Considerations for the use of inhaled antibiotics for Pseudomonas aeruginosa in people with cystic fibrosis receiving CFTR modulator therapy
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38702073
PubMed Central
PMC11086488
DOI
10.1136/bmjresp-2023-002049
PII: 11/1/e002049
Knihovny.cz E-zdroje
- Klíčová slova
- Bacterial Infection, Bronchiectasis, Cystic Fibrosis, Respiratory Infection,
- MeSH
- antibakteriální látky * aplikace a dávkování terapeutické užití MeSH
- aplikace inhalační MeSH
- cystická fibróza * komplikace mikrobiologie farmakoterapie MeSH
- lidé MeSH
- protein CFTR * genetika MeSH
- pseudomonádové infekce * farmakoterapie MeSH
- Pseudomonas aeruginosa * účinky léků izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky * MeSH
- protein CFTR * MeSH
The major cause of mortality in people with cystic fibrosis (pwCF) is progressive lung disease characterised by acute and chronic infections, the accumulation of mucus, airway inflammation, structural damage and pulmonary exacerbations. The prevalence of Pseudomonas aeruginosa rises rapidly in the teenage years, and this organism is the most common cause of chronic lung infection in adults with cystic fibrosis (CF). It is associated with an accelerated decline in lung function and premature death. New P. aeruginosa infections are treated with antibiotics to eradicate the organism, while chronic infections require long-term inhaled antibiotic therapy. The prevalence of P. aeruginosa infections has decreased in CF registries since the introduction of CF transmembrane conductance regulator modulators (CFTRm), but clinical observations suggest that chronic P. aeruginosa infections usually persist in patients receiving CFTRm. This indicates that pwCF may still need inhaled antibiotics in the CFTRm era to maintain long-term control of P. aeruginosa infections. Here, we provide an overview of the changing perceptions of P. aeruginosa infection management, including considerations on detection and treatment, the therapy burden associated with inhaled antibiotics and the potential effects of CFTRm on the lung microbiome. We conclude that updated guidance is required on the diagnosis and management of P. aeruginosa infection. In particular, we highlight a need for prospective studies to evaluate the consequences of stopping inhaled antibiotic therapy in pwCF who have chronic P. aeruginosa infection and are receiving CFTRm. This will help inform new guidelines on the use of antibiotics alongside CFTRm.
Department of Pulmonology University Medical Center Utrecht Utrecht The Netherlands
Division of Respiratory Medicine University Children's Hospital Zurich Switzerland
ERN lung CF Network Frankfurt Germany
Kinder und Jugendklinik der Universitätsmedizin Rostock Rostock Germany
Leeds Institute of Medical Research University of Leeds Leeds UK
Lifespan and Population Health School of Medicine University of Nottingham Nottingham UK
Université Paris Cité Institut Cochin Inserm U1016 Paris France
Zobrazit více v PubMed
Stoltz DA, Meyerholz DK, Welsh MJ. Origins of cystic fibrosis lung disease. N Engl J Med 2015;372:351–62. 10.1056/NEJMra1300109 PubMed DOI PMC
Guo J, Garratt A, Hill A. Worldwide rates of diagnosis and effective treatment for cystic fibrosis. J Cyst Fibros 2022;21:456–62. 10.1016/j.jcf.2022.01.009 PubMed DOI
Martin C, Hamard C, Kanaan R, et al. . Causes of death in French cystic fibrosis patients: the need for improvement in transplantation referral strategies! J Cyst Fibros 2016;15:204–12. 10.1016/j.jcf.2015.09.002 PubMed DOI
Blanchard AC, Waters VJ. Opportunistic pathogens in cystic fibrosis: epidemiology and pathogenesis of lung infection. J Pediatric Infect Dis Soc 2022;11:S3–12. 10.1093/jpids/piac052 PubMed DOI
Blanchard AC, Waters VJ. Microbiology of cystic fibrosis airway disease. Semin Respir Crit Care Med 2019;40:727–36. 10.1055/s-0039-1698464 PubMed DOI PMC
Thornton CS, Parkins MD. Microbial epidemiology of the cystic fibrosis airways: past, present, and future. Semin Respir Crit Care Med 2023;44:269–86. 10.1055/s-0042-1758732 PubMed DOI
Boon M, Verleden SE, Bosch B, et al. . Morphometric analysis of explant lungs in cystic fibrosis. Am J Respir Crit Care Med 2016;193:516–26. 10.1164/rccm.201507-1281OC PubMed DOI
Zolin A, Orenti A, Jung A. ECFSPR annual report 2021. 2023. Available: https://www.ecfs.eu/projects/ecfs-patient-registry/annual-reports
Cystic Fibrosis Foundation . Patient Registry annual data report. September 2022. 2021. Available: https://www.cff.org/medical-professionals/patient-registry
Parkins MD, Somayaji R, Waters VJ. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin Microbiol Rev 2018;31:e00019–18. 10.1128/CMR.00019-18 PubMed DOI PMC
Jackson L, Waters V. Factors influencing the acquisition and eradication of early Pseudomonas aeruginosa infection in cystic fibrosis. J Cyst Fibros 2021;20:8–16. 10.1016/j.jcf.2020.10.008 PubMed DOI
Cheng K, Smyth RL, Govan JR, et al. . Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet 1996;348:639–42. 10.1016/S0140-6736(96)05169-0 PubMed DOI
Langton Hewer SC, Smith S, Rowbotham NJ, et al. . Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst Rev 2023;6:CD004197. 10.1002/14651858.CD004197.pub6 PubMed DOI PMC
Smith S, Rowbotham NJ. Inhaled anti-Pseudomonal antibiotics for long-term therapy in cystic fibrosis. Cochrane Database Syst Rev 2022;11:CD001021. 10.1002/14651858.CD001021.pub4 PubMed DOI PMC
Castellani C, Duff AJA, Bell SC, et al. . ECFS best practice guidelines: the 2018 revision. J Cyst Fibros 2018;17:153–78. 10.1016/j.jcf.2018.02.006 PubMed DOI
Mogayzel PJ Jr, Naureckas ET, Robinson KA, et al. . Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med 2013;187:680–9. 10.1164/rccm.201207-1160oe PubMed DOI
Mogayzel PJ Jr, Naureckas ET, Robinson KA, et al. . Cystic Fibrosis Foundation pulmonary guideline. Pharmacologic approaches to prevention and eradication of initial Pseudomonas aeruginosa infection. Ann Am Thorac Soc 2014;11:1640–50. 10.1513/AnnalsATS.201404-166OC PubMed DOI
Li D, Schneider-Futschik EK. Current and emerging inhaled antibiotics for chronic pulmonary Pseudomonas aeruginosa and Staphylococcus aureus infections in cystic fibrosis. Antibiotics (Basel) 2023;12:484. 10.3390/antibiotics12030484 PubMed DOI PMC
Fiedorczuk K, Chen J. Molecular structures reveal synergistic rescue of Δ508 CFTR by Trikafta modulators. Science 2022;378:284–90. 10.1126/science.ade2216 PubMed DOI PMC
European Medicines Agency . Kaftrio summary of product characteristics. 2024. Available: https://www.ema.europa.eu/en/documents/product-information/kaftrio-epar-product-information_en.pdf
Food and Drug Administration . Trikafta highlights of prescribing information. 2023. Available: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/217660s000lbl.pdf
European Medicines Agency . Kalydeco summary of product characteristics. 2023. Available: https://www.ema.europa.eu/en/documents/product-information/kalydeco-epar-product-information_en.pdf
Food and Drug Administration . Kalydeco highlights of prescribing information. 2023. Available: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/203188s038lbl.pdf
Heijerman HGM, McKone EF, Downey DG, et al. . Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet 2019;394:1940–8. 10.1016/S0140-6736(19)32597-8 PubMed DOI PMC
Middleton PG, Mall MA, Dřevínek P, et al. . Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med 2019;381:1809–19. 10.1056/NEJMoa1908639 PubMed DOI PMC
Zemanick ET, Taylor-Cousar JL, Davies J, et al. . A phase 3 open-label study of elexacaftor/tezacaftor/ivacaftor in children 6 through 11 years of age with cystic fibrosis and at least one F508del allele. Am J Respir Crit Care Med 2021;203:1522–32. 10.1164/rccm.202102-0509OC PubMed DOI PMC
Daines CL, Tullis E, Costa S, et al. . Long-term safety and efficacy of elexacaftor/tezacaftor/ivacaftor in people with cystic fibrosis and at least one F508Del allele: 144-week interim results from a 192-week open-label extension study. Eur Respir J 2023;62. 10.1183/13993003.02029-2022 PubMed DOI PMC
Goralski JL, Hoppe JE, Mall MA, et al. . Phase 3 open-label clinical trial of elexacaftor/tezacaftor/ivacaftor in children aged 2-5 years with cystic fibrosis and at least one F508del allele. Am J Respir Crit Care Med 2023;208:59–67. 10.1164/rccm.202301-0084OC PubMed DOI PMC
Mall MA, Brugha R, Gartner S, et al. . Efficacy and safety of elexacaftor/tezacaftor/ivacaftor in children 6 through 11 years of age with cystic fibrosis heterozygous for F508del and a minimal function mutation: a phase 3B, randomized, placebo-controlled study. Am J Respir Crit Care Med 2022;206:1361–9. 10.1164/rccm.202202-0392OC PubMed DOI PMC
Drevinek P, Stepankova K, Wozniacki L, et al. . Availability of CFTR modulators in countries of Eastern Europe: the reality in 2022. J Cyst Fibros 2022;21:1082–3. 10.1016/j.jcf.2022.08.014 PubMed DOI
Lopes-Pacheco M. CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine. Front Pharmacol 2019;10:1662. 10.3389/fphar.2019.01662 PubMed DOI PMC
Schnell A, Hober H, Kaiser N, et al. . Elexacaftor – tezacaftor – ivacaftor treatment improves systemic infection parameters and Pseudomonas aeruginosa colonization rate in patients with cystic fibrosis a monocentric observational study. Heliyon 2023;9:e15756. 10.1016/j.heliyon.2023.e15756 PubMed DOI PMC
Durfey SL, Pipavath S, Li A, et al. . Combining ivacaftor and intensive antibiotics achieves limited clearance of cystic fibrosis infections. mBio 2021;12:e0314821. 10.1128/mbio.03148-21 PubMed DOI PMC
Elborn JS, Blasi F, Burgel P-R, et al. . Role of inhaled antibiotics in the era of highly effective CFTR Modulators. Eur Respir Rev 2023;32:220154. 10.1183/16000617.0154-2022 PubMed DOI PMC
Nichols DP, Morgan SJ, Skalland M, et al. . Pharmacologic improvement of CFTR function rapidly decreases sputum pathogen density, but lung infections generally persist. J Clin Invest 2023;133:e167957. 10.1172/JCI167957 PubMed DOI PMC
Ong T, Van Citters AD, Dowd C, et al. . Remote monitoring in telehealth care delivery across the U.S. cystic fibrosis care network. J Cyst Fibros 2021;20:57–63. 10.1016/j.jcf.2021.08.035 PubMed DOI
Gambazza S, Storms V, Purohit V. Adherence to inhaled antibiotics in people with cystic fibrosis: insights from a virtual patient advisory board. Expert Rev Respir Med 2023;17:961–3. 10.1080/17476348.2023.2267427 PubMed DOI
Fiel SB, Roesch EA. The use of tobramycin for Pseudomonas aeruginosa: a review. Expert Rev Respir Med 2022;16:503–9. 10.1080/17476348.2022.2057951 PubMed DOI
Davies G, Rowbotham NJ, Smith S, et al. . Characterising burden of treatment in cystic fibrosis to identify priority areas for clinical trials. J Cyst Fibros 2020;19:499–502. 10.1016/j.jcf.2019.10.025 PubMed DOI
Rouzé H, Viprey M, Allemann S, et al. . Adherence to long-term therapies in cystic fibrosis: a French cross-sectional study linking prescribing, dispensing, and hospitalization data. Patient Prefer Adherence 2019;13:1497–510. 10.2147/PPA.S211769 PubMed DOI PMC
Nicolais CJ, Bernstein R, Saez-Flores E, et al. . Identifying factors that facilitate treatment adherence in cystic fibrosis: qualitative analyses of interviews with parents and adolescents. J Clin Psychol Med Settings 2019;26:530–40. 10.1007/s10880-018-9598-z PubMed DOI
Dziuban EJ, Saab-Abazeed L, Chaudhry SR, et al. . Identifying barriers to treatment adherence and related attitudinal patterns in adolescents with cystic fibrosis. Pediatr Pulmonol 2010;45:450–8. 10.1002/ppul.21195 PubMed DOI
Cameron RA, Office D, Matthews J, et al. . Treatment preference among people with cystic fibrosis: the importance of reducing treatment burden. Chest 2022;162:1241–54. 10.1016/j.chest.2022.07.008 PubMed DOI PMC
Mayer-Hamblett N, Ratjen F, Russell R, et al. . Discontinuation versus continuation of hypertonic saline or dornase alfa in modulator treated people with cystic fibrosis (SIMPLIFY): results from two parallel, multicentre, open-label, randomised, controlled, non-inferiority trials. Lancet Respir Med 2023;11:329–40. 10.1016/S2213-2600(22)00434-9 PubMed DOI PMC
Meyerholz DK, Stoltz DA, Namati E, et al. . Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med 2010;182:1251–61. 10.1164/rccm.201004-0643OC PubMed DOI PMC
Long FR, Williams RS, Castile RG. Structural airway abnormalities in infants and young children with cystic fibrosis. J Pediatr 2004;144:154–61. 10.1016/j.jpeds.2003.09.026 PubMed DOI
Coriati A, Ma X, Sykes J, et al. . Beyond borders: cystic fibrosis survival between Australia, Canada, France and New Zealand. Thorax 2023;78:242–8. 10.1136/thorax-2022-219086 PubMed DOI
Hisert KB, Heltshe SL, Pope C, et al. . Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections. Am J Respir Crit Care Med 2017;195:1617–28. 10.1164/rccm.201609-1954OC PubMed DOI PMC
Zemanick ET, Bell SC. Prevention of chronic infection with Pseudomonas aeruginosa infection in cystic fibrosis. Curr Opin Pulm Med 2019;25:636–45. 10.1097/MCP.0000000000000616 PubMed DOI PMC
Jung A, Kleinau I, Schönian G, et al. . Sequential genotyping of Pseudomonas aeruginosa from upper and lower airways of cystic fibrosis patients. Eur Respir J 2002;20:1457–63. 10.1183/09031936.02.00268002 PubMed DOI
Ronchetti K, Tame J-D, Paisey C, et al. . The CF-Sputum Induction Trial (CF-SpIT) to assess lower airway bacterial sampling in young children with cystic fibrosis: a prospective internally controlled interventional trial. Lancet Respir Med 2018;6:461–71. 10.1016/S2213-2600(18)30171-1 PubMed DOI PMC
Allen L, Allen L, Carr SB, et al. . Future therapies for cystic fibrosis. Nat Commun 2023;14:693. 10.1038/s41467-023-36244-2 PubMed DOI PMC
Weiser R, Oakley J, Ronchetti K, et al. . The lung microbiota in children with cystic fibrosis captured by induced sputum sampling. J Cyst Fibros 2022;21:1006–12. 10.1016/j.jcf.2022.01.006 PubMed DOI
Rosenfeld M, Emerson J, Accurso F, et al. . Diagnostic accuracy of oropharyngeal cultures in infants and young children with cystic fibrosis. Pediatr Pulmonol 1999;28:321–8. 10.1002/(sici)1099-0496(199911)28:5<321::aid-ppul3>3.0.co;2-v PubMed DOI
Burgel P-R, Southern KW, Addy C, et al. . Standards for the care of people with cystic fibrosis (CF); recognising and addressing CF health issues. J Cyst Fibros 2024. 10.1016/j.jcf.2024.01.005 PubMed DOI
Taccetti G, Denton M, Hayes K, et al. . A critical review of definitions used to describe Pseudomonas aeruginosa microbiological status in patients with cystic fibrosis for application in clinical trials. J Cyst Fibros 2020;19:52–67. 10.1016/j.jcf.2019.08.014 PubMed DOI
Španěl P, Sovová K, Dryahina K, et al. . Do linear logistic model analyses of volatile biomarkers in exhaled breath of cystic fibrosis patients reliably indicate Pseudomonas aeruginosa infection. J Breath Res 2016;10:036013. 10.1088/1752-7155/10/3/036013 PubMed DOI
Dobiáš R, Škríba A, Pluhá T, et al. . Noninvasive combined diagnosis and monitoring of Aspergillus and Pseudomonas infections: proof of concept. J Fungi (Basel) 2021;7. 10.3390/jof7090730 PubMed DOI PMC
Moore JE, Millar BC, McCaughan J, et al. . The virtual CF clinic: implications for Sputum Microbiology. J Cyst Fibros 2021;20:699–701. 10.1016/j.jcf.2020.10.005 PubMed DOI PMC
Zampoli M, Pillay K, Carrara H, et al. . Microbiological yield from induced sputum compared to oropharyngeal swab in young children with cystic fibrosis. J Cyst Fibros 2016;15:605–10. 10.1016/j.jcf.2016.01.001 PubMed DOI
Mainz JG, Naehrlich L, Schien M, et al. . Concordant genotype of upper and lower airways P aeruginosa and S aureus isolates in cystic fibrosis. Thorax 2009;64:535–40. 10.1136/thx.2008.104711 PubMed DOI
Aanæs K. Bacterial sinusitis can be a focus for initial lung colonisation and chronic lung infection in patients with cystic fibrosis. J Cyst Fibros 2013;12:S1–20. 10.1016/S1569-1993(13)00150-1 PubMed DOI
Al-Saleh S, Dell SD, Grasemann H, et al. . Sputum induction in routine clinical care of children with cystic fibrosis. J Pediatr 2010;157:1006–11. 10.1016/j.jpeds.2010.06.001 PubMed DOI
Hentschel J, Müller U, Doht F, et al. . Influences of nasal lavage collection-, processing- and storage methods on inflammatory markers--evaluation of a method for non-invasive sampling of epithelial lining fluid in cystic fibrosis and other respiratory diseases. J Immunol Methods 2014;404:41–51. 10.1016/j.jim.2013.12.003 PubMed DOI
Mauch RM, Levy CE. Serum antibodies to Pseudomonas aeruginosa in cystic fibrosis as a diagnostic tool: a systematic review. J Cyst Fibros 2014;13:499–507. 10.1016/j.jcf.2014.01.005 PubMed DOI
Burns JL, Rolain J-M. Culture-based diagnostic microbiology in cystic fibrosis: can we simplify the complexity. J Cyst Fibros 2014;13:1–9. 10.1016/j.jcf.2013.09.004 PubMed DOI
Rosenfeld M, Faino AV, Onchiri F, et al. . Comparing encounter-based and annualized chronic Pseudomonas infection definitions in cystic fibrosis. J Cyst Fibros 2022;21:40–4. 10.1016/j.jcf.2021.07.020 PubMed DOI
Cigana C, Giannella R, Colavolpe A, et al. . Mutual effects of single and combined CFTR modulators and bacterial infection in cystic fibrosis. Microbiol Spectr 2023;11:e0408322. 10.1128/spectrum.04083-22 PubMed DOI PMC
Yi B, Dalpke AH, Boutin S. Changes in the cystic fibrosis airway microbiome in response to CFTR modulator therapy. Front Cell Infect Microbiol 2021;11:548613. 10.3389/fcimb.2021.548613 PubMed DOI PMC
Rogers GB, Taylor SL, Hoffman LR, et al. . The impact of CFTR modulator therapies on CF airway microbiology. J Cyst Fibros 2020;19:359–64. 10.1016/j.jcf.2019.07.008 PubMed DOI PMC
Rowbotham NJ, Smith S, Elliott ZC, et al. . A refresh of the top 10 research priorities in cystic fibrosis. Thorax 2023;78:840–3. 10.1136/thorax-2023-220100 PubMed DOI PMC
Wainwright CE, Elborn JS, Ramsey BW, et al. . Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR . N Engl J Med 2015;373:220–31. 10.1056/NEJMoa1409547 PubMed DOI PMC
Taylor-Cousar JL, Munck A, McKone EF, et al. . Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med 2017;377:2013–23. 10.1056/NEJMoa1709846 PubMed DOI
Ramsey BW, Davies J, McElvaney NG, et al. . A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 2011;365:1663–72. 10.1056/NEJMoa1105185 PubMed DOI PMC
Stahl M, Roehmel J, Eichinger M, et al. . Effects of lumacaftor/ivacaftor on cystic fibrosis disease progression in children 2 through 5 years of age homozygous for F508del-CFTR: a phase 2 placebo-controlled clinical trial. Ann Am Thorac Soc 2023;20:1144–55. 10.1513/AnnalsATS.202208-684OC PubMed DOI PMC
Drevinek P, Canton R, Johansen HK, et al. . New concepts in antimicrobial resistance in cystic fibrosis respiratory infections. J Cyst Fibros 2022;21:937–45. 10.1016/j.jcf.2022.10.005 PubMed DOI
BiomX . BiomX reports second quarter 2023 financial results and provides business update, August 2023. Available: https://ir.biomx.com/news-events/press-releases/detail/92/biomx-reports-second-quarter-2023-financial-results-and
Jia S, Taylor-Cousar JL. Cystic fibrosis modulator therapies. Annu Rev Med 2023;74:413–26. 10.1146/annurev-med-042921-021447 PubMed DOI