Bulked Oligo-FISH for Chromosome Painting and Chromosome Barcoding

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37335493

Recently developed bulked oligo-FISH is a highly versatile method, which is applicable in any plant species with an assembled genome sequence. This technique allows in situ identification of individual chromosomes, large chromosomal rearrangements, comparative karyotype analysis, or even the reconstruction of the three-dimensional organization of the genome. The method is based on the identification of thousands of short oligonucleotides, unique to specific genome regions, which are synthesized in parallel, fluorescently labeled and used as probes for FISH. In this chapter, we propose a detailed protocol for amplification and labeling of single-stranded oligo-based painting probes from so-called MYtags immortal libraries, the preparation of mitotic metaphase and meiotic pachytene chromosome spreads, and a protocol for the fluorescence in situ hybridization procedure using the synthetic oligo probes. The proposed protocols are demonstrated for banana (Musa spp.).

Zobrazit více v PubMed

Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A 79:4381–4385. https://doi.org/10.1073/pnas.79.14.4381 PubMed DOI PMC

Schwarzacher T, Leitch AR, Bennett MD et al (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324. https://doi.org/10.1093/oxfordjournals.aob.a087847 DOI

Leitch IJ, Leitch AR, Heslop-Harrison JS (1991) Physical mapping of plant DNA sequences by simultaneous in situ hybridization of two differently labeled fluorescent probes. Genome 34:329–333. https://doi.org/10.1139/g91-054 DOI

Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494. https://doi.org/10.1139/g93-067 PubMed DOI

Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A 101:13554–13559. https://doi.org/10.1073/pnas.0403659101 PubMed DOI PMC

Jiang JM, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068. https://doi.org/10.1139/g06-076 PubMed DOI

Jiang J (2019) Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosom Res 27:153–165. https://doi.org/10.1007/s10577-019-09607-z DOI

Schubert I, Fransz PF, Fuchs J et al (2001) Chromosome painting in plants. Methods Cell Sci 23:57–69. https://doi.org/10.1023/A:1013137415093 PubMed DOI

Beliveau BJ, Joyce EF, Apostolopoulos N et al (2012) Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci U S A 109:21301–21306. https://doi.org/10.1073/pnas.1213818110 PubMed DOI PMC

Han Y, Zhang T, Thammapichai P et al (2015) Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200:771–779. https://doi.org/10.1534/genetics.115.177642 PubMed DOI PMC

Qu M, Li K, Han Y et al (2017) Integrated karyotyping of woodland strawberry (Fragaria vesca) with oligopaint FISH probes. Cytogenet Genome Res 153:158–164. https://doi.org/10.1159/000485283 PubMed DOI

Hou L, Xu M, Zhang T et al (2018) Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biol 18:110. https://doi.org/10.1186/s12870-018-1325-2 PubMed DOI PMC

Albert PS, Zhang T, Semrau K et al (2019) Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc Natl Acad Sci U S A 116:1679–1685. https://doi.org/10.1073/pnas.1813957116 PubMed DOI PMC

Šimoníková D, Němečková A, Karafiátová M et al (2019) Chromosome painting facilitates anchoring reference genome sequence to chromosomes in situ and integrated karyotyping in banana (Musa spp.). Front Plant Sci 10:1503. https://doi.org/10.3389/fpls.2019.01503 PubMed DOI PMC

He L, Zhao H, He J et al (2020) Extraordinarily conserved chromosomal synteny of Citrus species revealed by chromosome – specific painting. Plant J 103:2225–2235. https://doi.org/10.1111/tpj.14894 PubMed DOI

Braz GT, He L, Zhao H et al (2018) Comparative oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 208:513–523. https://doi.org/10.1534/genetics.117.300344 PubMed DOI

https://github.com/forrestzhang/Chorus

Protocol for preparing single-stranded labeled probes from a MYtags immortal library (Daicel Arbor Biosciences, Ann Arbor, Michigan, USA, 2016)

Labeling protocol for MYtags immortal libraries (Daicel Arbor Biosciences, Ann Arbor, Michigan, USA, 2018, version 1.5)

Murgha YE, Rouillard J-M, Gulari E (2014) Methods for the preparation of large quantities of complex single-stranded oligonucleotide libraries. PLoS One 9:e94752. https://doi.org/10.1371/journal.pone.0094752 PubMed DOI PMC

Murgha Y, Beliveau B, Semrau K et al (2015) Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries. BioTechniques 58:301–307. https://doi.org/10.2144/000114298 PubMed DOI PMC

Doležel J, Doleželová M, Roux N et al (1998) A novel method to prepare slides for high resolution chromosome studies in Musa spp. Infomusa 7:3–4

Kato A, Albert PS, Vega JM et al (2006) Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81:71–78. https://doi.org/10.1080/10520290600643677 PubMed DOI

Danilova TV, Friebe B, Gill BS (2012) Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma 121:597–611. https://doi.org/10.1007/s00412-012-0384-7 PubMed DOI

Mandáková T, Lysák MA (2008) Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570. https://doi.org/10.1105/tpc.108.062166 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...