Considerations for the use of inhaled antibiotics for Pseudomonas aeruginosa in people with cystic fibrosis receiving CFTR modulator therapy

. 2024 May 03 ; 11 (1) : . [epub] 20240503

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38702073

The major cause of mortality in people with cystic fibrosis (pwCF) is progressive lung disease characterised by acute and chronic infections, the accumulation of mucus, airway inflammation, structural damage and pulmonary exacerbations. The prevalence of Pseudomonas aeruginosa rises rapidly in the teenage years, and this organism is the most common cause of chronic lung infection in adults with cystic fibrosis (CF). It is associated with an accelerated decline in lung function and premature death. New P. aeruginosa infections are treated with antibiotics to eradicate the organism, while chronic infections require long-term inhaled antibiotic therapy. The prevalence of P. aeruginosa infections has decreased in CF registries since the introduction of CF transmembrane conductance regulator modulators (CFTRm), but clinical observations suggest that chronic P. aeruginosa infections usually persist in patients receiving CFTRm. This indicates that pwCF may still need inhaled antibiotics in the CFTRm era to maintain long-term control of P. aeruginosa infections. Here, we provide an overview of the changing perceptions of P. aeruginosa infection management, including considerations on detection and treatment, the therapy burden associated with inhaled antibiotics and the potential effects of CFTRm on the lung microbiome. We conclude that updated guidance is required on the diagnosis and management of P. aeruginosa infection. In particular, we highlight a need for prospective studies to evaluate the consequences of stopping inhaled antibiotic therapy in pwCF who have chronic P. aeruginosa infection and are receiving CFTRm. This will help inform new guidelines on the use of antibiotics alongside CFTRm.

Zobrazit více v PubMed

Stoltz DA, Meyerholz DK, Welsh MJ. Origins of cystic fibrosis lung disease. N Engl J Med 2015;372:351–62. 10.1056/NEJMra1300109 PubMed DOI PMC

Guo J, Garratt A, Hill A. Worldwide rates of diagnosis and effective treatment for cystic fibrosis. J Cyst Fibros 2022;21:456–62. 10.1016/j.jcf.2022.01.009 PubMed DOI

Martin C, Hamard C, Kanaan R, et al. . Causes of death in French cystic fibrosis patients: the need for improvement in transplantation referral strategies! J Cyst Fibros 2016;15:204–12. 10.1016/j.jcf.2015.09.002 PubMed DOI

Blanchard AC, Waters VJ. Opportunistic pathogens in cystic fibrosis: epidemiology and pathogenesis of lung infection. J Pediatric Infect Dis Soc 2022;11:S3–12. 10.1093/jpids/piac052 PubMed DOI

Blanchard AC, Waters VJ. Microbiology of cystic fibrosis airway disease. Semin Respir Crit Care Med 2019;40:727–36. 10.1055/s-0039-1698464 PubMed DOI PMC

Thornton CS, Parkins MD. Microbial epidemiology of the cystic fibrosis airways: past, present, and future. Semin Respir Crit Care Med 2023;44:269–86. 10.1055/s-0042-1758732 PubMed DOI

Boon M, Verleden SE, Bosch B, et al. . Morphometric analysis of explant lungs in cystic fibrosis. Am J Respir Crit Care Med 2016;193:516–26. 10.1164/rccm.201507-1281OC PubMed DOI

Zolin A, Orenti A, Jung A. ECFSPR annual report 2021. 2023. Available: https://www.ecfs.eu/projects/ecfs-patient-registry/annual-reports

Cystic Fibrosis Foundation . Patient Registry annual data report. September 2022. 2021. Available: https://www.cff.org/medical-professionals/patient-registry

Parkins MD, Somayaji R, Waters VJ. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin Microbiol Rev 2018;31:e00019–18. 10.1128/CMR.00019-18 PubMed DOI PMC

Jackson L, Waters V. Factors influencing the acquisition and eradication of early Pseudomonas aeruginosa infection in cystic fibrosis. J Cyst Fibros 2021;20:8–16. 10.1016/j.jcf.2020.10.008 PubMed DOI

Cheng K, Smyth RL, Govan JR, et al. . Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet 1996;348:639–42. 10.1016/S0140-6736(96)05169-0 PubMed DOI

Langton Hewer SC, Smith S, Rowbotham NJ, et al. . Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst Rev 2023;6:CD004197. 10.1002/14651858.CD004197.pub6 PubMed DOI PMC

Smith S, Rowbotham NJ. Inhaled anti-Pseudomonal antibiotics for long-term therapy in cystic fibrosis. Cochrane Database Syst Rev 2022;11:CD001021. 10.1002/14651858.CD001021.pub4 PubMed DOI PMC

Castellani C, Duff AJA, Bell SC, et al. . ECFS best practice guidelines: the 2018 revision. J Cyst Fibros 2018;17:153–78. 10.1016/j.jcf.2018.02.006 PubMed DOI

Mogayzel PJ Jr, Naureckas ET, Robinson KA, et al. . Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med 2013;187:680–9. 10.1164/rccm.201207-1160oe PubMed DOI

Mogayzel PJ Jr, Naureckas ET, Robinson KA, et al. . Cystic Fibrosis Foundation pulmonary guideline. Pharmacologic approaches to prevention and eradication of initial Pseudomonas aeruginosa infection. Ann Am Thorac Soc 2014;11:1640–50. 10.1513/AnnalsATS.201404-166OC PubMed DOI

Li D, Schneider-Futschik EK. Current and emerging inhaled antibiotics for chronic pulmonary Pseudomonas aeruginosa and Staphylococcus aureus infections in cystic fibrosis. Antibiotics (Basel) 2023;12:484. 10.3390/antibiotics12030484 PubMed DOI PMC

Fiedorczuk K, Chen J. Molecular structures reveal synergistic rescue of Δ508 CFTR by Trikafta modulators. Science 2022;378:284–90. 10.1126/science.ade2216 PubMed DOI PMC

European Medicines Agency . Kaftrio summary of product characteristics. 2024. Available: https://www.ema.europa.eu/en/documents/product-information/kaftrio-epar-product-information_en.pdf

Food and Drug Administration . Trikafta highlights of prescribing information. 2023. Available: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/217660s000lbl.pdf

European Medicines Agency . Kalydeco summary of product characteristics. 2023. Available: https://www.ema.europa.eu/en/documents/product-information/kalydeco-epar-product-information_en.pdf

Food and Drug Administration . Kalydeco highlights of prescribing information. 2023. Available: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/203188s038lbl.pdf

Heijerman HGM, McKone EF, Downey DG, et al. . Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet 2019;394:1940–8. 10.1016/S0140-6736(19)32597-8 PubMed DOI PMC

Middleton PG, Mall MA, Dřevínek P, et al. . Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med 2019;381:1809–19. 10.1056/NEJMoa1908639 PubMed DOI PMC

Zemanick ET, Taylor-Cousar JL, Davies J, et al. . A phase 3 open-label study of elexacaftor/tezacaftor/ivacaftor in children 6 through 11 years of age with cystic fibrosis and at least one F508del allele. Am J Respir Crit Care Med 2021;203:1522–32. 10.1164/rccm.202102-0509OC PubMed DOI PMC

Daines CL, Tullis E, Costa S, et al. . Long-term safety and efficacy of elexacaftor/tezacaftor/ivacaftor in people with cystic fibrosis and at least one F508Del allele: 144-week interim results from a 192-week open-label extension study. Eur Respir J 2023;62. 10.1183/13993003.02029-2022 PubMed DOI PMC

Goralski JL, Hoppe JE, Mall MA, et al. . Phase 3 open-label clinical trial of elexacaftor/tezacaftor/ivacaftor in children aged 2-5 years with cystic fibrosis and at least one F508del allele. Am J Respir Crit Care Med 2023;208:59–67. 10.1164/rccm.202301-0084OC PubMed DOI PMC

Mall MA, Brugha R, Gartner S, et al. . Efficacy and safety of elexacaftor/tezacaftor/ivacaftor in children 6 through 11 years of age with cystic fibrosis heterozygous for F508del and a minimal function mutation: a phase 3B, randomized, placebo-controlled study. Am J Respir Crit Care Med 2022;206:1361–9. 10.1164/rccm.202202-0392OC PubMed DOI PMC

Drevinek P, Stepankova K, Wozniacki L, et al. . Availability of CFTR modulators in countries of Eastern Europe: the reality in 2022. J Cyst Fibros 2022;21:1082–3. 10.1016/j.jcf.2022.08.014 PubMed DOI

Lopes-Pacheco M. CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine. Front Pharmacol 2019;10:1662. 10.3389/fphar.2019.01662 PubMed DOI PMC

Schnell A, Hober H, Kaiser N, et al. . Elexacaftor – tezacaftor – ivacaftor treatment improves systemic infection parameters and Pseudomonas aeruginosa colonization rate in patients with cystic fibrosis a monocentric observational study. Heliyon 2023;9:e15756. 10.1016/j.heliyon.2023.e15756 PubMed DOI PMC

Durfey SL, Pipavath S, Li A, et al. . Combining ivacaftor and intensive antibiotics achieves limited clearance of cystic fibrosis infections. mBio 2021;12:e0314821. 10.1128/mbio.03148-21 PubMed DOI PMC

Elborn JS, Blasi F, Burgel P-R, et al. . Role of inhaled antibiotics in the era of highly effective CFTR Modulators. Eur Respir Rev 2023;32:220154. 10.1183/16000617.0154-2022 PubMed DOI PMC

Nichols DP, Morgan SJ, Skalland M, et al. . Pharmacologic improvement of CFTR function rapidly decreases sputum pathogen density, but lung infections generally persist. J Clin Invest 2023;133:e167957. 10.1172/JCI167957 PubMed DOI PMC

Ong T, Van Citters AD, Dowd C, et al. . Remote monitoring in telehealth care delivery across the U.S. cystic fibrosis care network. J Cyst Fibros 2021;20:57–63. 10.1016/j.jcf.2021.08.035 PubMed DOI

Gambazza S, Storms V, Purohit V. Adherence to inhaled antibiotics in people with cystic fibrosis: insights from a virtual patient advisory board. Expert Rev Respir Med 2023;17:961–3. 10.1080/17476348.2023.2267427 PubMed DOI

Fiel SB, Roesch EA. The use of tobramycin for Pseudomonas aeruginosa: a review. Expert Rev Respir Med 2022;16:503–9. 10.1080/17476348.2022.2057951 PubMed DOI

Davies G, Rowbotham NJ, Smith S, et al. . Characterising burden of treatment in cystic fibrosis to identify priority areas for clinical trials. J Cyst Fibros 2020;19:499–502. 10.1016/j.jcf.2019.10.025 PubMed DOI

Rouzé H, Viprey M, Allemann S, et al. . Adherence to long-term therapies in cystic fibrosis: a French cross-sectional study linking prescribing, dispensing, and hospitalization data. Patient Prefer Adherence 2019;13:1497–510. 10.2147/PPA.S211769 PubMed DOI PMC

Nicolais CJ, Bernstein R, Saez-Flores E, et al. . Identifying factors that facilitate treatment adherence in cystic fibrosis: qualitative analyses of interviews with parents and adolescents. J Clin Psychol Med Settings 2019;26:530–40. 10.1007/s10880-018-9598-z PubMed DOI

Dziuban EJ, Saab-Abazeed L, Chaudhry SR, et al. . Identifying barriers to treatment adherence and related attitudinal patterns in adolescents with cystic fibrosis. Pediatr Pulmonol 2010;45:450–8. 10.1002/ppul.21195 PubMed DOI

Cameron RA, Office D, Matthews J, et al. . Treatment preference among people with cystic fibrosis: the importance of reducing treatment burden. Chest 2022;162:1241–54. 10.1016/j.chest.2022.07.008 PubMed DOI PMC

Mayer-Hamblett N, Ratjen F, Russell R, et al. . Discontinuation versus continuation of hypertonic saline or dornase alfa in modulator treated people with cystic fibrosis (SIMPLIFY): results from two parallel, multicentre, open-label, randomised, controlled, non-inferiority trials. Lancet Respir Med 2023;11:329–40. 10.1016/S2213-2600(22)00434-9 PubMed DOI PMC

Meyerholz DK, Stoltz DA, Namati E, et al. . Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med 2010;182:1251–61. 10.1164/rccm.201004-0643OC PubMed DOI PMC

Long FR, Williams RS, Castile RG. Structural airway abnormalities in infants and young children with cystic fibrosis. J Pediatr 2004;144:154–61. 10.1016/j.jpeds.2003.09.026 PubMed DOI

Coriati A, Ma X, Sykes J, et al. . Beyond borders: cystic fibrosis survival between Australia, Canada, France and New Zealand. Thorax 2023;78:242–8. 10.1136/thorax-2022-219086 PubMed DOI

Hisert KB, Heltshe SL, Pope C, et al. . Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections. Am J Respir Crit Care Med 2017;195:1617–28. 10.1164/rccm.201609-1954OC PubMed DOI PMC

Zemanick ET, Bell SC. Prevention of chronic infection with Pseudomonas aeruginosa infection in cystic fibrosis. Curr Opin Pulm Med 2019;25:636–45. 10.1097/MCP.0000000000000616 PubMed DOI PMC

Jung A, Kleinau I, Schönian G, et al. . Sequential genotyping of Pseudomonas aeruginosa from upper and lower airways of cystic fibrosis patients. Eur Respir J 2002;20:1457–63. 10.1183/09031936.02.00268002 PubMed DOI

Ronchetti K, Tame J-D, Paisey C, et al. . The CF-Sputum Induction Trial (CF-SpIT) to assess lower airway bacterial sampling in young children with cystic fibrosis: a prospective internally controlled interventional trial. Lancet Respir Med 2018;6:461–71. 10.1016/S2213-2600(18)30171-1 PubMed DOI PMC

Allen L, Allen L, Carr SB, et al. . Future therapies for cystic fibrosis. Nat Commun 2023;14:693. 10.1038/s41467-023-36244-2 PubMed DOI PMC

Weiser R, Oakley J, Ronchetti K, et al. . The lung microbiota in children with cystic fibrosis captured by induced sputum sampling. J Cyst Fibros 2022;21:1006–12. 10.1016/j.jcf.2022.01.006 PubMed DOI

Rosenfeld M, Emerson J, Accurso F, et al. . Diagnostic accuracy of oropharyngeal cultures in infants and young children with cystic fibrosis. Pediatr Pulmonol 1999;28:321–8. 10.1002/(sici)1099-0496(199911)28:5<321::aid-ppul3>3.0.co;2-v PubMed DOI

Burgel P-R, Southern KW, Addy C, et al. . Standards for the care of people with cystic fibrosis (CF); recognising and addressing CF health issues. J Cyst Fibros 2024. 10.1016/j.jcf.2024.01.005 PubMed DOI

Taccetti G, Denton M, Hayes K, et al. . A critical review of definitions used to describe Pseudomonas aeruginosa microbiological status in patients with cystic fibrosis for application in clinical trials. J Cyst Fibros 2020;19:52–67. 10.1016/j.jcf.2019.08.014 PubMed DOI

Španěl P, Sovová K, Dryahina K, et al. . Do linear logistic model analyses of volatile biomarkers in exhaled breath of cystic fibrosis patients reliably indicate Pseudomonas aeruginosa infection. J Breath Res 2016;10:036013. 10.1088/1752-7155/10/3/036013 PubMed DOI

Dobiáš R, Škríba A, Pluhá T, et al. . Noninvasive combined diagnosis and monitoring of Aspergillus and Pseudomonas infections: proof of concept. J Fungi (Basel) 2021;7. 10.3390/jof7090730 PubMed DOI PMC

Moore JE, Millar BC, McCaughan J, et al. . The virtual CF clinic: implications for Sputum Microbiology. J Cyst Fibros 2021;20:699–701. 10.1016/j.jcf.2020.10.005 PubMed DOI PMC

Zampoli M, Pillay K, Carrara H, et al. . Microbiological yield from induced sputum compared to oropharyngeal swab in young children with cystic fibrosis. J Cyst Fibros 2016;15:605–10. 10.1016/j.jcf.2016.01.001 PubMed DOI

Mainz JG, Naehrlich L, Schien M, et al. . Concordant genotype of upper and lower airways P aeruginosa and S aureus isolates in cystic fibrosis. Thorax 2009;64:535–40. 10.1136/thx.2008.104711 PubMed DOI

Aanæs K. Bacterial sinusitis can be a focus for initial lung colonisation and chronic lung infection in patients with cystic fibrosis. J Cyst Fibros 2013;12:S1–20. 10.1016/S1569-1993(13)00150-1 PubMed DOI

Al-Saleh S, Dell SD, Grasemann H, et al. . Sputum induction in routine clinical care of children with cystic fibrosis. J Pediatr 2010;157:1006–11. 10.1016/j.jpeds.2010.06.001 PubMed DOI

Hentschel J, Müller U, Doht F, et al. . Influences of nasal lavage collection-, processing- and storage methods on inflammatory markers--evaluation of a method for non-invasive sampling of epithelial lining fluid in cystic fibrosis and other respiratory diseases. J Immunol Methods 2014;404:41–51. 10.1016/j.jim.2013.12.003 PubMed DOI

Mauch RM, Levy CE. Serum antibodies to Pseudomonas aeruginosa in cystic fibrosis as a diagnostic tool: a systematic review. J Cyst Fibros 2014;13:499–507. 10.1016/j.jcf.2014.01.005 PubMed DOI

Burns JL, Rolain J-M. Culture-based diagnostic microbiology in cystic fibrosis: can we simplify the complexity. J Cyst Fibros 2014;13:1–9. 10.1016/j.jcf.2013.09.004 PubMed DOI

Rosenfeld M, Faino AV, Onchiri F, et al. . Comparing encounter-based and annualized chronic Pseudomonas infection definitions in cystic fibrosis. J Cyst Fibros 2022;21:40–4. 10.1016/j.jcf.2021.07.020 PubMed DOI

Cigana C, Giannella R, Colavolpe A, et al. . Mutual effects of single and combined CFTR modulators and bacterial infection in cystic fibrosis. Microbiol Spectr 2023;11:e0408322. 10.1128/spectrum.04083-22 PubMed DOI PMC

Yi B, Dalpke AH, Boutin S. Changes in the cystic fibrosis airway microbiome in response to CFTR modulator therapy. Front Cell Infect Microbiol 2021;11:548613. 10.3389/fcimb.2021.548613 PubMed DOI PMC

Rogers GB, Taylor SL, Hoffman LR, et al. . The impact of CFTR modulator therapies on CF airway microbiology. J Cyst Fibros 2020;19:359–64. 10.1016/j.jcf.2019.07.008 PubMed DOI PMC

Rowbotham NJ, Smith S, Elliott ZC, et al. . A refresh of the top 10 research priorities in cystic fibrosis. Thorax 2023;78:840–3. 10.1136/thorax-2023-220100 PubMed DOI PMC

Wainwright CE, Elborn JS, Ramsey BW, et al. . Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR . N Engl J Med 2015;373:220–31. 10.1056/NEJMoa1409547 PubMed DOI PMC

Taylor-Cousar JL, Munck A, McKone EF, et al. . Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med 2017;377:2013–23. 10.1056/NEJMoa1709846 PubMed DOI

Ramsey BW, Davies J, McElvaney NG, et al. . A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 2011;365:1663–72. 10.1056/NEJMoa1105185 PubMed DOI PMC

Stahl M, Roehmel J, Eichinger M, et al. . Effects of lumacaftor/ivacaftor on cystic fibrosis disease progression in children 2 through 5 years of age homozygous for F508del-CFTR: a phase 2 placebo-controlled clinical trial. Ann Am Thorac Soc 2023;20:1144–55. 10.1513/AnnalsATS.202208-684OC PubMed DOI PMC

Drevinek P, Canton R, Johansen HK, et al. . New concepts in antimicrobial resistance in cystic fibrosis respiratory infections. J Cyst Fibros 2022;21:937–45. 10.1016/j.jcf.2022.10.005 PubMed DOI

BiomX . BiomX reports second quarter 2023 financial results and provides business update, August 2023. Available: https://ir.biomx.com/news-events/press-releases/detail/92/biomx-reports-second-quarter-2023-financial-results-and

Jia S, Taylor-Cousar JL. Cystic fibrosis modulator therapies. Annu Rev Med 2023;74:413–26. 10.1146/annurev-med-042921-021447 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...