Striking variation in chromosome structure within Musa acuminata subspecies, diploid cultivars, and F1 diploid hybrids
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39027673
PubMed Central
PMC11255410
DOI
10.3389/fpls.2024.1387055
Knihovny.cz E-zdroje
- Klíčová slova
- F1 hybrids, Musa acuminata, chromosome translocation, comparative cytogenetics, oligo painting FISH,
- Publikační typ
- časopisecké články MeSH
The majority of cultivated bananas originated from inter- and intra(sub)specific crosses between two wild diploid species, Musa acuminata and Musa balbisiana. Hybridization and polyploidization events during the evolution of bananas led to the formation of clonally propagated cultivars characterized by a high level of genome heterozygosity and reduced fertility. The combination of low fertility in edible clones and differences in the chromosome structure among M. acuminata subspecies greatly hampers the breeding of improved banana cultivars. Using comparative oligo-painting, we investigated large chromosomal rearrangements in a set of wild M. acuminata subspecies and cultivars that originated from natural and human-made crosses. Additionally, we analyzed the chromosome structure of F1 progeny that resulted from crosses between Mchare bananas and the wild M. acuminata 'Calcutta 4' genotype. Analysis of chromosome structure within M. acuminata revealed the presence of a large number of chromosomal rearrangements showing a correlation with banana speciation. Chromosome painting of F1 hybrids was complemented by Illumina resequencing to identify the contribution of parental subgenomes to the diploid hybrid clones. The balanced presence of both parental genomes was revealed in all F1 hybrids, with the exception of one clone, which contained only Mchare-specific SNPs and thus most probably originated from an unreduced diploid gamete of Mchare.
International Institute of Tropical Agriculture Banana Breeding Arusha Tanzania
International Institute of Tropical Agriculture Kampala Uganda
Zobrazit více v PubMed
Amah D., Turner D. W., Gibbs J., Gil G., Swennen R. (2021). Overcoming the fertility crisis in bananas (Musa spp.). In: Achieving sustainable cultivation of bananas. Chapter 1, 1-50. Kema G. H. J., Drenth A. (eds.), Achieving sustainable cultivation of bananas Volume 2: Germplasm and genetic improvement. (Cambridge, UK: Burleigh Dodds Science Publishing; ). doi: 10.19103/AS.2020.0070.13 DOI
Bakry F., Horry J. P. (1992). Tetraploid hybrids from interploid 3x/2x crosses in cooking bananas. Fruits 47, 641–655.
Bandelt H. J., Dress A. W. M. (1992. a). A canonical decomposition theory for metrics on a finite set, Adv. Math 92, 47–105. doi: 10.1016/0001-8708(92)90061-O DOI
Bandelt H. J., Dress A. W. M. (1992. b). Split decomposition: A new and useful approach to phylogenetic analysis of a distance data. Mol. Phylogenet. Evol. 1, 242–252. doi: 10.1016/1055-7903(92)90021-8 PubMed DOI
Batte M., Swennen R., Uwimana B., Akech V., Brown A., Tumuhimbise R., et al. . (2019). Crossbreeding East African Highland Bananas: Lessons learnt relevant to the botany of the crop after 21 years of genetic enhancement. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00081 PubMed DOI PMC
Baurens F. C., Martin G., Hervouet C., Salmon F., Yohomé D., Ricci S., et al. . (2019). Recombination and large structural variations shape interspecific edible banana genomes. Mol. Biol. Evol. 36, 97–111. doi: 10.1093/molbev/msy199 PubMed DOI PMC
Bayo S. J., Massawe V., Ndakidemi P. A., Venkataramana P., Mlaki A., Mduma H., et al. . (2024). Pollen amount and viability in Mchare and selected wild (AA) banana (Musa acuminata) genotypes: Prospects for Breeding. HortSci 59, 632–638. doi: 10.21273/HORTSCI17608-23 DOI
Belser C., Baurens F.-C., Noel B., Martin G., Cruaud C., Istace B., et al. . (2021). Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun. Biol. 4, 1047. doi: 10.1038/s42003-021-02559-3 PubMed DOI PMC
Beránková D., Hřibová E. (2023). Bulked oligo-FISH for chromosome painting and chromosome barcoding. Methods Mol. Biol. 2672, 445–463. doi: 10.1007/978-1-0716-3226-0_27 PubMed DOI
Braz G. T., He L., Zhao H., Zhang T., Semrau K., Rouillard J. M., et al. . (2018). Comparative oligo-FISH mapping: An efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 208, 513–523. doi: 10.1534/genetics.117.300344 PubMed DOI PMC
Brown A., Tumuhimbise R., Amah D., Uwimana B., Nyine M., Mduma H., et al. . (2017). “Bananas and Plantains (Musa spp.),” in Genetic Improvement of Tropical Crops (Springer, Cham: ).
Bryant D., Huson D. H. (2023). NeighborNet: improved algorithms and implementation. Front. Bioinf. 3. doi: 10.3389/fbinf.2023.1178600 PubMed DOI PMC
Chen S., Zhou Y., Chen Y., Gu J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890. doi: 10.1093/bioinformatics/bty560 PubMed DOI PMC
Christelová P., De Langhe E., Hřibová E., Čížková J., Sardos J., Hušáková M., et al. . (2017). Molecular and cytological characterization of the global Musa germplasm collection provides insight into the treasure of banana diversity. Biodivers. Conserv. 26, 801–824. doi: 10.1007/s10531-016-1273-9 DOI
Christelová P., Valárik M., Hřibová E., Van den Houwe I., Channeliere S., Roux N., et al. . (2011). A platform for efficient genotyping in Musa using microsatellite markers. AoB Plants 2011, plr024. doi: 10.1093/aobpla/plr024 PubMed DOI PMC
Cordoba D., Jansen K. (2014). Same disease – different research strategies: Bananas and Black Sigatoga in Brazil and Colombia. Singap. J. Trop. Geogr. 35, 345–361. doi: 10.1111/sjtg.12072 DOI
De Bellaire L. L., Fouré E., Abadie C., Carlier J. (2010). Black leaf streak disease is challenging the banana industry. Fruits 65, 327–342. doi: 10.1051/fruits/2010034 DOI
De Langhe E., Hřibová E., Carpentier S., Doležel J., Swennen R. (2010). Did backcrossing contribute to the origin of hybrid edible bananas? Ann. Bot. 106, 849–857. doi: 10.1093/aob/mcq187 PubMed DOI PMC
D’Hont A., Denoeud F., Aury J. M., Baurens F. C., Carreel F., Garsmeur O., et al. . (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217. doi: 10.1038/nature11241 PubMed DOI
Dodds K. S., Simmonds N. W. (1948). Sterility and parthenocarpy in diploid hybrids of Musa . Heredity 2, 101–117. doi: 10.1038/hdy.1948.6 PubMed DOI
Doležel J., Doleželová M., Roux N., Van den Houwe I. (1998). A novel method to prepare slides for high resolution chromosome studies in Musa spp. Infomusa 7, 3–4.
Dumschott K., Schmidt M. H.-W., Chawla H. S., Snowdon R., Usadel B. (2020). Oxford Nanopore sequencing: new opportunities for plant genomics? J. Exp. Bot. 71, 5313–5322. doi: 10.1093/jxb/eraa263 PubMed DOI PMC
Dupouy M., Baurens F. C., Derouault P., Hervouet C., Cardi C., Cruaud C., et al. . (2019). Two large reciprocal translocations characterized in the disease resistance-rich burmannica genetic group of Musa acuminata. Ann. Bot. 2019, 124:31–124329. doi: 10.1093/aob/mcz078 PubMed DOI PMC
FAO (2023). Banana market review – Preliminary results 2023 (Rome: FAO; ).
Farhat P., Mandáková T., Divíšek J., Kudoh H., German D. A., Lysak M. A. (2023). The evolution of the hypotetraploid Catolobus pendulus genome - the poorly known sister species of Capsella. Front. Plant. Sci. 14, 1165140. doi: 10.3389/fpls.2023.1165140 PubMed DOI PMC
Fauré S., Bakry F., Gonzalez L. D. (1993). “Cytogenetic studies of diploid bananas,” in Breeding banana and plantain for resistance to diseases and pests. Montpellier: CIRAD-FLHOR. Ed. Ganry J., 77–92. International symposium on genetic improvement of bananas for resistance to diseases and pests, Montpellier, France.
Goigoux S., Salmon F., Bakry F. (2013). Evaluation of pollen fertility of diploid and doubled-diploid clones of mlali and their potential use for banana breeding. ISHS Acta Hortic. 986, 195–204. doi: 10.17660/ActaHortic.2013.986.20 DOI
Han Y., Zhang T., Thammapichai P., Weng Y., Jinag J. (2015). Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200, 771–779. doi: 10.1534/genetics.115.177642 PubMed DOI PMC
Hippolyte I., Jenny C., Gardes L., Bakry F., Rivallan R., Pomies V., et al. . (2012). Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Ann. Bot. 109, 937–951. doi: 10.1093/aob/mcs010 PubMed DOI PMC
Hou L., Xu M., Zhang T., Xu Z., Wang W., Zhang J., et al. . (2018). Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biol. 18, 110. doi: 10.1186/s12870-018-1325-2 PubMed DOI PMC
Huson D. H., Bryant D. (2006). Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267. doi: 10.1093/molbev/msj030 PubMed DOI
Ibarra-Laclette E., Lyons E., Hernández-Guzmán G., Pérez-Torres C. A., Carretero-Paulet L., Chang T. ,. H., et al. . (2013). Architecture and evolution of a minute plant genome. Nature 498, 94–98. doi: 10.1038/nature12132 PubMed DOI PMC
Janssens S. B., Vandelook F., De Langhe E., Verstraete B., Smets E., Van den Houwe I., et al. . (2016). Evolutionary dynamics and biogeography of Musaceae reveal a correlation between the diversification of the banana family and the geological and climatic history of Southeast Asia. New Phytol. 210, 1453–1465. doi: 10.1111/nph.13856 PubMed DOI PMC
Jiang J. (2019). Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res. 27, 153–165. doi: 10.1007/s10577-019-09607-z PubMed DOI
Li H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: Genomics. doi: 10.48550/arXiv.1303.3997 DOI
Liu X., Arshad R., Wang X., Li W. M., Zhou Y., Ge X.-J., et al. . (2023). The phased telomere-to-telomere reference genome of Musa acuminata, a main contributor to banana cultivars. Sci. Data 10, 631. doi: 10.1038/s41597-023-02546-9 PubMed DOI PMC
Mandáková T., Lysak M. A. (2018). Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Plant Biol. 42, 55–65. doi: 10.1016/j.pbi.2018.03.001 PubMed DOI
Mandáková T., Pouch M., Harmanová K., Zhan S. H., Mayrose I., Lysak M. A. (2017). Multispeed genome diploidization and diversification after an ancient allopolyploidization. Mol. Ecol. 22), 6445–6462. doi: 10.1111/mec.14379 PubMed DOI
Martin G., Baurens F. C., Hervouet C., Salmon F., Delos J. M., Labadie K., et al. . (2020. b). Chromosome reciprocal translocations have accompanied subspecies evolution in bananas. Plant J. 104, 1698–1711. doi: 10.1111/tpj.15031 PubMed DOI PMC
Martin G., Baurens F. C., Labadie K., Hervouet C., Salmon F., Marius F., et al. . (2023. b). Shared pedigree relationships and transmission of unreduced gametes in cultivated banana. Ann. Bot. 131, 1149–1161. doi: 10.1093/aob/mcad065 PubMed DOI PMC
Martin G., Cardi C., Sarah G., Ricci S., Jenny C., Fondi E., et al. . (2020. a). Genome ancestry mosaics reveal multiple and cryptic contributors to cultivated banana. Plant J. 102, 1008–1025. doi: 10.1111/tpj.14683 PubMed DOI PMC
Martin G., Carreel F., Coriton O., Hervouet C., Cardi C., Derouault P., et al. . (2017). Evolution of the banana genome (Musa acuminata) is impacted by large chromosomal translocations. Mol. Biol. Evol. 34, 2140–2152. doi: 10.1093/molbev/msx164 PubMed DOI PMC
Martin G., Cottin A., Baurens F. C., Labadie K., Hervouet C., Salmon F., et al. . (2023. a). Interspecific introgression patterns reveal the origins of worldwide cultivated bananas in New Guinea. Plant J. 113, 802–818. doi: 10.1111/tpj.16086 PubMed DOI
McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., et al. . (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303. doi: 10.1101/gr.107524.110 PubMed DOI PMC
Nyine M., Uwimana B., Swennen R., Batte M., Brown A., Christelová P., et al. . (2017). Trait variation and genetic diversity in banana genomic selection training population. PloS One 12, e0178734. doi: 10.1371/journal.pone.0178734 PubMed DOI PMC
Ortiz R. (2013). Conventional banana and plantain breeding. Acta Hortic. 986, 77–194. doi: 10.17660/ActaHortic.2013.986.19 DOI
Ortiz R., Swennen R. (2014). From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnol. Adv. 32, 158–169. doi: 10.1016/j.biotechadv.2013.09.010 PubMed DOI
Perrier X., Bakry F., Carreel F., Jenny F., Horry J. P., Lebot V., et al. . (2009). Combining biological approaches to shed light on the evolution of edible bananas. Ethnobot. Res. Appl. 7, 199–216. doi: 10.17348/era.7.0.199-216 DOI
Perrier X., De Langhe E., Donohue M., Lentfer C. J., Vrydaghs L., Bakry F., et al. . (2011). Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc. Natl. Acd. Sci. U.S.A. 108, 11311–11318. doi: 10.1073/pnas.1102001108 PubMed DOI PMC
Perrier X., Jenny C., Bakry F., Karamura D., Kitavi M., Dubois C., et al. . (2019). East African diploid and triploid bananas: a genetic complex transported from South-East Asia. Ann. Bot. 123, 19–36. doi: 10.1093/aob/mcy156 PubMed DOI PMC
Pucker B., Irisarri I., de Vries J., Xu B. (2022). Plant genome sequence assembly in the era of long reads: Progress, challenges and future directions. Quant. Plant Biol. 3, e5. doi: 10.1017/qpb.2021.18 PubMed DOI PMC
Raboin L. M., Careel F., Noyer J. L., Baurens F. C., Horry J. P., Du Montcel H. T., et al. . (2005). Diploid ancestors of triploid export banana cultivars: Molecular identification of 2n restitution gamete donor and n gamete donors. Mol. Breed. 16, 333–341. doi: 10.1007/s11032-005-2452-7 DOI
Salse J. (2016). Deciphering the evolutionary interplay between subgenomes following polyploidy: A paleogenomics approach in grasses. Am. J. Bot. 103, 1167–1174. doi: 10.3732/ajb.1500459 PubMed DOI
Sardos J., Breton C., Perrier X., Van den Houwe I., Carpentier S., Paofa J., et al. . (2022). Hybridization, missing wild ancestors and the domestication of cultivated diploid bananas. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.969220 PubMed DOI PMC
Sardos J., Perrier X., Doležel J., Hřibová E., Christelová P., Van den Houwe I., et al. . (2016. a). DArT whole genome profiling provides insights on evolution and taxonomy of edible banana (Musa spp.). Ann. Bot. 118, 1269–1278. doi: 10.1093/aob/mcw170 PubMed DOI PMC
Schubert I., Vu G. T. H. (2016). Genome stability and evolution: attempting a holistic view. Trends Plant Sci. 21, 749–757. doi: 10.1016/j.tplants.2016.06.003 PubMed DOI
Shepherd K. (1999). Cytogenetics of the genus Musa (Montpellier: International Network for the Improvement of Bananas and Plantain; ).
Simmonds N. W., Shepherd K. (1955). The taxonomy and origin of the cultivated bananas. Bot. J. Linn. Soc 55, 302–312. doi: 10.1111/j.1095-8339.1955.tb00015.x DOI
Šimoníková D., Němečková A., Čížková J., Brown A., Swennen R., Doležel J., et al. . (2020). Chromosome painting in cultivated bananas and their wild relatives (Musa spp.) reveals differences in chromosome structure. Int. J. Mol. Sci. 21, 7915. doi: 10.3390/ijms21217915 PubMed DOI PMC
Šimoníková D., Němečková A., Karafiátová M., Uwimana B., Swennen R., Doležel J., et al. . (2019). Chromosome painting facilitates anchoring reference genome sequence to chromosomes in situ and integrated karyotyping in banana (Musa spp.). Front. Plant Sci. 10. doi: 10.3389/fpls.2019.01503 PubMed DOI PMC
Stull G. W., Pham K. K., Soltis P. S., Soltis D. E. (2023). Deep reticulation: the long legacy of hybridization in vascular plant evolution. Plant J. 114, 743–766. doi: 10.1111/tpj.16142 PubMed DOI
Tomekpe K., Jenny C., Escalant J. V. (2004). A review of conventional improvement strategies for Musa . Infomusa 13, 2–6.
Wang X., Morton J. A., Pellicer J., Leitch I. J., Leitch A. R. (2021). Genome downsizing after polyploidy: mechanisms, rates and selection pressures. Plant J. 107, 1003–1015. doi: 10.1111/tpj.15363 PubMed DOI
Wendel J. F. (2000). Genome evolution in polyploids. Plant Mol. Biol. 42, 225–249. doi: 10.1023/A:1006392424384 PubMed DOI
Yu F., Zhao X., Chai J., Ding X., Li X., Huang Y., et al. . (2022). Chromosome-specific painting unveils chromosomal fusions and distinct allopolyploid species in the Saccharum complex. New Phytol. 233, 1953–1965. doi: 10.1111/nph.17905 PubMed DOI
Dryad
10.5061/dryad.44j0zpcnq