Functionalized porous silica&maghemite core-shell nanoparticles for applications in medicine: design, synthesis, and immunotoxicity
Jazyk angličtina Země Chorvatsko Médium print
Typ dokumentu časopisecké články
PubMed
27106358
PubMed Central
PMC4856187
DOI
10.3325/cmj.2016.57.165
Knihovny.cz E-zdroje
- MeSH
- fagocyty fyziologie MeSH
- faktor stimulující granulocyto-makrofágové kolonie metabolismus MeSH
- interleukin-6 metabolismus MeSH
- interleukin-8 metabolismus MeSH
- leukocyty fyziologie MeSH
- lidé MeSH
- lymfocyty fyziologie MeSH
- nanoslupky chemie ultrastruktura MeSH
- oxid křemičitý chemie MeSH
- průtoková cytometrie MeSH
- respirační vzplanutí fyziologie MeSH
- TNF-alfa metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- železité sloučeniny chemie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor stimulující granulocyto-makrofágové kolonie MeSH
- ferric oxide MeSH Prohlížeč
- interleukin-6 MeSH
- interleukin-8 MeSH
- oxid křemičitý MeSH
- TNF-alfa MeSH
- železité sloučeniny MeSH
AIM: To determine cytotoxicity and effect of silica-coated magnetic nanoparticles (MNPs) on immune response, in particular lymphocyte proliferative activity, phagocytic activity, and leukocyte respiratory burst and in vitro production of interleukin-6 (IL-6) and 8 (IL-8), interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and granulocyte macrophage colony stimulating factor (GM-CSF). METHODS: Maghemite was prepared by coprecipitation of iron salts with ammonia, oxidation with NaOCl and modified by tetramethyl orthosilicate and aminosilanes. Particles were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier-transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). Cytotoxicity and lymphocyte proliferative activity were assessed using [3H]-thymidine incorporation into DNA of proliferating human peripheral blood cells. Phagocytic activity and leukocyte respiratory burst were measured by flow cytometry; cytokine levels in cell supernatants were determined by ELISA. RESULTS: γ-Fe2O3&SiO2-NH2 MNPs were 13 nm in size. According to TEM, they were localized in the cell cytoplasm and extracellular space. Neither cytotoxic effect nor significant differences in T-lymphocyte and T-dependent B-cell proliferative response were found at particle concentrations 0.12-75 μg/cm2 after 24, 48, and 72 h incubation. Significantly increased production of IL-6 and 8, and GM-CSF cytokines was observed in the cells treated with 3, 15, and 75 µg of particles/cm2 for 48 h and stimulated with pokeweed mitogen (PHA). No significant changes in TNF-α and IFN-γ production were observed. MNPs did not affect phagocytic activity of monocytes and granulocytes when added to cells for 24 and 48 h. Phagocytic respiratory burst was significantly enhanced in the cultures exposed to 75 µg MNPs/cm2 for 48 h. CONCLUSIONS: The cytotoxicity and in vitro immunotoxicity were found to be minimal in the newly developed porous core-shell γ-Fe2O3&SiO2-NH2 magnetic nanoparticles.
Zobrazit více v PubMed
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021. doi: 10.1016/j.biomaterials.2004.10.012. PubMed DOI
Li J, He X, Wu Z, Wang K, Shen G, Yu R. Piezoelectric immunosensor based on magnetic nanoparticles with simple immobilization procedures. Anal Chim Acta. 2003;481:191–8. doi: 10.1016/S0003-2670(03)00089-8. DOI
Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology. 2003;229:838–46. doi: 10.1148/radiol.2293021215. PubMed DOI
Xing Z-C, Chang Y, Kang I-K. Immobilization of biomolecules on the surface of inorganic nanoparticles for biomedical applications. Sci Technol Adv Mater. 2010;11:014101. doi: 10.1088/1468-6996/11/1/014101. PubMed DOI PMC
Mahmoudi M, Sahraian MA, Shokrgozar MA, Laurent S. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. ACS Chem Neurosci. 2011;2:118–40. doi: 10.1021/cn100100e. PubMed DOI PMC
Schleich N, Sibret P, Danhier P, Ucakar B, Laurent S, Muller RN, et al. Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int J Pharm. 2013;447:94–101. doi: 10.1016/j.ijpharm.2013.02.042. PubMed DOI
Cornell RM, Schwertmann U. The iron oxides: Structure, properties, reactions, occurrences and uses. 2nd Ed., Wiley, Darmstadt 2000.
Liu G, Gao J, Ai H, Chen X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013;9:1533–45. doi: 10.1002/smll.201201531. PubMed DOI
Baalousha M, Manciulea A, Cumberland S, Kendall K, Lead JR. Aggregation and surface properties of iron oxide nanoparticles: Influence of pH and natural organic matter. Environ Toxicol Chem. 2008;27:1875–82. doi: 10.1897/07-559.1. PubMed DOI
Chastellain M, Petri A, Hofmann H. Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles. J Colloid Interface Sci. 2004;278:353–60. doi: 10.1016/j.jcis.2004.06.025. PubMed DOI
Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, et al. Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens Bioelectron. 2008;24:676–83. doi: 10.1016/j.bios.2008.06.032. PubMed DOI
Garcia I, Zafeiropoulos NE, Janke A, Tercjak A, Eceiza A, Stamm M, et al. Functionalization of iron oxide magnetic nanoparticles with poly(methyl methacrylate) brushes via grafting-from atom transfer radical polymerization. J Polym Sci A Polym Chem. 2007;45:925–32. doi: 10.1002/pola.21854. DOI
Barrera C, Herrera AP, Rinaldi C. Colloidal dispersions of monodisperse magnetite nanoparticles modified with poly(ethylene glycol). J Colloid Interface Sci. 2009;329:107–13. doi: 10.1016/j.jcis.2008.09.071. PubMed DOI
Zasonska BA, Boiko N, Klyuchivska O, Trchová M, Petrovský E, Stoika R, et al. Silica-coated γ-Fe2O3 nanoparticles: Preparation and engulfment by mammalian macrophages. J Nanopharmaceutics Drug Delivery. 2013;1:182–92. doi: 10.1166/jnd.2013.1020. DOI
Lin W, Hung Y-W, Zhou X-D, Ma Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol. 2006;217:252–9. doi: 10.1016/j.taap.2006.10.004. PubMed DOI
Kayal S, Ramanujan RV. Anti-cancer drug loaded iron–gold core–shell nanoparticles (Fe@Au) for magnetic drug targeting. J Nanosci Nanotechnol. 2010;10:1–13. doi: 10.1166/jnn.2010.2461. PubMed DOI
Zasonska BA, Boiko N, Horák D, Klyuchivska O, Macková H, Beneš M, et al. The use of hydrophilic poly(N,N-dimethylacrylamide) grafted from magnetic γ-Fe2O3 nanoparticles to promote engulfment by mammalian cells. J Biomed Nanotechnol. 2013;9:479–91. doi: 10.1166/jbn.2013.1552. PubMed DOI
Stöber W, Fink A. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–9. doi: 10.1016/0021-9797(68)90272-5. DOI
Wahajuddin AS. Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012;7:3445–71. doi: 10.2147/IJN.S30320. PubMed DOI PMC
Miller FA, Wilkins CH. Infrared spectra and characteristic frequencies of inorganic ions. J Anal Chem. 1952;24:1253–94. doi: 10.1021/ac60068a007. DOI
Tong L, Zhao M, Zhu S, Chen J. Synthesis and application of superparamagnetic iron oxide nanoparticles in targeted therapy and imaging of cancer. Frontiers of Medicine. 2011;5:379–87. doi: 10.1007/s11684-011-0162-6. PubMed DOI
Hofmann-Amtenbrink M, von Rechenberg B, Hofmann H. Superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev. 2013;65:119–49. PubMed
Metz MD. Optimized labelling of human monocytes with iron oxide MR contrast agents. Radiological Society of North America, Scientific Assembly and Annual Meeting, Chicago 2003. http://archive.rsna.org/2003/3105866.html
Francisco-Cruz A, Aguilar-Santelises M, Ramos-Espinosa O, Mata-Espinosa D, Marquina-Castillo B, Barrios-Payan J, et al. Granulocyte-macrophage colony-stimulating factor: Not just another haematopoietic growth factor. Med Oncol. 2014;31:774. doi: 10.1007/s12032-013-0774-6. PubMed DOI
Müller K, Skepper JN, Posfai M, Trivedi R, Howarth S, Corot C, et al. Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials. 2007;28:1629–42. doi: 10.1016/j.biomaterials.2006.12.003. PubMed DOI
Strehl C, Gaber T, Maurizi L, Hahne M, Rauch R, Hoff P, et al. Effects of PVA coated nanoparticles on human immune cells. Int J Nanomedicine. 2015;10:3429–45. doi: 10.2147/IJN.S75936. PubMed DOI PMC
Laskar A, Ghosh M, Khattak SI, Li W, Yuan XM. Degradation of superparamagnetic iron oxide nanoparticle-induced ferritin by lysosomal cathepsins and related immune response. Nanomedicine (Lond) 2012;7:705–17. doi: 10.2217/nnm.11.148. PubMed DOI
Mesarosova M, Ciampor F, Zavisova V, Koneracka M, Ursinyova M, Kozics K, et al. The intensity of internalization and cytotoxicity of superparamagnetic iron oxide nanoparticles with different surface modifications in human tumor and diploid lung cells. Neoplasma. 2012;59:584–97. doi: 10.4149/neo_2012_075. PubMed DOI
Ban M, Langonné I, Huguet N, Guichard Y, Goutet M. Iron oxide particles modulate the ovalbumin-induced Th2 immune response in mice. Toxicol Lett. 2013;216:31–9. doi: 10.1016/j.toxlet.2012.11.003. PubMed DOI