Cerium Oxide-Decorated γ-Fe2O3 Nanoparticles: Design, Synthesis and in vivo Effects on Parameters of Oxidative Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32850680
PubMed Central
PMC7417791
DOI
10.3389/fchem.2020.00682
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant, cerium oxide, maghemite, nanoparticles, oxidative stress,
- Publikační typ
- časopisecké články MeSH
Magnetic γ-Fe2O3/CeOx nanoparticles were obtained by basic coprecipitation/oxidation of iron chlorides with hydrogen peroxide, followed by precipitation of Ce(NO3)3 with ammonia. The appearance of CeOx on the magnetic particle surface was confirmed by X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and elemental analysis; a magnetometer was used to measure the magnetic properties of γ-Fe2O3/CeOx. The relatively high saturation magnetization of the particles (41.1 A·m2/kg) enabled magnetic separation. The surface of γ-Fe2O3/CeOx particles was functionalized with PEG-neridronate of two different molecular weights to ensure colloidal stability and biocompatibility. The ability of the particles to affect oxidative stress in hereditary hypertriglyceridemic (HHTg) rats was tested by biological assay of the liver, kidney cortex, and brain tissues. An improvement was observed in both enzymatic [superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)] and non-enzymatic (reduced (GSH) and oxidized (GSSG) glutathione) levels of antioxidant defense and lipid peroxidation parameters [4-hydroxynonenal (4-HNE) and malondialdehyde (MDA)]. The results corresponded with chemical determination of antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, proving that in the animal model γ-Fe2O3/CeOx@PEG2,000 nanoparticles effectively scavenged radicals due to the presence of cerium oxide, in turn decreasing oxidative stress. These particles may therefore have the potential to reduce disorders associated with oxidative stress and inflammation.
Institute for Clinical and Experimental Medicine Prague Czechia
Institute of Geophysics Czech Academy of Sciences Prague Czechia
Institute of Macromolecular Chemistry Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Asati A., Santra S., Kaittanis C., Nath S., Perez J. M. (2009). Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. Int. Ed. 48, 2308–2312. 10.1002/anie.200805279 PubMed DOI PMC
Beche E., Charvin P., Perarnau D., Abanades S., Flamant G. (2008). Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 40, 264–267. 10.1002/sia.2686 DOI
Celardo I., Pedersen J. Z., Traversa E., Ghibelli L. (2011). Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3, 1411–1420. 10.1039/c0nr00875c PubMed DOI
Corma A., Atienzar P., Garcia H., Chane-Ching J.-Y. (2004). Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 3, 394–397. 10.1038/nmat1129 PubMed DOI
Ivanov V. K., Shcherbakov A., Usatenko A. (2009). Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russ. Chem. Rev. 78, 855–871. 10.1070/RC2009v078n09ABEH004058 DOI
Jiao X., Song H. J., Zhao H. H., Bai W., Zhang L. C., Lv Y. (2012). Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H2O2 and glucose detection. Anal. Methods 4, 3261–3267. 10.1039/c2ay25511a DOI
Jordan A., Wust P., Fähling H., John W., Hinz A., Felix R. (1993). Inductive heating of ferrimagnetic particles and magnetic fluids - physical evaluation of their potential for hyperthermia. Int. J. Hyperthermia 9, 51–68. 10.3109/02656739309061478 PubMed DOI
Karakoti A. S., Kuchibhatla S. V. N. T., Babu K. S., Seal S. (2007). Direct synthesis of nanoceria in aqueous polyhydroxyl solutions. J. Phys. Chem. C 111, 17232-17240. 10.1021/jp076164k DOI
Karakoti A. S., Singh S., Kumar A., Malinska M., Kuchibhatla S. V. N. T., Wozniak K., et al. . (2009). PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Am. Chem. Soc. 131, 14144–14145. 10.1021/ja9051087 PubMed DOI PMC
Korsvik C., Patil S., Seal S., Self W. T. (2007). Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 1056–1058. 10.1039/b615134e PubMed DOI
Kostiv U., Lobaz V., Kučka J., Švec P., Sedláček O., Hrubý M., et al. (2017). A simple neridronate-based surface coating strategy for upconversion nanoparticles: highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale 9, 16680–16688. 10.1039/C7NR05456D PubMed DOI
Kucheryavy P., He J., John V. T., Maharjan P., Spinu L., Goloverda G. Z., et al. . (2013). Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. Langmuir 29, 710–716. 10.1021/la3037007 PubMed DOI PMC
Lai J., Shafi K. V. P. M., Loos K., Ulman A., Lee Y., Vogt T., et al. . (2003). Doping γ-Fe2O3 nanoparticles with Mn(III) suppresses the transition to the α-Fe2O3 structure. J. Am. Chem. Soc. 125, 11470–11471. 10.1021/ja035409d PubMed DOI
Lee S. S., Song W., Cho M., Puppala H. L., Nguyen P., Zhu H., et al. . (2013). Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 7, 9693–9703. 10.1021/nn4026806 PubMed DOI
Li M., Shi P., Xu C., Ren J. S., Qu X. G. (2013). Cerium oxide caged metal chelator: anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer's disease treatment. Chem. Sci. 4, 2536–2542. 10.1039/c3sc50697e DOI
Li Q., Kartikowati C. W., Horie S., Ogi T., Iwaki T., Okuyama K. (2017). Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 7, 9894. 10.1038/s41598-017-09897-5 PubMed DOI PMC
Malinska H., Hüttl M., Oliyarnyk O., Markova I., Poruba M., Racova Z., et al. . (2019). Beneficial effect of troxerutin on metabolic disorders in a non-obese model of metabolic syndrome. PLoS ONE 14, e0220377. 10.1371/journal.pone.0220377 PubMed DOI PMC
Moskvin M., Horák D. (2016). Carbohydrate-modified magnetic nanoparticles for radical scavenging. Physiological Res. 65 (Suppl. 2), S243–S252. 10.33549/physiolres.933426 PubMed DOI
Perez J. M., Asati A., Nath S., Kaittanis C. (2008). Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small 4, 552–556. 10.1002/smll.200700824 PubMed DOI
Pirmohamed T., Dowding J. M., Singh S., Wasserman B., Heckert E., Karakoti A. S., et al. . (2010). Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 46, 2736–2738. 10.1039/b922024k PubMed DOI PMC
Pop-Georgievski O., Zimmermann R., Kotelnikov I., Proks V., Romeis D., Kučka J., et al. . (2018). Impact of bioactive peptide motifs on molecular structure, charging, and nonfouling properties of poly(ethylene oxide) brushes. Langmuir 34, 6010–6020. 10.1021/acs.langmuir.8b00441 PubMed DOI
Poprac C., Jomova K., Simunkova M., Kollar V., Rhodes C. J., Valko M. (2017). Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 38, 592–607. 10.1016/j.tips.2017.04.005 PubMed DOI
Rehman K., Akash M. S. H. (2017). Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J. Cell Biochem. 118, 3577–3585. 10.1002/jcb.26097 PubMed DOI
Schieber M., Chandel N. S. (2014). ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462. 10.1016/j.cub.2014.03.034 PubMed DOI PMC
Shatan A. B., Venclíková K., Zasonska B. A., Patsula V., Pop-Georgievski O., Petrovský E., et al. . (2019). Antibacterial silver-conjugated magnetic nanoparticles: design, synthesis and bactericidal effect. Pharm. Res. 36, 147–159. 10.1007/s11095-019-2680-x PubMed DOI
Stambouli A. B., Traversa E. (2002). Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew. Sust. Energ. Rev. 6, 433–455. 10.1016/S1364-0321(02)00014-X DOI
Toth G. B., Varallyay C. G., Horvath A., Bashir M. R., Choyke P. L., Daldrup-Link H. E., et al. . (2017). Current and potential imaging applications of Ferumoxytol for magnetic resonance imaging HHS public access. Kidney Int. 92, 47–66. 10.1016/j.kint.2016.12.037 PubMed DOI PMC
Turin-Moleavin I.-A., Fifere A., Lungoc A.-L., Rosca I., Coroaba A., Peptanariu D., et al. . (2019). In vitro and in vivo antioxidant activity of the new magnetic-cerium oxide nanoconjugates. Nanomaterials 9, 1565. 10.3390/nano9111565 PubMed DOI PMC
Walkey C., Das S., Seal S., Erlichman J., Heckman K., Ghibelli L., et al. . (2015). Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ. Sci. Nano, 2, 33–53. 10.1039/C4EN00138A PubMed DOI PMC
Weaver J. D., Stabler C. L. (2015). Antioxidant cerium oxide nanoparticle hydrogels for cellular encapsulation. Acta Biomater. 16, 136–144. 10.1016/j.actbio.2015.01.017 PubMed DOI PMC
Wu Y., Yang Y., Zhao W., Xu Z. P., Little P. J., Whittaker A. K., et al. . (2018). Novel iron oxide–cerium oxide core–shell nanoparticles as a potential theranostic material for ROS related inflammatory diseases. J. Mater. Chem. B 6, 4937–4951. 10.1039/C8TB00022K PubMed DOI
Xu C., Lin Y., Wang J., Wu L., Wei W., Ren J., et al. . (2013). Nanoceria-triggered synergetic drug release based on CeO2-capped mesoporous silica host-guest interactions and switchable enzymatic activity and cellular effects of CeO2. Adv. Healthcare Mater. 2, 1591–1599. 10.1002/adhm.201200464 PubMed DOI
Xu C., Qu X. (2014). Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 6, e90 10.1038/am.2013.88 DOI
Zalipsky S. (1995). Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv. Drug Deliv. Rev. 16, 157–182. 10.1016/0169-409X(95)00023-Z DOI
Zasonska B. A., Líšková A., Tulinská J., Pop-Georgievski O., Ciampor F., Vávra I., et al. . (2016). Functionalized porous silica&maghemite core-shell nanoparticles for applications in medicine: design, synthesis and immunotoxicity. Croat. Med. J. 57, 165–178. 10.3325/cmj.2016.57.165 PubMed DOI PMC
Zasonska B. A., Pustovyy V. I., Babinskiy A. V., Palyvoda O. M., Chekhun V. F., Todor I., et al. (2019). Combined antitumor effect of surface-modified superparamagnetic maghemite nanoparticles and a vitamin E derivative on experimental Walker-256 mammary gland carcinosarcoma. J. Magn. Magn. Mater. 471, 381–387. 10.1016/j.jmmm.2018.10.006 DOI
Zhang F., Wang P., Koberstein J., Khalid S., Chan S. W. (2004). Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surf. Sci. 563, 74–82. 10.1016/j.susc.2004.05.138 DOI