Protease Inhibition-An Established Strategy to Combat Infectious Diseases

. 2021 May 28 ; 22 (11) : . [epub] 20210528

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34071206

Grantová podpora
20-05736S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000759 Ministerstvo Školství, Mládeže a Tělovýchovy

Therapeutic agents with novel mechanisms of action are urgently needed to counter the emergence of drug-resistant infections. Several decades of research into proteases of disease agents have revealed enzymes well suited for target-based drug development. Among them are the three recently validated proteolytic targets: proteasomes of the malarial parasite Plasmodium falciparum, aspartyl proteases of P. falciparum (plasmepsins) and the Sars-CoV-2 viral proteases. Despite some unfulfilled expectations over previous decades, the three reviewed targets clearly demonstrate that selective protease inhibitors provide effective therapeutic solutions for the two most impacting infectious diseases nowadays-malaria and COVID-19.

Zobrazit více v PubMed

McKerrow J.H. Designing Drugs for Parasitic Diseases of the Developing World. PLoS Med. 2005;2:e210. doi: 10.1371/journal.pmed.0020210. PubMed DOI PMC

Despommier D.D., Griffin D.O., Gwadz R.W., Hotez P.J., Knirsch C.A. Parasitic Diseases. 7th ed. Parasites without Borders, Inc.; New York, NY, USA: 2019.

Young K.M., Corrin T., Wilhelm B., Uhland C., Greig J., Mascarenhas M., Waddell L.A. Zoonotic Babesia: A scoping review of the global evidence. PLoS ONE. 2019;14:e0226781. doi: 10.1371/journal.pone.0226781. PubMed DOI PMC

Bond J.S. Proteases: History, discovery, and roles in health and disease. J. Biol. Chem. 2019;294:1643–1651. doi: 10.1074/jbc.TM118.004156. PubMed DOI PMC

Rawlings N.D., Bateman A. How to use the MEROPS database and website to help understand peptidase specificity. Protein Sci. 2021;30:83–92. doi: 10.1002/pro.3948. PubMed DOI PMC

Barrett A.J., Rawlings N.D., Salvesen G., Woessner J.F. Handbook of Proteolytic Enzymes Introduction. 3rd ed. Academic Press; Boston, MA, USA: London, UK: 2013.

Drag M., Salvesen G.S. Emerging principles in protease-based drug discovery. Nat. Rev. Drug Discov. 2010;9:690–701. doi: 10.1038/nrd3053. PubMed DOI PMC

Renslo A.R., McKerrow J.H. Drug discovery and development for neglected parasitic diseases. Nat. Chem. Biol. 2006;2:701–710. doi: 10.1038/nchembio837. PubMed DOI

McKerrow J.H., Caffrey C., Kelly B., Loke P., Sajid M. PROTEASES IN PARASITIC DISEASES. Annu. Rev. Pathol. Mech. Dis. 2006;1:497–536. doi: 10.1146/annurev.pathol.1.110304.100151. PubMed DOI

Kitchen V., Skinner C., Ariyoshi K., Weber J., Pinching A., Lane E., Duncan I., Burckhardt J., Burger H., Bragman K. Safety and activity of saquinavir in HIV infection. Lancet. 1995;345:952–955. doi: 10.1016/S0140-6736(95)90699-1. PubMed DOI

Kosalaraksa P., Ananworanich J., Puthanakit T., Pinyakorn S., Lumbiganon P., Chuanjaroen T., Chobkarjing U., Phanuphak P., Pancharoen C., Bunupuradah T. Long-term Lopinavir/Ritonavir Monotherapy in HIV-infected Children. Pediatr. Infect. Dis. J. 2013;32:350–353. doi: 10.1097/INF.0b013e31827b1bd3. PubMed DOI

Ghosh A.K., Osswald H.L., Prato G. Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS. J. Med. Chem. 2016;59:5172–5208. doi: 10.1021/acs.jmedchem.5b01697. PubMed DOI PMC

Sajid M., Robertson S.A., Brinen L.S., McKerrow J.H. Cruzain: The path from target validation to the clinic. Adv. Exp. Med. Biol. 2011;712:100–115. doi: 10.1007/978-1-4419-8414-2_7. PubMed DOI

McKerrow J.H. Update on drug development targeting parasite cysteine proteases. PLOS Negl. Trop. Dis. 2018;12:e0005850. doi: 10.1371/journal.pntd.0005850. PubMed DOI PMC

Perez J., Kreinovich V. Gartner’s hype cycle: A simple explanation. Int. J. Comput. Optim. 2018;5:1–4. doi: 10.12988/ijco.2018.832. DOI

Finley D. Recognition and Processing of Ubiquitin-Protein Conjugates by the Proteasome. Annu. Rev. Biochem. 2009;78:477–513. doi: 10.1146/annurev.biochem.78.081507.101607. PubMed DOI PMC

Dikic I. Proteasomal and Autophagic Degradation Systems. Annu. Rev. Biochem. 2017;86:193–224. doi: 10.1146/annurev-biochem-061516-044908. PubMed DOI

Bard J.A., Goodall E.A., Greene E.R., Jonsson E., Dong K.C., Martin A. Structure and Function of the 26S Proteasome. Annu. Rev. Biochem. 2018;87:697–724. doi: 10.1146/annurev-biochem-062917-011931. PubMed DOI PMC

Richardson P.G. Update on proteasome inhibitors in multiple myeloma. Clin. Adv. Hematol. Oncol. 2014;12:179–181. PubMed

Bibo-Verdugo B., Jiang Z., Caffrey C.R., O’Donoghue A.J. Targeting proteasomes in infectious organisms to combat disease. FEBS J. 2017;284:1503–1517. doi: 10.1111/febs.14029. PubMed DOI

Kreidenweiss A., Kremsner P.G., Mordmüller B. Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon. Malar. J. 2008;7:187. doi: 10.1186/1475-2875-7-187. PubMed DOI PMC

Gantt S.M., Myung J.M., Briones M.R.S., Li W.D., Corey E.J., Omura S., Nussenzweig V., Sinnis P. Proteasome Inhibitors Block Development ofPlasmodium spp. Antimicrob. Agents Chemother. 1998;42:2731–2738. doi: 10.1128/AAC.42.10.2731. PubMed DOI PMC

Dekel E., Yaffe D., Rosenhek-Goldian I., Ben-Nissan G., Ofir-Birin Y., Morandi M.I., Ziv T., Sisquella X., Pimentel M.A., Nebl T., et al. 20S proteasomes secreted by the malaria parasite promote its growth. Nat. Commun. 2021;12:1–19. doi: 10.1038/s41467-021-21344-8. PubMed DOI PMC

Reynolds J.M., EL Bissati K., Brandenburg J., Günzl A., Ben Mamoun C. Antimalarial activity of the anticancer and proteasome inhibitor bortezomib and its analog ZL3B. BMC Clin. Pharmacol. 2007;7:1–6. doi: 10.1186/1472-6904-7-13. PubMed DOI PMC

Prasad R., Atul, Kolla V.K., Legac J., Singhal N., Navale R., Rosenthal P.J., Sijwali P.S. Blocking Plasmodium falciparum Development via Dual Inhibition of Hemoglobin Degradation and the Ubiquitin Proteasome System by MG132. PLoS ONE. 2013;8:e73530.:e73530. doi: 10.1371/journal.pone.0073530. PubMed DOI PMC

Li H., Ponder E.L., Verdoes M., Asbjornsdottir K.H., Deu E., Edgington-Mitchell L., Lee J.T., Kirk C.J., Demo S.D., Williamson K.C., et al. Validation of the Proteasome as a Therapeutic Target in Plasmodium Using an Epoxyketone Inhibitor with Parasite-Specific Toxicity. Chem. Biol. 2012;19:1535–1545. doi: 10.1016/j.chembiol.2012.09.019. PubMed DOI PMC

Li H., Tsu C., Blackburn C., Li G., Hales P., Dick L., Bogyo M. Identification of Potent and Selective Non-covalent Inhibitors of thePlasmodium falciparumProteasome. J. Am. Chem. Soc. 2014;136:13562–13565. doi: 10.1021/ja507692y. PubMed DOI PMC

Xie S.C., Gillett D.L., Spillman N.J., Tsu C., Luth M.R., Ottilie S., Duffy S., Gould A.E., Hales P., Seager B.A., et al. Target Validation and Identification of Novel Boronate Inhibitors of the Plasmodium falciparum Proteasome. J. Med. Chem. 2018;61:10053–10066. doi: 10.1021/acs.jmedchem.8b01161. PubMed DOI PMC

Krishnan K.M., Williamson K.C. The proteasome as a target to combat malaria: Hits and misses. Transl. Res. 2018;198:40–47. doi: 10.1016/j.trsl.2018.04.007. PubMed DOI PMC

Li H., O’Donoghue A.J., van der Linden H.L.W.A., Xie S.C., Yoo E., Foe I.T., Tilley L., Craik A.J.O.C.S., Da Fonseca P.C.A., Bogyo H.L.E.Y.I.T.F.M. Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nat. Cell Biol. 2016;530:233–236. doi: 10.1038/nature16936. PubMed DOI PMC

Zhan W., Visone J., Ouellette T., Harris J.C., Wang R., Zhang H., Singh P.K., Ginn J., Sukenick G., Wong T.-T., et al. Improvement of Asparagine Ethylenediamines as Anti-malarial Plasmodium-Selective Proteasome Inhibitors. J. Med. Chem. 2019;62:6137–6145. doi: 10.1021/acs.jmedchem.9b00363. PubMed DOI PMC

LaMonte G.M., Almaliti J., Bibo-Verdugo B., Keller L., Zou B.Y., Yang J., Antonova-Koch Y., Orjuela-Sanchez P., Boyle C.A., Vigil E., et al. Development of a Potent Inhibitor of the Plasmodium Proteasome with Reduced Mammalian Toxicity. J. Med. Chem. 2017;60:6721–6732. doi: 10.1021/acs.jmedchem.7b00671. PubMed DOI PMC

Stokes B.H., Yoo E., Murithi J.M., Luth M.R., Afanasyev P., Da Fonseca P.C.A., Winzeler E.A., Ng C.L., Bogyo M., Fidock D.A. Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents. PLoS Pathog. 2019;15:e1007722. doi: 10.1371/journal.ppat.1007722. PubMed DOI PMC

Shea M., Jäkle U., Liu Q., Berry C., Joiner K.A., Soldati-Favre M., Soldati-Favre D. A Family of Aspartic Proteases and a Novel, Dynamic and Cell-Cycle-Dependent Protease Localization in the Secretory Pathway of Toxoplasma gondii. Traffic. 2007;8:1018–1034. doi: 10.1111/j.1600-0854.2007.00589.x. PubMed DOI

Sojka D., Hartmann D., Bartošová-Sojková P., Dvořák J. Parasite Cathepsin D-Like Peptidases and Their Relevance as Therapeutic Targets. Trends Parasitol. 2016;32:708–723. doi: 10.1016/j.pt.2016.05.015. PubMed DOI

Nasamu A.S., Polino A.J., Istvan E.S., Goldberg D.E. Malaria parasite plasmepsins: More than just plain old degradative pepsins. J. Biol. Chem. 2020;295:8425–8441. doi: 10.1074/jbc.REV120.009309. PubMed DOI PMC

Meyers M.J., Goldberg D.E. Recent advances in plasmepsin medicinal chemistry and implications for future antimalarial drug discovery efforts. Curr. Top. Med. Chem. 2012;12:445–455. doi: 10.2174/156802612799362959. PubMed DOI

Gilson P.R., Chisholm S.A., Crabb B.S., de Koning-Ward T. Host cell remodelling in malaria parasites: A new pool of potential drug targets. Int. J. Parasitol. 2017;47:119–127. doi: 10.1016/j.ijpara.2016.06.001. PubMed DOI

Klemba M., Goldberg D.E. Characterization of plasmepsin V, a membrane-bound aspartic protease homolog in the endoplasmic reticulum of Plasmodium falciparum. Mol. Biochem. Parasitol. 2005;143:183–191. doi: 10.1016/j.molbiopara.2005.05.015. PubMed DOI

Boddey J., Hodder A.N., Günther S., Gilson P.R., Patsiouras H., Kapp E.A., Pearce J.A., de Koning-Ward T., Simpson R.J., Crabb B.S., et al. An aspartyl protease directs malaria effector proteins to the host cell. Nat. Cell Biol. 2010;463:627–631. doi: 10.1038/nature08728. PubMed DOI PMC

Ho C.-M., Beck J.R., Lai M., Cui Y., Goldberg D.E., Egea P.F., Zhou Z.H. Malaria parasite translocon structure and mechanism of effector export. Nat. Cell Biol. 2018;561:70–75. doi: 10.1038/s41586-018-0469-4. PubMed DOI PMC

Jennison C., Lucantoni L., O’Neill M.T., McConville R., Erickson S.M., Cowman A.F., Sleebs B.E., Avery V.M., Boddey J.A. Inhibition of Plasmepsin V Activity Blocks Plasmodium falciparum Gametocytogenesis and Transmission to Mosquitoes. Cell Rep. 2019;29:3796–3806.e4. doi: 10.1016/j.celrep.2019.11.073. PubMed DOI

Sleebs B.E., Gazdik M., O’Neill M.T., Rajasekaran P., Lopaticki S., Lackovic K., Lowes K., Smith B.J., Cowman A.F., Boddey J.A. Transition State Mimetics of the Plasmodium Export Element are Potent Inhibitors of Plasmepsin V from P. falciparum and P. vivax. J. Med. Chem. 2014;57:7644–7662. doi: 10.1021/jm500797g. PubMed DOI

Hodder A.N., Sleebs B.E., Czabotar P.E., Gazdik M., Xu Y., O’Neill M.T., Lopaticki S., Nebl T., Triglia T., Smith B.J., et al. Structural basis for plasmepsin V inhibition that blocks export of malaria proteins to human erythrocytes. Nat. Struct. Mol. Biol. 2015;22:590–596. doi: 10.1038/nsmb.3061. PubMed DOI

Nguyen W., Hodder A.N., de Lezongard R.B., Czabotar P.E., Jarman K.E., O’Neill M.T., Thompson J.K., Sabroux H.J., Cowman A.F., Boddey J., et al. Enhanced antimalarial activity of plasmepsin V inhibitors by modification of the P 2 position of PEXEL peptidomimetics. Eur. J. Med. Chem. 2018;154:182–198. doi: 10.1016/j.ejmech.2018.05.022. PubMed DOI

Dogga S.K., Mukherjee B., Jacot D., Kockmann T., Molino L., Hammoudi P.-M., Hartkoorn R.C., Hehl A.B., Soldati-Favre D. A druggable secretory protein maturase of Toxoplasma essential for invasion and egress. eLife. 2017;6:6. doi: 10.7554/eLife.27480. PubMed DOI PMC

Alaganan A., Singh P., Chitnis C.E. Molecular mechanisms that mediate invasion and egress of malaria parasites from red blood cells. Curr. Opin. Hematol. 2017;24:208–214. doi: 10.1097/MOH.0000000000000334. PubMed DOI

Withers-Martinez C., Suarez C., Fulle S., Kher S., Penzo M., Ebejer J.-P., Koussis K., Hackett F., Jirgensons A., Finn P., et al. Plasmodium subtilisin-like protease 1 (SUB1): Insights into the active-site structure, specificity and function of a pan-malaria drug target. Int. J. Parasitol. 2012;42:597–612. doi: 10.1016/j.ijpara.2012.04.005. PubMed DOI PMC

Collins C.R., Hackett F., Howell S.A., Snijders A.P., Russell M.R., Collinson L.M., Blackman M.J. The malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasion. eLife. 2020;9:9. doi: 10.7554/eLife.61121. PubMed DOI PMC

Favuzza P., Ruiz M.D.L., Thompson J.K., Triglia T., Ngo A., Steel R.W., Vavrek M., Christensen J., Healer J., Boyce C., et al. Dual Plasmepsin-Targeting Antimalarial Agents Disrupt Multiple Stages of the Malaria Parasite Life Cycle. Cell Host Microbe. 2020;27:642–658.e12. doi: 10.1016/j.chom.2020.02.005. PubMed DOI PMC

Pino P., Caldelari R., Mukherjee B., Vahokoski J., Klages N., Maco B., Collins C.R., Blackman M.J., Kursula I., Heussler V., et al. A multistage antimalarial targets the plasmepsins IX and X essential for invasion and egress. Science. 2017;358:522–528. doi: 10.1126/science.aaf8675. PubMed DOI PMC

Nasamu A.S., Glushakova S., Russo I., Vaupel B., Oksman A., Kim A.S., Fremont D.H., Tolia N., Beck J.R., Meyers M.J., et al. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science. 2017;358:518–522. doi: 10.1126/science.aan1478. PubMed DOI PMC

Hilgenfeld R. From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J. 2014;281:4085–4096. doi: 10.1111/febs.12936. PubMed DOI PMC

Cui W., Yang K., Yang H. Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. Front. Mol. Biosci. 2020;7:616341. doi: 10.3389/fmolb.2020.616341. PubMed DOI PMC

Han Y.-S., Chang G.-G., Juo C.-G., Lee H.-J., Yeh S.-H., Hsu J.T.-A., Chen X. Papain-Like Protease 2 (PLP2) from Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV): Expression, Purification, Characterization, and Inhibition. Biochemistry. 2005;44:10349–10359. doi: 10.1021/bi0504761. PubMed DOI

Freitas B.T., Durie I.A., Murray J., Longo J.E., Miller H.C., Crich D., Hogan R.J., Tripp R.A., Pegan S.D. Characterization and Noncovalent Inhibition of the Deubiquitinase and deISGylase Activity of SARS-CoV-2 Papain-Like Protease. ACS Infect. Dis. 2020;6:2099–2109. doi: 10.1021/acsinfecdis.0c00168. PubMed DOI

Ratia K., Kilianski A., Baez-Santos Y.M., Baker S.C., Mesecar A. Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating Activity of SARS-CoV Papain-Like Protease. PLoS Pathog. 2014;10:e1004113. doi: 10.1371/journal.ppat.1004113. PubMed DOI PMC

Shin D., Mukherjee R., Grewe D., Bojkova D., Baek K., Bhattacharya A., Schulz L., Widera M., Mehdipour A.R., Tascher G., et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020;587:657–662. doi: 10.1038/s41586-020-2601-5. PubMed DOI PMC

Rut W., Lv Z., Zmudzinski M., Patchett S., Nayak D., Snipas S.J., El Oualid F., Huang T.T., Bekes M., Drag M., et al. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti–COVID-19 drug design. Sci. Adv. 2020;6:eabd4596. doi: 10.1126/sciadv.abd4596. PubMed DOI PMC

Klemm T., Ebert G., Calleja D.J., Allison C.C., Richardson L.W., Bernardini J.P., Lu B.G., Kuchel N.W., Grohmann C., Shibata Y., et al. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. 2020;39:e106275. doi: 10.15252/embj.2020106275. PubMed DOI PMC

Fu Z., Huang B., Tang J., Liu S., Liu M., Ye Y., Liu Z., Xiong Y., Zhu W., Cao D., et al. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat. Commun. 2021;12:488. doi: 10.1038/s41467-020-20718-8. PubMed DOI PMC

Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.-H., Nitsche A., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–280.e8. doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC

Hoffmann M., Hofmann-Winkler H., Smith J.C., Krüger N., Arora P., Sørensen L.K., Søgaard O.S., Hasselstrøm J.B., Winkler M., Hempel T., et al. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine. 2021;65:103255. doi: 10.1016/j.ebiom.2021.103255. PubMed DOI PMC

Gallagher T. COVID19 therapeutics: Expanding the antiviral arsenal. EBioMedicine. 2021;66:103289. doi: 10.1016/j.ebiom.2021.103289. PubMed DOI PMC

Sakr Y., Bensasi H., Taha A., Bauer M., Khaeled I. Camostat mesylate therapy in critically ill patients with COVID-19 pneumonia. Intensive Care Med. 2021;12:1–3. doi: 10.1007/s00134-021-06395-1. PubMed DOI PMC

Gunst J.D., Staerke N.B., Pahus M.H., Kristensen L.H., Bodilsen J., Lohse N., Dalgaard L.S., Brønnum D., Fröbert O., Hønge B., et al. Efficacy of the TMPRSS2 inhibitor camostat mesilate in patients hospitalized with Covid-19-a double-blind randomized controlled trial. EClinicalMedicine. 2021:100849. doi: 10.1016/j.eclinm.2021.100849. PubMed DOI PMC

Hoffmann M., Schroeder S., Kleine-Weber H., Müller M.A., Drosten C., Pöhlmann S. Nafamostat Mesylate Blocks Activation of SARS-CoV-2: New Treatment Option for COVID-19. Antimicrob. Agents Chemother. 2020;64:00754-20. doi: 10.1128/AAC.00754-20. PubMed DOI PMC

Mahoney M., Damalanka V.C., Tartell M.A., Chung D.H., Lourenco A.L., Pwee D., Mayer Bridwell A.E., Hoffmann M., Voss J., Karmakar P., et al. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. bioRxiv. 2021 doi: 10.1101/2021.05.06.442935. PubMed DOI PMC

Wang Y., Lv Z., Chu Y. HIV protease inhibitors: A review of molecular selectivity and toxicity. HIV/AIDS Res. Palliat. Care. 2015;7:95–104. doi: 10.2147/HIV.S79956. PubMed DOI PMC

Barber J., Sikakana P., Sadler C., Baud D., Valentin J.-P., Roberts R. A target safety assessment of the potential toxicological risks of targeting plasmepsin IX/X for the treatment of malaria. Toxicol. Res. 2021;10:203–213. doi: 10.1093/toxres/tfaa106. PubMed DOI PMC

Pereira A.R., Kale A.J., Fenley A.T., Byrum T., Debonsi H.M., Gilson M.K., Valeriote F.A., Moore B., Gerwick W.H. The Carmaphycins: New Proteasome Inhibitors Exhibiting an α,β-Epoxyketone Warhead from a Marine Cyanobacterium. ChemBioChem. 2012;13:810–817. doi: 10.1002/cbic.201200007. PubMed DOI PMC

Kumar T.M., Rohini K., James N., Shanthi V., Ramanathan K. Discovery of Potent Covid-19 Main Protease Inhibitors using Integrated Drug Repurposing Strategy. Biotechnol. Appl. Biochem. 2021 doi: 10.1002/bab.2159. PubMed DOI PMC

Lopez T., Mustafa Z., Chen C., Lee K.B., Ramirez A., Benitez C., Luo X., Ji R.-R., Ge X. Functional selection of protease inhibitory antibodies. Proc. Natl. Acad. Sci. USA. 2019;116:16314–16319. doi: 10.1073/pnas.1903330116. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Plasmepsin-like Aspartyl Proteases in Babesia

. 2021 Sep 26 ; 10 (10) : . [epub] 20210926

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...