Cerium Oxide-Decorated γ-Fe2O3 Nanoparticles: Design, Synthesis and in vivo Effects on Parameters of Oxidative Stress

. 2020 ; 8 () : 682. [epub] 20200804

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32850680

Magnetic γ-Fe2O3/CeOx nanoparticles were obtained by basic coprecipitation/oxidation of iron chlorides with hydrogen peroxide, followed by precipitation of Ce(NO3)3 with ammonia. The appearance of CeOx on the magnetic particle surface was confirmed by X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and elemental analysis; a magnetometer was used to measure the magnetic properties of γ-Fe2O3/CeOx. The relatively high saturation magnetization of the particles (41.1 A·m2/kg) enabled magnetic separation. The surface of γ-Fe2O3/CeOx particles was functionalized with PEG-neridronate of two different molecular weights to ensure colloidal stability and biocompatibility. The ability of the particles to affect oxidative stress in hereditary hypertriglyceridemic (HHTg) rats was tested by biological assay of the liver, kidney cortex, and brain tissues. An improvement was observed in both enzymatic [superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)] and non-enzymatic (reduced (GSH) and oxidized (GSSG) glutathione) levels of antioxidant defense and lipid peroxidation parameters [4-hydroxynonenal (4-HNE) and malondialdehyde (MDA)]. The results corresponded with chemical determination of antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, proving that in the animal model γ-Fe2O3/CeOx@PEG2,000 nanoparticles effectively scavenged radicals due to the presence of cerium oxide, in turn decreasing oxidative stress. These particles may therefore have the potential to reduce disorders associated with oxidative stress and inflammation.

Zobrazit více v PubMed

Asati A., Santra S., Kaittanis C., Nath S., Perez J. M. (2009). Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. Int. Ed. 48, 2308–2312. 10.1002/anie.200805279 PubMed DOI PMC

Beche E., Charvin P., Perarnau D., Abanades S., Flamant G. (2008). Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 40, 264–267. 10.1002/sia.2686 DOI

Celardo I., Pedersen J. Z., Traversa E., Ghibelli L. (2011). Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3, 1411–1420. 10.1039/c0nr00875c PubMed DOI

Corma A., Atienzar P., Garcia H., Chane-Ching J.-Y. (2004). Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 3, 394–397. 10.1038/nmat1129 PubMed DOI

Ivanov V. K., Shcherbakov A., Usatenko A. (2009). Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russ. Chem. Rev. 78, 855–871. 10.1070/RC2009v078n09ABEH004058 DOI

Jiao X., Song H. J., Zhao H. H., Bai W., Zhang L. C., Lv Y. (2012). Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H2O2 and glucose detection. Anal. Methods 4, 3261–3267. 10.1039/c2ay25511a DOI

Jordan A., Wust P., Fähling H., John W., Hinz A., Felix R. (1993). Inductive heating of ferrimagnetic particles and magnetic fluids - physical evaluation of their potential for hyperthermia. Int. J. Hyperthermia 9, 51–68. 10.3109/02656739309061478 PubMed DOI

Karakoti A. S., Kuchibhatla S. V. N. T., Babu K. S., Seal S. (2007). Direct synthesis of nanoceria in aqueous polyhydroxyl solutions. J. Phys. Chem. C 111, 17232-17240. 10.1021/jp076164k DOI

Karakoti A. S., Singh S., Kumar A., Malinska M., Kuchibhatla S. V. N. T., Wozniak K., et al. . (2009). PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Am. Chem. Soc. 131, 14144–14145. 10.1021/ja9051087 PubMed DOI PMC

Korsvik C., Patil S., Seal S., Self W. T. (2007). Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 1056–1058. 10.1039/b615134e PubMed DOI

Kostiv U., Lobaz V., Kučka J., Švec P., Sedláček O., Hrubý M., et al. (2017). A simple neridronate-based surface coating strategy for upconversion nanoparticles: highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale 9, 16680–16688. 10.1039/C7NR05456D PubMed DOI

Kucheryavy P., He J., John V. T., Maharjan P., Spinu L., Goloverda G. Z., et al. . (2013). Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. Langmuir 29, 710–716. 10.1021/la3037007 PubMed DOI PMC

Lai J., Shafi K. V. P. M., Loos K., Ulman A., Lee Y., Vogt T., et al. . (2003). Doping γ-Fe2O3 nanoparticles with Mn(III) suppresses the transition to the α-Fe2O3 structure. J. Am. Chem. Soc. 125, 11470–11471. 10.1021/ja035409d PubMed DOI

Lee S. S., Song W., Cho M., Puppala H. L., Nguyen P., Zhu H., et al. . (2013). Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 7, 9693–9703. 10.1021/nn4026806 PubMed DOI

Li M., Shi P., Xu C., Ren J. S., Qu X. G. (2013). Cerium oxide caged metal chelator: anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer's disease treatment. Chem. Sci. 4, 2536–2542. 10.1039/c3sc50697e DOI

Li Q., Kartikowati C. W., Horie S., Ogi T., Iwaki T., Okuyama K. (2017). Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 7, 9894. 10.1038/s41598-017-09897-5 PubMed DOI PMC

Malinska H., Hüttl M., Oliyarnyk O., Markova I., Poruba M., Racova Z., et al. . (2019). Beneficial effect of troxerutin on metabolic disorders in a non-obese model of metabolic syndrome. PLoS ONE 14, e0220377. 10.1371/journal.pone.0220377 PubMed DOI PMC

Moskvin M., Horák D. (2016). Carbohydrate-modified magnetic nanoparticles for radical scavenging. Physiological Res. 65 (Suppl. 2), S243–S252. 10.33549/physiolres.933426 PubMed DOI

Perez J. M., Asati A., Nath S., Kaittanis C. (2008). Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small 4, 552–556. 10.1002/smll.200700824 PubMed DOI

Pirmohamed T., Dowding J. M., Singh S., Wasserman B., Heckert E., Karakoti A. S., et al. . (2010). Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 46, 2736–2738. 10.1039/b922024k PubMed DOI PMC

Pop-Georgievski O., Zimmermann R., Kotelnikov I., Proks V., Romeis D., Kučka J., et al. . (2018). Impact of bioactive peptide motifs on molecular structure, charging, and nonfouling properties of poly(ethylene oxide) brushes. Langmuir 34, 6010–6020. 10.1021/acs.langmuir.8b00441 PubMed DOI

Poprac C., Jomova K., Simunkova M., Kollar V., Rhodes C. J., Valko M. (2017). Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 38, 592–607. 10.1016/j.tips.2017.04.005 PubMed DOI

Rehman K., Akash M. S. H. (2017). Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J. Cell Biochem. 118, 3577–3585. 10.1002/jcb.26097 PubMed DOI

Schieber M., Chandel N. S. (2014). ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462. 10.1016/j.cub.2014.03.034 PubMed DOI PMC

Shatan A. B., Venclíková K., Zasonska B. A., Patsula V., Pop-Georgievski O., Petrovský E., et al. . (2019). Antibacterial silver-conjugated magnetic nanoparticles: design, synthesis and bactericidal effect. Pharm. Res. 36, 147–159. 10.1007/s11095-019-2680-x PubMed DOI

Stambouli A. B., Traversa E. (2002). Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew. Sust. Energ. Rev. 6, 433–455. 10.1016/S1364-0321(02)00014-X DOI

Toth G. B., Varallyay C. G., Horvath A., Bashir M. R., Choyke P. L., Daldrup-Link H. E., et al. . (2017). Current and potential imaging applications of Ferumoxytol for magnetic resonance imaging HHS public access. Kidney Int. 92, 47–66. 10.1016/j.kint.2016.12.037 PubMed DOI PMC

Turin-Moleavin I.-A., Fifere A., Lungoc A.-L., Rosca I., Coroaba A., Peptanariu D., et al. . (2019). In vitro and in vivo antioxidant activity of the new magnetic-cerium oxide nanoconjugates. Nanomaterials 9, 1565. 10.3390/nano9111565 PubMed DOI PMC

Walkey C., Das S., Seal S., Erlichman J., Heckman K., Ghibelli L., et al. . (2015). Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ. Sci. Nano, 2, 33–53. 10.1039/C4EN00138A PubMed DOI PMC

Weaver J. D., Stabler C. L. (2015). Antioxidant cerium oxide nanoparticle hydrogels for cellular encapsulation. Acta Biomater. 16, 136–144. 10.1016/j.actbio.2015.01.017 PubMed DOI PMC

Wu Y., Yang Y., Zhao W., Xu Z. P., Little P. J., Whittaker A. K., et al. . (2018). Novel iron oxide–cerium oxide core–shell nanoparticles as a potential theranostic material for ROS related inflammatory diseases. J. Mater. Chem. B 6, 4937–4951. 10.1039/C8TB00022K PubMed DOI

Xu C., Lin Y., Wang J., Wu L., Wei W., Ren J., et al. . (2013). Nanoceria-triggered synergetic drug release based on CeO2-capped mesoporous silica host-guest interactions and switchable enzymatic activity and cellular effects of CeO2. Adv. Healthcare Mater. 2, 1591–1599. 10.1002/adhm.201200464 PubMed DOI

Xu C., Qu X. (2014). Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 6, e90 10.1038/am.2013.88 DOI

Zalipsky S. (1995). Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv. Drug Deliv. Rev. 16, 157–182. 10.1016/0169-409X(95)00023-Z DOI

Zasonska B. A., Líšková A., Tulinská J., Pop-Georgievski O., Ciampor F., Vávra I., et al. . (2016). Functionalized porous silica&maghemite core-shell nanoparticles for applications in medicine: design, synthesis and immunotoxicity. Croat. Med. J. 57, 165–178. 10.3325/cmj.2016.57.165 PubMed DOI PMC

Zasonska B. A., Pustovyy V. I., Babinskiy A. V., Palyvoda O. M., Chekhun V. F., Todor I., et al. (2019). Combined antitumor effect of surface-modified superparamagnetic maghemite nanoparticles and a vitamin E derivative on experimental Walker-256 mammary gland carcinosarcoma. J. Magn. Magn. Mater. 471, 381–387. 10.1016/j.jmmm.2018.10.006 DOI

Zhang F., Wang P., Koberstein J., Khalid S., Chan S. W. (2004). Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surf. Sci. 563, 74–82. 10.1016/j.susc.2004.05.138 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...