Chromosome Painting in Cultivated Bananas and Their Wild Relatives (Musa spp.) Reveals Differences in Chromosome Structure
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
19-20303S
Czech Science Foundation
LTT19
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000827
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
33114462
PubMed Central
PMC7672600
DOI
10.3390/ijms21217915
PII: ijms21217915
Knihovny.cz E-zdroje
- Klíčová slova
- chromosome translocation, fluorescence in situ hybridization, karyotype evolution, oligo painting FISH, structural chromosome heterozygosity,
- MeSH
- banánovník genetika růst a vývoj MeSH
- chromozomy rostlin genetika MeSH
- diploidie MeSH
- karyotyp MeSH
- malování chromozomů metody MeSH
- molekulární evoluce MeSH
- šlechtění rostlin MeSH
- tetraploidie MeSH
- translokace genetická MeSH
- triploidie MeSH
- zemědělské plodiny genetika růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Edible banana cultivars are diploid, triploid, or tetraploid hybrids, which originated by natural cross hybridization between subspecies of diploid Musa acuminata, or between M. acuminata and diploid Musa balbisiana. The participation of two other wild diploid species Musa schizocarpa and Musa textilis was also indicated by molecular studies. The fusion of gametes with structurally different chromosome sets may give rise to progenies with structural chromosome heterozygosity and reduced fertility due to aberrant chromosome pairing and unbalanced chromosome segregation. Only a few translocations have been classified on the genomic level so far, and a comprehensive molecular cytogenetic characterization of cultivars and species of the family Musaceae is still lacking. Fluorescence in situ hybridization (FISH) with chromosome-arm-specific oligo painting probes was used for comparative karyotype analysis in a set of wild Musa species and edible banana clones. The results revealed large differences in chromosome structure, discriminating individual accessions. These results permitted the identification of putative progenitors of cultivated clones and clarified the genomic constitution and evolution of aneuploid banana clones, which seem to be common among the polyploid banana accessions. New insights into the chromosome organization and structural chromosome changes will be a valuable asset in breeding programs, particularly in the selection of appropriate parents for cross hybridization.
Zobrazit více v PubMed
FAOSTAT; Agriculture Organization of the United Nations; FAO. [(accessed on 30 January 2020)];2017 Available online: http://www.fao.org/home/en/
International Trade Statistics. [(accessed on 20 May 2020)];2019 Available online: https://www.wto.org/
Price N.S. The origin and development of banana and plantain cultivation. In: Gowen S., editor. Bananas and Plantains, World Crop Series. Springer; Dordrecht, The Netherlands: 1995.
Carreel F., Fauré S., Gonzalez de Leon D., Lagoda P.J.L., Perrier X., Bakry F., Tezenas du Montcel H., Lanaud C., Horry J.P. Evaluation of the genetic diversity in diploid bananas (Musa spp.) Genet. Sel. Evol. 1994;26:125–136. doi: 10.1186/1297-9686-26-S1-S125. DOI
Čížková J., Hřibová E., Humplíková L., Christelová P., Suchánková P., Doležel J. Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.) PLoS ONE. 2013;8:e54808. doi: 10.1371/journal.pone.0054808. PubMed DOI PMC
Němečková A., Christelová P., Čížková J., Nyine M., van den Houwe I., Svačina R., Uwimana B., Swennen R., Doležel J., Hřibová E. Molecular and cytogenetic study of East African Highland Banana. Front. Plant Sci. 2018;9:1371. doi: 10.3389/fpls.2018.01371. PubMed DOI PMC
Perrier X., De Langhe E., Donohue M., Lentfer C., Vrydaghs L., Bakry F., Carreel F., Hippolyte I., Horry J.P., Jenny C., et al. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc. Natl. Acad. Sci. USA. 2011;108:11311–11318. doi: 10.1073/pnas.1102001108. PubMed DOI PMC
Martin G., Carreel F., Coriton O., Hervouet C., Cardi C., Derouault P., Roques D., Salmon F., Rouard M., Sardos J., et al. Evolution of the banana genome (Musa acuminata) is impacted by large chromosomal translocations. Mol. Biol. Evol. 2017;34:2140–2152. doi: 10.1093/molbev/msx164. PubMed DOI PMC
WCSP World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens, Kew. [(accessed on 30 January 2020)];2018 Available online: http://wcsp.science.kew.org/
Rouard M., Droc G., Martin G., Sardos J., Hueber Y., Guignon V., Cenci A., Geigle B., Hibbins M.S., Yahiaoui N., et al. Three new genome assemblies support a rapid radiation in Musa acuminata (wild banana) Genome Biol. Evol. 2018;10:3129–3140. doi: 10.1093/gbe/evy227. PubMed DOI PMC
Sharrock S. Collecting Musa in Papua New Guinea. Identification of genetic diversity in the genus Musa. In: Jarret R.L., editor. International Network for the Improvement of Banana and Plantain. INIBAP; Montpellier, France: 1990. pp. 140–157.
Perrier X., Bakry F., Carreel F., Jenny F., Horry J.P., Lebot V., Hippolyte I. Combining biological approaches to shed light on the evolution of edible bananas. Ethnobot. Res. Appl. 2009;7:199–216. doi: 10.17348/era.7.0.199-216. DOI
Cheesman E.E. Classification of the bananas. Kew Bull. 1948;3:145–153. doi: 10.2307/4119749. DOI
De Langhe E., Vrydaghs L., De Maret P., Perrier X., Denham T.P. Why bananas matter: An introduction to the history of banana domestication. Ethnobot. Res. Appl. 2009;7:165–177. doi: 10.17348/era.7.0.165-177. DOI
Sand C. Petite histoire du peuplement de l’Océanie. In: Ricard M., editor. Migrations et Identités—Colloque CORAIL, Nouméa (PYF), 1988/11/21-22. Papeete. Université Française du Pacifique; 1989. [(accessed on 30 January 2020)]. pp. 39–40. Available online: http://www.documentation.ird.fr/hor/fdi:27803.
Denham T., Haberle S., Lentfer C. New evidence and revised interpretations of early agriculture in Highland New Guinea. Antiquity. 2004;78:839–857. doi: 10.1017/S0003598X00113481. DOI
Denham T. From domestication histories to regional prehistory: Using plants to re-evaluate early and mid-holocene interaction between New Guinea and Southeast Asia. Food Hist. 2010;8:3–22. doi: 10.1484/J.FOOD.1.100971. DOI
Kagy V., Wong M., Vandenbroucke H., Jenny C., Dubois C., Ollivier A., Cardi C., Mournet P., Tuia V., Roux N., et al. Traditional banana diversity in Oceania: An endangered heritage. PLoS ONE. 2016;11:e0151208. doi: 10.1371/journal.pone.0151208. PubMed DOI PMC
Simmonds N.W. The Evolution of the Bananas. Longmans; London, UK: 1962. p. 170. (Tropical Science Series).
Raboin L.M., Carreel F., Noyer J.L., Baurens F.C., Horry J.P., Bakry F., Tezenas Du Montcel H., Ganry J., Lanaud C., Lagoda P.J.L. Diploid ancestors of triploid export banana cultivars: Molecular identification of 2n restitution gamete donors and n gamete donors. Mol. Breed. 2005;16:333–341. doi: 10.1007/s11032-005-2452-7. DOI
Perrier X., Jenny C., Bakry F., Karamura D., Kitavi M., Dubois C., Hervouet C., Philippson G., De Langhe E. East African diploid and triploid bananas: A genetic complex transported from South-East Asia. Ann. Bot. 2019;123:19–36. doi: 10.1093/aob/mcy156. PubMed DOI PMC
Martin G., Cardi C., Sarah G., Ricci S., Jenny C., Fondi E., Perrier X., Glaszmann J.-C., D’Hont A., Yahiaoui N. Genome ancestry mosaics reveal multiple and cryptic contributors to cultivated banana. Plant. J. 2020;102:1008–1025. doi: 10.1111/tpj.14683. PubMed DOI PMC
Baurens F.C., Martin G., Hervouet C., Salmon F., Yohomé D., Ricci S., Rouard M., Habas R., Lemainque A., Yahiaoui N., et al. Recombination and large structural variations shape interspecific edible bananas genomes. Mol. Biol. Evol. 2019;36:97–111. doi: 10.1093/molbev/msy199. PubMed DOI PMC
De Langhe E., Hřibová E., Carpentier S., Doležel J., Swennen R. Did backcrossing contribute to the origin of hybrid edible bananas? Ann. Bot. 2010;106:849–857. doi: 10.1093/aob/mcq187. PubMed DOI PMC
Cooper H., Spillane C., Hodgkin T. Broadening the Genetic Bases of Crop. Production. FAO; Rome, Italy: 2001.
Tugume A.K., Lubega G.W., Rubaihayo P.R. Genetic diversity of East African Highland bananas using AFLP. Infomusa. 2003;11:28–32.
Kitavi M., Downing T., Lorenzen J., Karamura D., Onyango M., Nyine M., Ferguson M., Spillane C. The triploid East African Highland Banana (EAHB) genepool is genetically uniform arising from a single ancestral clone that underwent population expansion by vegetative propagation. Theor. Appl. Genet. 2016;129:547–561. doi: 10.1007/s00122-015-2647-1. PubMed DOI
Christelová P., De Langhe E., Hřibová E., Čížková J., Sardos J., Hušáková M., van den Houwe I., Sutanto A., Kepler A.K., Swennen R., et al. Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodivers. Conserv. 2017;26:801–824. doi: 10.1007/s10531-016-1273-9. DOI
Burke J.M., Arnold M.L. Genetics and the fitness of hybrids. Annu. Rev. Genet. 2001;35:31–52. doi: 10.1146/annurev.genet.35.102401.085719. PubMed DOI
Batte M., Swennen R., Uwimana B., Akech V., Brown A., Tumuhimbise R., Hovmalm H.P., Geleta M., Ortiz R. Crossbreeding East African Highland Bananas: Lessons learnt relevant to the botany of the crop after 21 years of genetic enhancement. Front. Plant. Sci. 2019;10:81. doi: 10.3389/fpls.2019.00081. PubMed DOI PMC
Bakry F., Horry J.P. Tetraploid hybrids from interploid 3×/2× crosses in cooking bananas. Fruits. 1992;47:641–655.
Tomepke K., Jenny C., Escalant J.-V. A review of conventional improvement strategies for Musa. InfoMusa. 2004;13:2–6.
Ortiz R. Conventional banana and plantain breeding. Acta Hortic. 2013;986:177–194. doi: 10.17660/ActaHortic.2013.986.19. DOI
Nyine M., Uwimana B., Swennen R., Batte M., Brown A., Christelová P., Hřibová E., Lorenzen J., Doležel J. Trait variation and genetic diversity in a banana genomic selection training population. PLoS ONE. 2017;12:e0178734. doi: 10.1371/journal.pone.0178734. PubMed DOI PMC
Amorim E.P., Silva S.O., Amorim V.B.O., Pillay M. Quality improvement of cultivated Musa. In: Pillay M., Tenkouano A., editors. Banana Breeding: Progress and Challenges. CRC Press; New York, NY, USA: 2011. pp. 252–280.
Amorim E.P., dos Santos-Serejo J.A., Amorim V.B.O., Ferreira C.F., Silva S.O. Banana breeding at embrapa cassava and fruits. Acta Hortic. 2013;968:171–176. doi: 10.17660/ActaHortic.2013.986.18. DOI
Tenkouano A., Vuylsteke D., Agogbua J.U., Makumbi D., Swennen R., Ortiz R. Diploid banana hybrids TMB2x5105-1 and TMB2x9128-3 with good combining ability, resistance to black sigatoga and nematodes. HortScience. 2003;38:468–472. doi: 10.21273/HORTSCI.38.3.468. DOI
Šimoníková D., Němečková A., Karafiátová M., Uwimana B., Swennen R., Doležel J., Hřibová E. Chromosome painting facilitates anchoring reference genome sequence to chromosomes in situ and integrated karyotyping in banana (Musa spp.) Front. Plant. Sci. 2019;10:1503. doi: 10.3389/fpls.2019.01503. PubMed DOI PMC
De Langhe E., Perrier X., Donohue M., Denham T. The original Banana Split: Multi-disciplinary implications of the generation of African and Pacific Plantains in Island Southeast Asia. Ethnobot. Res. Appl. 2015;14:299–312. doi: 10.17348/era.14.0.299-312. DOI
Do Amaral C.M., de Almeida dos Santos-Serejo J., de Oliveira e Silva S., da Silva Ledo C.A., Amorim E.P. Agronomic characterization of autotetraploid banana plants derived from ‘Pisang Lilin’ (AA) obtained through chromosome doubling. Euphytica. 2015;202:435–443. doi: 10.1007/s10681-014-1320-0. DOI
Robertson W.R.B. Chromosome studies. I. Taxonomic relationships shown in the chromosomes of Tettigidae and Acrididae: V-shaped chromosomes and their significance in Acrididae, Locustidae, and Gryllidae: Chromosomes and variation. J. Morphol. 1916;27:179–331. doi: 10.1002/jmor.1050270202. DOI
Schubert I., Fransz P.F., Fuchs J., De Jong J.H. Chromosome painting in plants. Meth. Cell Sci. 2001;23:57–69. doi: 10.1023/A:1013137415093. PubMed DOI
Jiang J. Fluorescence in situ hybridization in plants: Recent developments and future applications. Chromosome Res. 2019;27:153–165. doi: 10.1007/s10577-019-09607-z. PubMed DOI
Lysák M.A., Fransz P.F., Ali H.B.M., Schubert I. Chromosome painting in A. thaliana. Plant. J. 2001;28:689–697. doi: 10.1046/j.1365-313x.2001.01194.x. PubMed DOI
Idziak D., Hazuka I., Poliwczak B., Wiszynska A., Wolny E., Hasterok R. Insight into the karyotype evolution of Brachypodium species using comparative chromosome barcoding. PLoS ONE. 2014;9:e93503. doi: 10.1371/journal.pone.0093503. PubMed DOI PMC
Han Y., Zhang T., Thammapichai P., Weng Y., Jiang J. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics. 2015;200:771–779. doi: 10.1534/genetics.115.177642. PubMed DOI PMC
Qu M., Li K., Han Y., Chen L., Li Z., Han Y. Integrated karyotyping of woodland strawberry (Fragaria vesca) with oligopaint FISH probes. Cytogenet. Genome Res. 2017;153:158–164. doi: 10.1159/000485283. PubMed DOI
Braz G.T., He L., Zhao H., Zhang T., Semrau K., Rouillard J.M., Torres G.A., Jiang J. Comparative oligo-FISH mapping: An efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics. 2018;208:513–523. doi: 10.1534/genetics.117.300344. PubMed DOI PMC
He L., Braz G.T., Torres G.A., Jiang J.M. Chromosome painting in meiosis reveals pairing of specific chromosomes in polyploid Solanum species. Chromosoma. 2018;127:505–513. doi: 10.1007/s00412-018-0682-9. PubMed DOI
Machado M.A., Pieczarka J.C., Silva F.H.R., O’Brien P.C.M., Ferguson-Smith M.A., Nagamachi C.Y. Extensive karyotype reorganization in the fish Gymnotus arapaima (Gymnotiformes, Gymnotidae) highlighted by zoo-FISH analysis. Front. Genet. 2018;9:8. doi: 10.3389/fgene.2018.00008. PubMed DOI PMC
Albert P.S., Zhang T., Semrau K., Rouillard J.M., Kao Y.H., Wang C.J.R., Danilova T.V., Jiang J., Birchler J.A. Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc. Natl. Acad. Sci. USA. 2019;116:1679–1685. doi: 10.1073/pnas.1813957116. PubMed DOI PMC
Bi Y., Zhao Q., Yan W., Li M., Liu Y., Cheng C., Zhang L., Yu X., Li J., Qian C., et al. Flexible chromosome painting based on multiplex PCR of oligonucleotides and its application for comparative chromosome analyses in Cucumis. Plant. J. 2020;102:178–186. doi: 10.1111/tpj.14600. PubMed DOI
Shepherd K. Cytogenetics of the Genus Musa. International Network for the Improvement of Banana and Plantain; Montpellier, France: 1999.
Fauré S., Noyer J.L., Horry J.P., Bakry F., Lanaud C., de León D.G. A molecular marker-based linkage map of diploid bananas (Musa acuminata) Theor. Appl. Genet. 1993;87:517–526. doi: 10.1007/BF00215098. PubMed DOI
Hippolyte I., Bakry F., Seguin M., Gardes L., Rivallan R., Risterucci A.M., Jenny C., Perrier X., Carreel F., Argout X., et al. A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas. BMC Plant. Biol. 2010;10:65. doi: 10.1186/1471-2229-10-65. PubMed DOI PMC
Mbanjo E.G.N., Tchoumbougnang F., Mouelle A.S., Oben J.E., Nyine M., Dochez C., Ferguson M.E., Lorenzen J. Molecular marker-based genetic linkage map of a diploid banana population (Musa acuminata Colla) Euphytica. 2012;188:369–386. doi: 10.1007/s10681-012-0693-1. DOI
Noumbissié G.B., Chabannes M., Bakry F., Ricci S., Cardi C., Njembele J.C., Yohoume D., Tomekpe K., Iskra-Caruana M.L., D’Hont A., et al. Chromosome segregation in an allotetraploid banana hybrid (AAAB) suggests a translocation between the A and B genomes and results in eBSV-free offsprings. Mol. Breed. 2016;36:38–52. doi: 10.1007/s11032-016-0459-x. DOI
Carreel F., Gonzalez de Leon D., Lagoda P., Lanaud C., Jenny C., Horry J., Tezenas du Montcel H. Ascertaining maternal and paternal lineage within Musa by chloroplast and mitochondrial DNA RFLP analyses. Genome. 2002;45:679–692. doi: 10.1139/g02-033. PubMed DOI
Hřibová E., Čížková J., Christelová P., Taudien S., De Langhe E., Doležel J. The ITS-5.8S-ITS2 sequence region in the Musaceae: Structure, diversity and use in molecular phylogeny. PLoS ONE. 2011;6:e17863. doi: 10.1371/journal.pone.0017863. PubMed DOI PMC
Dupouy M., Baurens F.C., Derouault P., Hervouet C., Cardi C., Cruaud C., Istace B., Labadie K., Guiougou C., Toubi L., et al. Two large reciprocal translocations characterized in the disease resistance-rich burmannica genetic group of Musa acuminata. Ann. Bot. 2019;124:31–329. doi: 10.1093/aob/mcz078. PubMed DOI PMC
Martin G., Baurens F.C., Droc G., Rouard M., Cenci A., Kilian A., Hastie A., Doležel J., Aury J.M., Alberti A., et al. Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics. 2016;17:1–12. doi: 10.1186/s12864-016-2579-4. PubMed DOI PMC
Horry J.P. Chimiotaxonomie et organisation génétique dans le genre Musa (III) Fruits. 1989;44:573–578.
Lebot V., Aradhya M.K., Manshardt R.M., Meilleur B.A. Genetic relationships among cultivated bananas and plantains from Asia and the Pacific. Euphytica. 1993;67:163–175. doi: 10.1007/BF00040618. DOI
Hippolyte I., Jenny C., Gardes L., Bakry F., Rivallan R., Pomies V., Cubry P., Tomekpe K., Risterucci A.M., Roux N., et al. Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Ann. Bot. 2012;109:937–951. doi: 10.1093/aob/mcs010. PubMed DOI PMC
Li L.F., Wang H.Y., Zhang C., Wang X.F., Shi F.X., Chen W.N., Ge X.J. Origins and domestication of cultivated banana inferred from chloroplast and nuclear genes. PLoS ONE. 2013;8:e80502. doi: 10.1371/journal.pone.0080502. PubMed DOI PMC
Sandoval J.A., Côte F.X., Escoute J. Chromosome number variations in micropropagated true-to-type and off-type banana plants (Musa AAA Grande Naine cv.) In Vitro Cell. Dev. Biol. Plant. 1996;32:14–17. doi: 10.1007/BF02823007. DOI
Shepherd K., Da Silva K.M. Mitotic instability in banana varieties. Aberrations in conventional triploid plants. Fruits. 1996;51:99–103.
Bartoš J., Alkhimova O., Doleželová M., De Langhe E., Doležel J. Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): Taxonomic implications. Cytogenet. Genome Res. 2005;109:50–57. doi: 10.1159/000082381. PubMed DOI
Čížková J., Hřibová E., Christelová P., van den Houwe I., Häkkinen M., Roux N., Swennen R., Doležel J. Molecular and cytogenetic characterization of wild Musa species. PLoS ONE. 2015;10:e0134096. doi: 10.1371/journal.pone.0134096. PubMed DOI PMC
Roux N., Toloza A., Radecki Z., Zapata-Arias F.J., Doležel J. Rapid detection of aneuploidy in Musa using flow cytometry. Plant. Cell Rep. 2003;21:483–490. doi: 10.1007/s00299-002-0512-6. PubMed DOI
Sedlazeck F.J., Rescheneder P., Smolka M., Fang H., Nattestad M., von Haeseler A., Schatz M.C. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods. 2018;15:461–468. doi: 10.1038/s41592-018-0001-7. PubMed DOI PMC
Hu L., Liang F., Cheng D., Zhang Z., Yu G., Zha J., Wang Y., Xia Q., Yuan D., Tan Y., et al. Location of balanced chromosome-translocation breakpoints by long-read sequencing on the Oxford Nanopore platform. Front. Genet. 2020;10:1330. doi: 10.3389/fgene.2019.01313. PubMed DOI PMC
Soto D.C., Shew C., Mastoras M., Schmidt J.M., Sahasrabudhe R., Kaya G., Andrés A.M., Dennis M.Y. Identification of structural variations in chimpanzees using optical mapping and nanopore sequencing. Genes. 2020;11:276. doi: 10.3390/genes11030276. PubMed DOI PMC
Perrier X., Jacquemoud-Collet J.P. DARwin Software. [(accessed on 20 May 2020)];2006 Available online: http://darwin.cirad.fr/
FigTree v1.4.0. [(accessed on 20 May 2020)]; Available online: http://tree.bio.ed.ac.uk/software/figtree/
D’Hont A., Denoeud F., Aury J.M., Baurens F.C., Carreel F., Garsmeur O., Noel B., Bocs S., Droc G., Rouard M., et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012;488:213–217. doi: 10.1038/nature11241. PubMed DOI
Doležel J., Doleželová M., Roux N., van den Houwe I. A novel method to prepare slides for high resolution chromosome studies in Musa spp. Infomusa. 1998;7:3–4.
Advances in the Molecular Cytogenetics of Bananas, Family Musaceae