Electrospun PCL Mats Modified with Magnetic Nanoparticles and Tannic Acid with Antibacterial and Possible Antiosteosarcoma Activity for Bone Tissue Engineering and Cancer Treatment
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40563234
PubMed Central
PMC12264861
DOI
10.1021/acsbiomaterials.5c00116
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial, bone regeneration, fiber scaffolds, magnetic nanoparticles, nanocomposites, tannic acid,
- MeSH
- antibakteriální látky * farmakologie chemie MeSH
- kosti a kostní tkáň účinky léků MeSH
- lidé MeSH
- magnetické nanočástice * chemie MeSH
- nádorové buněčné linie MeSH
- nádory kostí * farmakoterapie patologie MeSH
- osteosarkom * farmakoterapie patologie MeSH
- polyestery * chemie MeSH
- protinádorové látky * farmakologie chemie MeSH
- taniny * chemie farmakologie MeSH
- tkáňové inženýrství * metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- magnetické nanočástice * MeSH
- polycaprolactone MeSH Prohlížeč
- polyestery * MeSH
- polyfenoly MeSH
- protinádorové látky * MeSH
- taniny * MeSH
- tannic acid MeSH Prohlížeč
Modifying scaffolds with agents that at the same time positively influence osteogenic cells and have a negative impact on cancerous growth, is a promising solution for patients with bone tissue defects following tumor excision. Such materials may not only boost tissue regeneration but also limit the risk of cancer reoccurrence. In our study, we developed novel bifunctional scaffolds containing magnetic nanoparticles grafted with PCL (MNP@PCL) and tannic acid (TA), which may be directed to support normal bone cells and suppress osteosarcoma cells. First, MNPs were postsynthetically surface-modified, by grafting poly(ε-caprolactone) (PCL) from the surface via ring opening polymerization of ε-caprolactone, to provide their uniform distribution within the polymer matrix. Then, fiber mats containing a fixed amount of MNPs (2 wt %) and increasing content of TA (0, 1, 5, and 10 wt %) were prepared by electrospinning method. Both MNP@PCL and TA decreased polymer crystallinity. The interaction between the MNPs and TA significantly influenced the mat morphology, thermal properties, and initial hydrolytic performance. The most intensive TA release was observed mainly within first 6 h of incubation, and it was 3.5-fold higher (ca. 0.02 mg of TA/per mg of mat) for mfPCL@TA-10 compared to mfPCL@TA-5. Moreover, TA-containing magnetic mats suppressed the metabolic activity of osteosarcoma cells. They also demonstrated enhanced antimicrobial properties against the bacteria typically accompanying orthopedic complications, reducing the population of Gram-positive bacteria by more than 90% compared to the neat PCL mat. This proves the high potential of these materials for combining cancer treatment with bone tissue engineering.
Charles University Faculty of Science Albertov 2038 128 00 Prague Czech Republic
Institute of Physiology Czech Academy of Sciences Vídeňská 1083 142 00 Prague Czech Republic
Jagiellonian University Faculty of Chemistry Gronostajowa 2 30 387 Krakow Poland
Zobrazit více v PubMed
Pullan, J. E. ; Lotfollahzadeh, S. . Primary Bone Cancer; StatPearls Publishing: Treasure Island (FL), 2024. https://www.ncbi.nlm.nih.gov/books/NBK560830/. PubMed
Tsuzuki S., Park S. H., Eber M. R., Peters C. M., Shiozawa Y.. Skeletal complications in cancer patients with bone metastases. Int. J. Urol. 2016;23:825–832. doi: 10.1111/iju.13170. PubMed DOI PMC
Bozorgi A., Sabouri L.. Osteosarcoma, personalized medicine, and tissue engineering; an overview of overlapping fields of research. Cancer Treat. Res. Commun. 2021;27:100324. doi: 10.1016/j.ctarc.2021.100324. PubMed DOI
Henkel J., Woodruff M., Epari D., Steck R., Glatt V., Dickinson I. C., Choong P. F. M., Schuetz M. A., Hutmacher D. W.. Bone regeneration based on tissue engineering conceptionsA 21st century perspective. Bone Res. 2013;1:216–248. doi: 10.4248/BR201303002. PubMed DOI PMC
Dwivedi R., Kumar S., Pandey R., Mahajan A., Nandana D., Katii D. S., Mehrotra D.. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J. Oral Biol. Craniofacial Res. 2020;10:381–388. doi: 10.1016/j.jobcr.2019.10.003. PubMed DOI PMC
Gharibshahian M., Salehi M., Beheshtizadeh N., Kamalabadi-Farahani M., Atashi A., Nourbakhsh M.-S., Alizadeh M.. Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering. Front. Bioeng. Biotechnol. 2023;11:1168504. doi: 10.3389/fbioe.2023.1168504. PubMed DOI PMC
Świętek M., Brož A., Kołodziej A., Hodan J., Tokarz W., Hlukhaniuk A., Wesełucha-Birczyńska A., Bačáková L., Horák D.. Magnetic poly(ε-caprolactone)-based nanocomposite membranes for bone cell engineering. J. Magn. Magn. Mater. 2022;563:169967. doi: 10.1016/j.jmmm.2022.169967. DOI
Bakrim S., Omari N. El., Hachlafi N. El., Bakri Y., Lee L.-H., Bouyahya A.. Dietary phenolic compounds as anticancer natural drugs: Recent update on molecular mechanisms and clinical trials. Foods. 2022;11:3323. doi: 10.3390/foods11213323. PubMed DOI PMC
Raja I. S., Preeth D. R., Vedhanayagam M., Hyon S. H., Lim D., Kim B., Rajalakshmi S., Han D. W.. Polyphenols-loaded electrospun nanofibers in bone tissue engineering and regeneration. Biomater. Res. 2021;25:29. doi: 10.1186/s40824-021-00229-3. PubMed DOI PMC
Nicolin V., De Tommasi N., Nori S. L., Costantinides F., Berton F., Di Lenarda R.. Modulatory effects of plant polyphenols on bone remodelling: A prospective review from the bench to bedside. Front. Endocrinol. 2019;23:494. doi: 10.3389/fendo.2019.00494. PubMed DOI PMC
Wu Z., Fan L., Chen C., Ma Y., Wu X., Li Y., Hao Z., Yang T.. Promotion of osteoporotic bone healing by a tannic acid modified strontium-doped biomimetic bone lamella with ROS scavenging capacity and pro-osteogenic effect. Smart Mater. Med. 2023;4:590–602. doi: 10.1016/j.smaim.2023.05.001. DOI
Sun Y., Qu Y., Zhao J.. The application of tannic acid in orthopedics. Front. Mater. 2021;8:801369. doi: 10.3389/fmats.2021.801369. DOI
Chen C., Yang H., Yang X., Ma Q.. Tannic acid: a crosslinker leading to versatile functional polymeric networks: A review. RSC Adv. 2022;12:7689–7711. doi: 10.1039/D1RA07657D. PubMed DOI PMC
Kaczmarek B., Miłek O., Nadolna K., Owczarek A., Kleszczyński K., Osyczka A. M.. Normal and cancer cells response on the thin films based on chitosan and tannic acid. Toxicol. In Vitro. 2020;62:104688. doi: 10.1016/j.tiv.2019.104688. PubMed DOI
Kasiram M. Z., Hapidin H., Abdullah H., Hashim N. M., Azlina A., Sulong S.. Tannic acid enhances cisplatin effect on cell proliferation and apoptosis of human osteosarcoma cell line (U2OS) Pharmacol. Rep. 2022;74:175–188. doi: 10.1007/s43440-021-00330-3. PubMed DOI
Yuan J., Ye Z., Zeng Y., Pan Z., Feng Z., Bao Y., Li Y., Liu X., He Y., Feng Q.. Bifunctional scaffolds for tumor therapy and bone regeneration: Synergistic effect and interplay between therapeutic agents and scaffold materials. Mater. Today Bio. 2022;15:100318. doi: 10.1016/j.mtbio.2022.100318. PubMed DOI PMC
Nowak-Jary J., Machnicka B.. In vivo biodistribution and clearance of magnetic iron oxide nanoparticles for medical applications. Int. J. Nanomed. 2023;18:4067–4100. doi: 10.2147/IJN.S415063. PubMed DOI PMC
Gambhir R. P., Rohiwal S. S., Tiwari A. P.. Multifunctional surface functionalized magnetic iron oxide nanoparticles for biomedical applications: A review. Appl. Surf. Sci. Adv. 2022;11:100303. doi: 10.1016/j.apsadv.2022.100303. DOI
Shuai C., Yang W., He C., Peng S., Gao C., Yang Y., Qi F., Feng P.. A magnetic micro-environment in scaffolds for stimulating bone regeneration. Mater. Des. 2020;185:108275. doi: 10.1016/j.matdes.2019.108275. DOI
Xia Y., Sun J., Zhao L., Zhang F., Liang X.-J., Guo Y., Weir M. D., Reynolds M. A., Gu N., Xu H. H. K.. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials. 2018;183:151–170. doi: 10.1016/j.biomaterials.2018.08.040. PubMed DOI
Sajesh K. M., Ashokan A., Gowd G. S., Sivanarayanan T. B., Unni A. K. K., Nair S. V., Koyakutty M.. Magnetic 3D scaffold: A theranostic tool for tissue regeneration and non-invasive imaging in vivo. Nanomedicine. 2019;18:179–188. doi: 10.1016/j.nano.2019.02.022. PubMed DOI
Yang A., Wang Y., Feng Q., Fatima K., Zhang Q., Zhou X., He C.. Integrating fluorescence and magnetic resonance imaging in biocompatible scaffold for real-time bone repair monitoring and assessment. Adv. Healthcare Mater. 2024;13:2302687. doi: 10.1002/adhm.202302687. PubMed DOI
Chen J., Yuan M., Madison C. A., S, Wang Y.. Blood-brain barrier crossing using magnetic stimulated nanoparticles. J. Controlled Release. 2022;345:557–571. doi: 10.1016/j.jconrel.2022.03.007. PubMed DOI
Sun R., Chen H., Wang M., Yoshitomi T., Takeguchi M., Kawazoe N., Yang Y., Chen G.. Smart composite scaffold to synchronize magnetic hyperthermia and chemotherapy for efficient breast cancer therapy. Biomaterials. 2024;307:122511. doi: 10.1016/j.biomaterials.2024.122511. PubMed DOI
Qu Y., Li J., Ren J., Leng J., Lin C., Shi D.. Enhanced synergism of thermo-chemotherapy by combining highly efficient magnetic hyperthermia with magnetothermally-facilitated drug release. Nanoscale. 2014;6:12408–12413. doi: 10.1039/C4NR03384A. PubMed DOI
Ribeiro T. P., Moreira J. A., Monteiro F. J., Laranjeira M. S.. Nanomaterials in cancer: Reviewing the combination of hyperthermia and triggered chemotherapy. J. Controlled Release. 2022;347:89–103. doi: 10.1016/j.jconrel.2022.04.045. PubMed DOI
Liang B., Cao Y., Wang X., Zhou H., Wang M., Cao Y., Lu W., Yu K.. A “biomimetic bone-magnet” with suitable mechanical properties concurrently performs accurate target collection of nanoparticles for magnetothermally driven osteosarcoma thermo-chemotherapy. Mater. Des. 2023;234:112311. doi: 10.1016/j.matdes.2023.112311. DOI
Zasońska B. A., Líšková A., Kuricová M., Tulinská J., Pop-Georgievski O., Čiampor F., Vávra I., Dušinská M., Ilavská S., Horváthová M., Horák D.. Functionalized porous silica & maghemite core-shell nanoparticles for applications in medicine: design, synthesis, and immunotoxicity. Croat. Med. J. 2016;57:165–178. doi: 10.3325/cmj.2016.57.165. PubMed DOI PMC
Schmidt, U. ; Weigert, M. ; Broaddus, C. ; Myers, G. . Cell Detection with Star-Convex Polygons. In Medical Image Computing and Computer Assisted InterventionMICCAI 2018; Springer, 2018.
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y., White D. J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A.. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Ryšánek P., Malý M., Čapková P., Kormunda M., Kolská Z., Gryndler M., Novák O., Hocelíková L., Bystrianský L., Munzarová M.. Antibacterial modification of nylon-6 nanofibers: structure, properties and antibacterial activity. J. Polym. Res. 2017;24:208. doi: 10.1007/s10965-017-1365-6. DOI
Ajinkya N., Yu X., Kaithal P., Luo H., Somani P., Ramakrishna S.. Magnetic iron oxide nanoparticle (IONP) synthesis to applications: Present and future. Materials. 2020;13:4644. doi: 10.3390/ma13204644. PubMed DOI PMC
Petcharoen K., Sirivat A.. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng.: B. 2012;177:421–427. doi: 10.1016/j.mseb.2012.01.003. DOI
Elzein T., Nasser-Eddine M., Delaite C., Bistac S., Dumas P.. FTIR study of polycaprolactone chain organization at interfaces. J. Colloid Interface Sci. 2004;273:381–387. doi: 10.1016/j.jcis.2004.02.001. PubMed DOI
Anjum S., Rahman F., Pandey P., Arya D. K., Alam M., Rajinikanth P. S., Ao Q.. Electrospun biomimetic nanofibrous scaffolds: A promising prospect for bone tissue engineering and regenerative medicine. Int. J. Mol. Sci. 2022;23:9206. doi: 10.3390/ijms23169206. PubMed DOI PMC
Can-Herrera L. A., Oliva A. I., Dzul-Cervantes M. A. A., Pacheco-Salazar O. F., Cervantes-Uc J. M.. Morphological and mechanical properties of electrospun polycaprolactone scaffolds: Effect of applied voltage. Polymers. 2021;13:662. doi: 10.3390/polym13040662. PubMed DOI PMC
Eom J., Kwak Y., Nam C.. Electrospinning fabrication of magnetic nanoparticles-embedded polycaprolactone (PCL) sorbent with enhanced sorption capacity and recovery speed for spilled oil removal. Chemosphere. 2022;303:135063. doi: 10.1016/j.chemosphere.2022.135063. PubMed DOI
Sas W., Jasiurkowska-Delaporte M., Czaja P., Zieliński P. M., Fitta M.. Magnetic properties study of iron oxide nanoparticles-loaded poly(ε-caprolactone) nanofibers. Magnetochemistry. 2021;7:61. doi: 10.3390/magnetochemistry7050061. DOI
Hlukhaniuk A., Świętek M., Patsula V., Hodan J., Janoušková O., Bystrianský L., Brož A., Malić M., Zasońska B., Tokarz W., Bačáková L., Horák D.. Poly(ε-caprolactone)-based composites modified with polymer-grafted magnetic nanoparticles and L-ascorbic acid for bone tissue engineering. J. Biomed. Mater. Res., Part B. 2024;112:e35480. doi: 10.1002/jbm.b.35480. PubMed DOI
Hlukhaniuk, A. ; Świętek, M. ; Patsula, V. ; Zasońska, B. ; Hodan, J. ; Brož, A. ; Malić, M. ; Horák, D. In Nanoparticles Modification for Magnetic Electrospun Composites for Tissue Engineering, 4th International Scientific Conference ≪Chemical Technology and Engineering≫: ProceedingsJune 26–29th, 2023; Lviv Polytechnic National University: Lviv, UkraineLviv, 2023; pp 158–162.
Chen X., Zhang Q., Wang Y., Meng J., Wu M., H, Du L., Yang X.. Fabrication and characterization of electrospun poly(caprolactone)/tannic acid scaffold as an antibacterial wound dressing. Polymers. 2023;15:593. doi: 10.3390/polym15030593. PubMed DOI PMC
Espina A., Sanchez-Cortes S., Jurašeková Z.. Vibrational study (Raman, SERS, and IR) of plant gallnut polyphenols related to the fabrication of iron gall inks. Molecules. 2022;27:279. doi: 10.3390/molecules27010279. PubMed DOI PMC
Kołodziej A., Wesełucha-Birczyńska A., Świętek M., Skalniak Ł., Błażewicz M.. Raman microspectroscopic investigations of polymer nanocomposites: evaluation of physical and biophysical properties. Int. J. Polym. Mater. Polym. Biomater. 2019;68:44–52. doi: 10.1080/00914037.2018.1525722. DOI
Wesełucha-Birczyńska A., Świętek M., Sołtysiak E., Galiński P., Płachta Ł., Piekara K., Błażewicz M.. Raman spectroscopy and the material study of nanocomposite membranes from poly(ε-caprolactone) with biocompatibility testing by osteoblast-like cells. Analyst. 2015;140:2311–2320. doi: 10.1039/C4AN02284J. PubMed DOI
Lee A. S., Mahon P. J., Creagh D. C.. Raman analysis of iron gall inks on parchment. Vib. Spectrosc. 2006;41:170–175. doi: 10.1016/j.vibspec.2005.11.006. DOI
Bicchieri M., Monti M., Piantanida G., Sodo A.. Non-destructive spectroscopic investigation on historic Yemenite scriptorial fragments: evidence of different degradation and recipes for iron tannic inks. Anal. Bioanal. Chem. 2013;405:2713–2721. doi: 10.1007/s00216-012-6681-4. PubMed DOI
Fan L., Ma Y., Su Y., Zhang R., Liu Y., Zhang Q., Jiang Z.. Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes. RSC Adv. 2015;5:107777–107784. doi: 10.1039/C5RA23490E. DOI
Pucci C., Martinelli C., De Pasquale D., Battaglini M., di Leo N., Degl’Innocenti A., Gümüş M. B., Drago F., Ciofani G.. Tannic acid-iron complex-based nanoparticles as a novel tool against oxidative stress. ACS Appl. Mater. Interfaces. 2022;14:15927–15941. doi: 10.1021/acsami.1c24576. PubMed DOI PMC
Henrik-Klemens Å., Bengtsson F., Björdal C. G.. Raman spectroscopic investigation of iron-tannin precipitates in waterlogged archaeological oak. Stud. Conserv. 2022;67:237–247. doi: 10.1080/00393630.2020.1864895. DOI
Espina A., Cañamares M. V., Jurašeková Z., Sanchez-Cortes S.. Analysis of iron complexes of tannic acid and other related polyphenols as revealed by spectroscopic techniques: implications in the identification and characterization of iron gall inks in historical manuscripts. ACS Omega. 2022;7:27937–27949. doi: 10.1021/acsomega.2c01679. PubMed DOI PMC
Yen K.-C., Mandal T. K., Woo E. M.. Enhancement of bio-compatibility via specific interactions in polyesters modified with a bio-resourceful macromolecular ester containing polyphenol groups. J. Biomed. Mater. Res., Part A. 2008;86A:701–712. doi: 10.1002/jbm.a.31461. PubMed DOI
Persenaire O., Alexandre M., Degée P., Dubois P.. Mechanisms and kinetics of thermal degradation of poly(ε-caprolactone) Biomacromolecules. 2001;2:288–294. doi: 10.1021/bm0056310. PubMed DOI
Longo R., Catauro M., Sorrentino A., Guadagno L.. Thermal and mechanical characterization of complex electrospun systems based on polycaprolactone and gelatin. J. Therm. Anal. Calorim. 2022;147:5391–5399. doi: 10.1007/s10973-022-11225-7. DOI
Motoyama T., Tsukegi T., Shirai Y., Nishida H., Endo T.. Effects of MgO catalyst on depolymerization of poly-L-lactic acid to L,L-lactide. Polym. Degrad. Stab. 2007;92:1350–1358. doi: 10.1016/j.polymdegradstab.2007.03.014. DOI
Moraczewski K., Szabliński K.. Influence of polydopamine and tannic acid coatings on thermal properties of polylactide. J. Therm. Anal. Calorim. 2023;148:12445–12454. doi: 10.1007/s10973-023-12543-0. DOI
Alharbi N., Daraei A., Lee H., Guthold M.. The effect of molecular weight and fiber diameter on the mechanical properties of single, electrospun PCL nanofibers. Mater. Today Commun. 2023;35:105773. doi: 10.1016/j.mtcomm.2023.105773. DOI
Cortez Tornello P. R., Caracciolo P. C., Cuadrado T. R., Abraham G. A.. Structural characterization of electrospun micro/nanofibrous scaffolds by liquid extrusion porosimetry: A comparison with other techniques. Mater. Sci. Eng.: C. 2014;41:335–342. doi: 10.1016/j.msec.2014.04.065. PubMed DOI
Rezaei V., Mirzaei E., Taghizadeh S.-M., Berenjian A., Ebrahiminezhad A.. Nano iron oxide-PCL composite as an improved soft tissue scaffold. Processes. 2021;9:1559. doi: 10.3390/pr9091559. DOI
Abdullah J. A. A., Perez-Puyana V., Guerrero A., Romero A.. Novel hybrid electrospun poly(ε-caprolactone) nanofibers containing green and chemical magnetic iron oxide nanoparticles. J. Appl. Polym. Sci. 2023;140:e54345. doi: 10.1002/app.54345. DOI
Sailema-Palate G. P., Vidaurre A., Campillo-Fernández A. J., Castilla-Cortázar I.. A comparative study on poly(ε-caprolactone) film degradation at extreme pH values. Polym. Degrad. Stab. 2016;130:118–125. doi: 10.1016/j.polymdegradstab.2016.06.005. DOI
Chen N., Geng M., Huang D., Tan M., Li Z., Liu G., Zhu C., Fang G., Zhou D.. Hydroxyl radical formation during oxygen-mediated oxidation of ferrous iron on mineral surface: Dependence on mineral identity. J. Hazard. Mater. 2022;434:128861. doi: 10.1016/j.jhazmat.2022.128861. PubMed DOI
Zhang H., Wu S., Song Z., Fang L., Wang H.-B.. Tannic acid-accelerated Fenton chemical reaction amplification for fluorescent biosensing: The proof-of-concept towards ultrasensitive detection of DNA methylation. Talanta. 2023;265:124811. doi: 10.1016/j.talanta.2023.124811. PubMed DOI
Bartnikowski M., Dargaville T. R., Ivanovski S., Hutmacher D. W.. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog. Polym. Sci. 2019;96:1–20. doi: 10.1016/j.progpolymsci.2019.05.004. DOI
Wu Z., Fan L., Chen C., Ma Y., Wu X., Li Y., Hao Z., Yang T.. Promotion of osteoporotic bone healing by a tannic acid modified strontium-doped biomimetic bone lamella with ROS scavenging capacity and pro-osteogenic effect. Smart Mater. Med. 2023;4:590–602. doi: 10.1016/j.smaim.2023.05.001. DOI
He M., Gao X., Fan Y., Xie L., Yang M., Tian W.. Tannic acid/Mg2+-based versatile coating to manipulate the osteoimmunomodulation of implants. J. Mater. Chem. B. 2021;9:1096–1106. doi: 10.1039/D0TB01577F. PubMed DOI
Byun H., Jang G. N., Jeong H., Lee J., Huh S. J., Lee S., Kim E., Shin H.. Development of a composite hydrogel incorporating anti-inflammatory and osteoinductive nanoparticles for effective bone regeneration. Biomater. Res. 2023;27:132. doi: 10.1186/s40824-023-00473-9. PubMed DOI PMC
Castañeda-Arriaga R., Pérez-González A., Reina M., Alvarez-Idaboy J. R., Galano A.. Comprehensive investigation of the antioxidant and pro-oxidant effects of phenolic compounds: a double-edged sword in the context of oxidative stress? J. Phys. Chem. B. 2018;122:6198–6214. doi: 10.1021/acs.jpcb.8b03500. PubMed DOI
Wang G., Yang F., Zhou W., Xiao N., Luo M., Tang Z.. The initiation of oxidative stress and therapeutic strategies in wound healing. Biomed. Pharmacother. 2023;157:114004. doi: 10.1016/j.biopha.2022.114004. PubMed DOI
Shen Z., Liu T., Li Y., Lau J., Yang Z., Fan W., Zhou Z., Shi C., Ke C., Bregadze V. I., Mandal S. K., Liu Y., Li Z., Xue T., Zhu G., Munasinghe J., Niu G., Wu A., Chen X.. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano. 2018;12:11355–11365. doi: 10.1021/acsnano.8b06201. PubMed DOI
Khan S., Sharifi M., Hasan A., Attar F., Edis Z., Bai Q., Derakhshankhah H., Falahati M.. Magnetic nanocatalysts as multifunctional platforms in cancer therapy through the synthesis of anticancer drugs and facilitated Fenton reaction. J. Adv. Res. 2021;30:171–184. doi: 10.1016/j.jare.2020.12.001. PubMed DOI PMC
Lin H., Sohn J., Shen H., Langhans M. T., Tuan R. S.. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials. 2019;203:96–110. doi: 10.1016/j.biomaterials.2018.06.026. PubMed DOI PMC
Yousefi A.-M., James P. F., Akbarzadeh R., Subramanian A., Flavin C., Oudadesse H.. Prospect of stem cells in bone tissue engineering: A review. Stem Cells Int. 2016;2016:180487. doi: 10.1155/2016/6180487. PubMed DOI PMC
Liu Z., Guo S., Dong L., Wu P., Li K., Li X., Li X., Qian H., Fu Q.. A tannic acid doped hydrogel with small extracellular vesicles derived from mesenchymal stem cells promotes spinal cord repair by regulating reactive oxygen species microenvironment. Mater. Today Bio. 2022;16:100425. doi: 10.1016/j.mtbio.2022.100425. PubMed DOI PMC
Yang Y., Zhao X., Wang S., Zhang Y., Yang A., Cheng Y., Chen X.. Ultra-durable cell-free bioactive hydrogel with fast shape memory and on-demand drug release for cartilage regeneration. Nat. Commun. 2023;14:7771. doi: 10.1038/s41467-023-43334-8. PubMed DOI PMC
Zeng A., Wang Y., Li D., Guo J., Chen Q.. Preparation and antibacterial properties of polycaprolactone/quaternized chitosan blends. Chin. J. Chem. Eng. 2021;32:462–471. doi: 10.1016/j.cjche.2020.10.001. DOI
Saqib S., Munis M. F. H., Zaman W., Ullah F., Shah S. N., Ayaz A., Farooq M., Bahadur S.. Synthesis, characterization and use of iron oxide nano particles for antibacterial activity. Microsc. Res. Tech. 2019;82:415–420. doi: 10.1002/jemt.23182. PubMed DOI
Ezealigo U. S., Ezealigo B. N., Aisida S. O., Ezema F. I.. Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective. JCIS Open. 2021;4:100027. doi: 10.1016/j.jciso.2021.100027. DOI
Kaczmarek B.. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-A minireview. Materials. 2020;13:3224. doi: 10.3390/ma13143224. PubMed DOI PMC
Jadhav U., Kadu S., Thokal N., Padul M., Dawkar V., Chougale A., Salve A., Patil M.. Degradation of tannic acid by cold-adapted Klebsiella sp NACASA1 and phytotoxicity assessment of tannic acid and its degradation products. Environ. Sci. Pollut. Res. 2011;18:1129–1138. doi: 10.1007/s11356-011-0468-6. PubMed DOI
Min B. R., Pinchak W. E., Anderson R. C., Callaway T. R.. Effect of tannins on the in vitro growth of O157:H7 and in vivo growth of generic excreted from steers. J. Food Prot. 2007;70:543–550. doi: 10.4315/0362-028X-70.3.543. PubMed DOI
Farha A. K., Yang Q.-Q., Kim G., Li H.-B., Zhu F., Liu H.-Y., Gan R.-Y., Corke H.. Tannins as an alternative to antibiotics. Food Biosci. 2020;38:100751. doi: 10.1016/j.fbio.2020.100751. DOI