Protease Inhibition-An Established Strategy to Combat Infectious Diseases
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
20-05736S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000759
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34071206
PubMed Central
PMC8197795
DOI
10.3390/ijms22115762
PII: ijms22115762
Knihovny.cz E-zdroje
- Klíčová slova
- infectious diseases, inhibition, parasites, protease, therapy,
- MeSH
- aspartátové endopeptidasy metabolismus MeSH
- COVID-19 enzymologie metabolismus MeSH
- farmakoterapie COVID-19 * MeSH
- inhibitory proteas farmakologie MeSH
- lidé MeSH
- malárie farmakoterapie enzymologie metabolismus MeSH
- Plasmodium falciparum účinky léků patogenita MeSH
- proteasomový endopeptidasový komplex účinky léků MeSH
- SARS-CoV-2 účinky léků patogenita MeSH
- vyvíjení léků metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- aspartátové endopeptidasy MeSH
- inhibitory proteas MeSH
- plasmepsin MeSH Prohlížeč
- proteasomový endopeptidasový komplex MeSH
Therapeutic agents with novel mechanisms of action are urgently needed to counter the emergence of drug-resistant infections. Several decades of research into proteases of disease agents have revealed enzymes well suited for target-based drug development. Among them are the three recently validated proteolytic targets: proteasomes of the malarial parasite Plasmodium falciparum, aspartyl proteases of P. falciparum (plasmepsins) and the Sars-CoV-2 viral proteases. Despite some unfulfilled expectations over previous decades, the three reviewed targets clearly demonstrate that selective protease inhibitors provide effective therapeutic solutions for the two most impacting infectious diseases nowadays-malaria and COVID-19.
Zobrazit více v PubMed
McKerrow J.H. Designing Drugs for Parasitic Diseases of the Developing World. PLoS Med. 2005;2:e210. doi: 10.1371/journal.pmed.0020210. PubMed DOI PMC
Despommier D.D., Griffin D.O., Gwadz R.W., Hotez P.J., Knirsch C.A. Parasitic Diseases. 7th ed. Parasites without Borders, Inc.; New York, NY, USA: 2019.
Young K.M., Corrin T., Wilhelm B., Uhland C., Greig J., Mascarenhas M., Waddell L.A. Zoonotic Babesia: A scoping review of the global evidence. PLoS ONE. 2019;14:e0226781. doi: 10.1371/journal.pone.0226781. PubMed DOI PMC
Bond J.S. Proteases: History, discovery, and roles in health and disease. J. Biol. Chem. 2019;294:1643–1651. doi: 10.1074/jbc.TM118.004156. PubMed DOI PMC
Rawlings N.D., Bateman A. How to use the MEROPS database and website to help understand peptidase specificity. Protein Sci. 2021;30:83–92. doi: 10.1002/pro.3948. PubMed DOI PMC
Barrett A.J., Rawlings N.D., Salvesen G., Woessner J.F. Handbook of Proteolytic Enzymes Introduction. 3rd ed. Academic Press; Boston, MA, USA: London, UK: 2013.
Drag M., Salvesen G.S. Emerging principles in protease-based drug discovery. Nat. Rev. Drug Discov. 2010;9:690–701. doi: 10.1038/nrd3053. PubMed DOI PMC
Renslo A.R., McKerrow J.H. Drug discovery and development for neglected parasitic diseases. Nat. Chem. Biol. 2006;2:701–710. doi: 10.1038/nchembio837. PubMed DOI
McKerrow J.H., Caffrey C., Kelly B., Loke P., Sajid M. PROTEASES IN PARASITIC DISEASES. Annu. Rev. Pathol. Mech. Dis. 2006;1:497–536. doi: 10.1146/annurev.pathol.1.110304.100151. PubMed DOI
Kitchen V., Skinner C., Ariyoshi K., Weber J., Pinching A., Lane E., Duncan I., Burckhardt J., Burger H., Bragman K. Safety and activity of saquinavir in HIV infection. Lancet. 1995;345:952–955. doi: 10.1016/S0140-6736(95)90699-1. PubMed DOI
Kosalaraksa P., Ananworanich J., Puthanakit T., Pinyakorn S., Lumbiganon P., Chuanjaroen T., Chobkarjing U., Phanuphak P., Pancharoen C., Bunupuradah T. Long-term Lopinavir/Ritonavir Monotherapy in HIV-infected Children. Pediatr. Infect. Dis. J. 2013;32:350–353. doi: 10.1097/INF.0b013e31827b1bd3. PubMed DOI
Ghosh A.K., Osswald H.L., Prato G. Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS. J. Med. Chem. 2016;59:5172–5208. doi: 10.1021/acs.jmedchem.5b01697. PubMed DOI PMC
Sajid M., Robertson S.A., Brinen L.S., McKerrow J.H. Cruzain: The path from target validation to the clinic. Adv. Exp. Med. Biol. 2011;712:100–115. doi: 10.1007/978-1-4419-8414-2_7. PubMed DOI
McKerrow J.H. Update on drug development targeting parasite cysteine proteases. PLOS Negl. Trop. Dis. 2018;12:e0005850. doi: 10.1371/journal.pntd.0005850. PubMed DOI PMC
Perez J., Kreinovich V. Gartner’s hype cycle: A simple explanation. Int. J. Comput. Optim. 2018;5:1–4. doi: 10.12988/ijco.2018.832. DOI
Finley D. Recognition and Processing of Ubiquitin-Protein Conjugates by the Proteasome. Annu. Rev. Biochem. 2009;78:477–513. doi: 10.1146/annurev.biochem.78.081507.101607. PubMed DOI PMC
Dikic I. Proteasomal and Autophagic Degradation Systems. Annu. Rev. Biochem. 2017;86:193–224. doi: 10.1146/annurev-biochem-061516-044908. PubMed DOI
Bard J.A., Goodall E.A., Greene E.R., Jonsson E., Dong K.C., Martin A. Structure and Function of the 26S Proteasome. Annu. Rev. Biochem. 2018;87:697–724. doi: 10.1146/annurev-biochem-062917-011931. PubMed DOI PMC
Richardson P.G. Update on proteasome inhibitors in multiple myeloma. Clin. Adv. Hematol. Oncol. 2014;12:179–181. PubMed
Bibo-Verdugo B., Jiang Z., Caffrey C.R., O’Donoghue A.J. Targeting proteasomes in infectious organisms to combat disease. FEBS J. 2017;284:1503–1517. doi: 10.1111/febs.14029. PubMed DOI
Kreidenweiss A., Kremsner P.G., Mordmüller B. Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon. Malar. J. 2008;7:187. doi: 10.1186/1475-2875-7-187. PubMed DOI PMC
Gantt S.M., Myung J.M., Briones M.R.S., Li W.D., Corey E.J., Omura S., Nussenzweig V., Sinnis P. Proteasome Inhibitors Block Development ofPlasmodium spp. Antimicrob. Agents Chemother. 1998;42:2731–2738. doi: 10.1128/AAC.42.10.2731. PubMed DOI PMC
Dekel E., Yaffe D., Rosenhek-Goldian I., Ben-Nissan G., Ofir-Birin Y., Morandi M.I., Ziv T., Sisquella X., Pimentel M.A., Nebl T., et al. 20S proteasomes secreted by the malaria parasite promote its growth. Nat. Commun. 2021;12:1–19. doi: 10.1038/s41467-021-21344-8. PubMed DOI PMC
Reynolds J.M., EL Bissati K., Brandenburg J., Günzl A., Ben Mamoun C. Antimalarial activity of the anticancer and proteasome inhibitor bortezomib and its analog ZL3B. BMC Clin. Pharmacol. 2007;7:1–6. doi: 10.1186/1472-6904-7-13. PubMed DOI PMC
Prasad R., Atul, Kolla V.K., Legac J., Singhal N., Navale R., Rosenthal P.J., Sijwali P.S. Blocking Plasmodium falciparum Development via Dual Inhibition of Hemoglobin Degradation and the Ubiquitin Proteasome System by MG132. PLoS ONE. 2013;8:e73530.:e73530. doi: 10.1371/journal.pone.0073530. PubMed DOI PMC
Li H., Ponder E.L., Verdoes M., Asbjornsdottir K.H., Deu E., Edgington-Mitchell L., Lee J.T., Kirk C.J., Demo S.D., Williamson K.C., et al. Validation of the Proteasome as a Therapeutic Target in Plasmodium Using an Epoxyketone Inhibitor with Parasite-Specific Toxicity. Chem. Biol. 2012;19:1535–1545. doi: 10.1016/j.chembiol.2012.09.019. PubMed DOI PMC
Li H., Tsu C., Blackburn C., Li G., Hales P., Dick L., Bogyo M. Identification of Potent and Selective Non-covalent Inhibitors of thePlasmodium falciparumProteasome. J. Am. Chem. Soc. 2014;136:13562–13565. doi: 10.1021/ja507692y. PubMed DOI PMC
Xie S.C., Gillett D.L., Spillman N.J., Tsu C., Luth M.R., Ottilie S., Duffy S., Gould A.E., Hales P., Seager B.A., et al. Target Validation and Identification of Novel Boronate Inhibitors of the Plasmodium falciparum Proteasome. J. Med. Chem. 2018;61:10053–10066. doi: 10.1021/acs.jmedchem.8b01161. PubMed DOI PMC
Krishnan K.M., Williamson K.C. The proteasome as a target to combat malaria: Hits and misses. Transl. Res. 2018;198:40–47. doi: 10.1016/j.trsl.2018.04.007. PubMed DOI PMC
Li H., O’Donoghue A.J., van der Linden H.L.W.A., Xie S.C., Yoo E., Foe I.T., Tilley L., Craik A.J.O.C.S., Da Fonseca P.C.A., Bogyo H.L.E.Y.I.T.F.M. Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nat. Cell Biol. 2016;530:233–236. doi: 10.1038/nature16936. PubMed DOI PMC
Zhan W., Visone J., Ouellette T., Harris J.C., Wang R., Zhang H., Singh P.K., Ginn J., Sukenick G., Wong T.-T., et al. Improvement of Asparagine Ethylenediamines as Anti-malarial Plasmodium-Selective Proteasome Inhibitors. J. Med. Chem. 2019;62:6137–6145. doi: 10.1021/acs.jmedchem.9b00363. PubMed DOI PMC
LaMonte G.M., Almaliti J., Bibo-Verdugo B., Keller L., Zou B.Y., Yang J., Antonova-Koch Y., Orjuela-Sanchez P., Boyle C.A., Vigil E., et al. Development of a Potent Inhibitor of the Plasmodium Proteasome with Reduced Mammalian Toxicity. J. Med. Chem. 2017;60:6721–6732. doi: 10.1021/acs.jmedchem.7b00671. PubMed DOI PMC
Stokes B.H., Yoo E., Murithi J.M., Luth M.R., Afanasyev P., Da Fonseca P.C.A., Winzeler E.A., Ng C.L., Bogyo M., Fidock D.A. Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents. PLoS Pathog. 2019;15:e1007722. doi: 10.1371/journal.ppat.1007722. PubMed DOI PMC
Shea M., Jäkle U., Liu Q., Berry C., Joiner K.A., Soldati-Favre M., Soldati-Favre D. A Family of Aspartic Proteases and a Novel, Dynamic and Cell-Cycle-Dependent Protease Localization in the Secretory Pathway of Toxoplasma gondii. Traffic. 2007;8:1018–1034. doi: 10.1111/j.1600-0854.2007.00589.x. PubMed DOI
Sojka D., Hartmann D., Bartošová-Sojková P., Dvořák J. Parasite Cathepsin D-Like Peptidases and Their Relevance as Therapeutic Targets. Trends Parasitol. 2016;32:708–723. doi: 10.1016/j.pt.2016.05.015. PubMed DOI
Nasamu A.S., Polino A.J., Istvan E.S., Goldberg D.E. Malaria parasite plasmepsins: More than just plain old degradative pepsins. J. Biol. Chem. 2020;295:8425–8441. doi: 10.1074/jbc.REV120.009309. PubMed DOI PMC
Meyers M.J., Goldberg D.E. Recent advances in plasmepsin medicinal chemistry and implications for future antimalarial drug discovery efforts. Curr. Top. Med. Chem. 2012;12:445–455. doi: 10.2174/156802612799362959. PubMed DOI
Gilson P.R., Chisholm S.A., Crabb B.S., de Koning-Ward T. Host cell remodelling in malaria parasites: A new pool of potential drug targets. Int. J. Parasitol. 2017;47:119–127. doi: 10.1016/j.ijpara.2016.06.001. PubMed DOI
Klemba M., Goldberg D.E. Characterization of plasmepsin V, a membrane-bound aspartic protease homolog in the endoplasmic reticulum of Plasmodium falciparum. Mol. Biochem. Parasitol. 2005;143:183–191. doi: 10.1016/j.molbiopara.2005.05.015. PubMed DOI
Boddey J., Hodder A.N., Günther S., Gilson P.R., Patsiouras H., Kapp E.A., Pearce J.A., de Koning-Ward T., Simpson R.J., Crabb B.S., et al. An aspartyl protease directs malaria effector proteins to the host cell. Nat. Cell Biol. 2010;463:627–631. doi: 10.1038/nature08728. PubMed DOI PMC
Ho C.-M., Beck J.R., Lai M., Cui Y., Goldberg D.E., Egea P.F., Zhou Z.H. Malaria parasite translocon structure and mechanism of effector export. Nat. Cell Biol. 2018;561:70–75. doi: 10.1038/s41586-018-0469-4. PubMed DOI PMC
Jennison C., Lucantoni L., O’Neill M.T., McConville R., Erickson S.M., Cowman A.F., Sleebs B.E., Avery V.M., Boddey J.A. Inhibition of Plasmepsin V Activity Blocks Plasmodium falciparum Gametocytogenesis and Transmission to Mosquitoes. Cell Rep. 2019;29:3796–3806.e4. doi: 10.1016/j.celrep.2019.11.073. PubMed DOI
Sleebs B.E., Gazdik M., O’Neill M.T., Rajasekaran P., Lopaticki S., Lackovic K., Lowes K., Smith B.J., Cowman A.F., Boddey J.A. Transition State Mimetics of the Plasmodium Export Element are Potent Inhibitors of Plasmepsin V from P. falciparum and P. vivax. J. Med. Chem. 2014;57:7644–7662. doi: 10.1021/jm500797g. PubMed DOI
Hodder A.N., Sleebs B.E., Czabotar P.E., Gazdik M., Xu Y., O’Neill M.T., Lopaticki S., Nebl T., Triglia T., Smith B.J., et al. Structural basis for plasmepsin V inhibition that blocks export of malaria proteins to human erythrocytes. Nat. Struct. Mol. Biol. 2015;22:590–596. doi: 10.1038/nsmb.3061. PubMed DOI
Nguyen W., Hodder A.N., de Lezongard R.B., Czabotar P.E., Jarman K.E., O’Neill M.T., Thompson J.K., Sabroux H.J., Cowman A.F., Boddey J., et al. Enhanced antimalarial activity of plasmepsin V inhibitors by modification of the P 2 position of PEXEL peptidomimetics. Eur. J. Med. Chem. 2018;154:182–198. doi: 10.1016/j.ejmech.2018.05.022. PubMed DOI
Dogga S.K., Mukherjee B., Jacot D., Kockmann T., Molino L., Hammoudi P.-M., Hartkoorn R.C., Hehl A.B., Soldati-Favre D. A druggable secretory protein maturase of Toxoplasma essential for invasion and egress. eLife. 2017;6:6. doi: 10.7554/eLife.27480. PubMed DOI PMC
Alaganan A., Singh P., Chitnis C.E. Molecular mechanisms that mediate invasion and egress of malaria parasites from red blood cells. Curr. Opin. Hematol. 2017;24:208–214. doi: 10.1097/MOH.0000000000000334. PubMed DOI
Withers-Martinez C., Suarez C., Fulle S., Kher S., Penzo M., Ebejer J.-P., Koussis K., Hackett F., Jirgensons A., Finn P., et al. Plasmodium subtilisin-like protease 1 (SUB1): Insights into the active-site structure, specificity and function of a pan-malaria drug target. Int. J. Parasitol. 2012;42:597–612. doi: 10.1016/j.ijpara.2012.04.005. PubMed DOI PMC
Collins C.R., Hackett F., Howell S.A., Snijders A.P., Russell M.R., Collinson L.M., Blackman M.J. The malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasion. eLife. 2020;9:9. doi: 10.7554/eLife.61121. PubMed DOI PMC
Favuzza P., Ruiz M.D.L., Thompson J.K., Triglia T., Ngo A., Steel R.W., Vavrek M., Christensen J., Healer J., Boyce C., et al. Dual Plasmepsin-Targeting Antimalarial Agents Disrupt Multiple Stages of the Malaria Parasite Life Cycle. Cell Host Microbe. 2020;27:642–658.e12. doi: 10.1016/j.chom.2020.02.005. PubMed DOI PMC
Pino P., Caldelari R., Mukherjee B., Vahokoski J., Klages N., Maco B., Collins C.R., Blackman M.J., Kursula I., Heussler V., et al. A multistage antimalarial targets the plasmepsins IX and X essential for invasion and egress. Science. 2017;358:522–528. doi: 10.1126/science.aaf8675. PubMed DOI PMC
Nasamu A.S., Glushakova S., Russo I., Vaupel B., Oksman A., Kim A.S., Fremont D.H., Tolia N., Beck J.R., Meyers M.J., et al. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science. 2017;358:518–522. doi: 10.1126/science.aan1478. PubMed DOI PMC
Hilgenfeld R. From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J. 2014;281:4085–4096. doi: 10.1111/febs.12936. PubMed DOI PMC
Cui W., Yang K., Yang H. Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. Front. Mol. Biosci. 2020;7:616341. doi: 10.3389/fmolb.2020.616341. PubMed DOI PMC
Han Y.-S., Chang G.-G., Juo C.-G., Lee H.-J., Yeh S.-H., Hsu J.T.-A., Chen X. Papain-Like Protease 2 (PLP2) from Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV): Expression, Purification, Characterization, and Inhibition. Biochemistry. 2005;44:10349–10359. doi: 10.1021/bi0504761. PubMed DOI
Freitas B.T., Durie I.A., Murray J., Longo J.E., Miller H.C., Crich D., Hogan R.J., Tripp R.A., Pegan S.D. Characterization and Noncovalent Inhibition of the Deubiquitinase and deISGylase Activity of SARS-CoV-2 Papain-Like Protease. ACS Infect. Dis. 2020;6:2099–2109. doi: 10.1021/acsinfecdis.0c00168. PubMed DOI
Ratia K., Kilianski A., Baez-Santos Y.M., Baker S.C., Mesecar A. Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating Activity of SARS-CoV Papain-Like Protease. PLoS Pathog. 2014;10:e1004113. doi: 10.1371/journal.ppat.1004113. PubMed DOI PMC
Shin D., Mukherjee R., Grewe D., Bojkova D., Baek K., Bhattacharya A., Schulz L., Widera M., Mehdipour A.R., Tascher G., et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020;587:657–662. doi: 10.1038/s41586-020-2601-5. PubMed DOI PMC
Rut W., Lv Z., Zmudzinski M., Patchett S., Nayak D., Snipas S.J., El Oualid F., Huang T.T., Bekes M., Drag M., et al. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti–COVID-19 drug design. Sci. Adv. 2020;6:eabd4596. doi: 10.1126/sciadv.abd4596. PubMed DOI PMC
Klemm T., Ebert G., Calleja D.J., Allison C.C., Richardson L.W., Bernardini J.P., Lu B.G., Kuchel N.W., Grohmann C., Shibata Y., et al. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. 2020;39:e106275. doi: 10.15252/embj.2020106275. PubMed DOI PMC
Fu Z., Huang B., Tang J., Liu S., Liu M., Ye Y., Liu Z., Xiong Y., Zhu W., Cao D., et al. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat. Commun. 2021;12:488. doi: 10.1038/s41467-020-20718-8. PubMed DOI PMC
Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.-H., Nitsche A., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–280.e8. doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC
Hoffmann M., Hofmann-Winkler H., Smith J.C., Krüger N., Arora P., Sørensen L.K., Søgaard O.S., Hasselstrøm J.B., Winkler M., Hempel T., et al. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine. 2021;65:103255. doi: 10.1016/j.ebiom.2021.103255. PubMed DOI PMC
Gallagher T. COVID19 therapeutics: Expanding the antiviral arsenal. EBioMedicine. 2021;66:103289. doi: 10.1016/j.ebiom.2021.103289. PubMed DOI PMC
Sakr Y., Bensasi H., Taha A., Bauer M., Khaeled I. Camostat mesylate therapy in critically ill patients with COVID-19 pneumonia. Intensive Care Med. 2021;12:1–3. doi: 10.1007/s00134-021-06395-1. PubMed DOI PMC
Gunst J.D., Staerke N.B., Pahus M.H., Kristensen L.H., Bodilsen J., Lohse N., Dalgaard L.S., Brønnum D., Fröbert O., Hønge B., et al. Efficacy of the TMPRSS2 inhibitor camostat mesilate in patients hospitalized with Covid-19-a double-blind randomized controlled trial. EClinicalMedicine. 2021:100849. doi: 10.1016/j.eclinm.2021.100849. PubMed DOI PMC
Hoffmann M., Schroeder S., Kleine-Weber H., Müller M.A., Drosten C., Pöhlmann S. Nafamostat Mesylate Blocks Activation of SARS-CoV-2: New Treatment Option for COVID-19. Antimicrob. Agents Chemother. 2020;64:00754-20. doi: 10.1128/AAC.00754-20. PubMed DOI PMC
Mahoney M., Damalanka V.C., Tartell M.A., Chung D.H., Lourenco A.L., Pwee D., Mayer Bridwell A.E., Hoffmann M., Voss J., Karmakar P., et al. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. bioRxiv. 2021 doi: 10.1101/2021.05.06.442935. PubMed DOI PMC
Wang Y., Lv Z., Chu Y. HIV protease inhibitors: A review of molecular selectivity and toxicity. HIV/AIDS Res. Palliat. Care. 2015;7:95–104. doi: 10.2147/HIV.S79956. PubMed DOI PMC
Barber J., Sikakana P., Sadler C., Baud D., Valentin J.-P., Roberts R. A target safety assessment of the potential toxicological risks of targeting plasmepsin IX/X for the treatment of malaria. Toxicol. Res. 2021;10:203–213. doi: 10.1093/toxres/tfaa106. PubMed DOI PMC
Pereira A.R., Kale A.J., Fenley A.T., Byrum T., Debonsi H.M., Gilson M.K., Valeriote F.A., Moore B., Gerwick W.H. The Carmaphycins: New Proteasome Inhibitors Exhibiting an α,β-Epoxyketone Warhead from a Marine Cyanobacterium. ChemBioChem. 2012;13:810–817. doi: 10.1002/cbic.201200007. PubMed DOI PMC
Kumar T.M., Rohini K., James N., Shanthi V., Ramanathan K. Discovery of Potent Covid-19 Main Protease Inhibitors using Integrated Drug Repurposing Strategy. Biotechnol. Appl. Biochem. 2021 doi: 10.1002/bab.2159. PubMed DOI PMC
Lopez T., Mustafa Z., Chen C., Lee K.B., Ramirez A., Benitez C., Luo X., Ji R.-R., Ge X. Functional selection of protease inhibitory antibodies. Proc. Natl. Acad. Sci. USA. 2019;116:16314–16319. doi: 10.1073/pnas.1903330116. PubMed DOI PMC
Plasmepsin-like Aspartyl Proteases in Babesia