOI PMC