First insight into the genomes of the Pulmonaria officinalis group (Boraginaceae) provided by repeatome analysis and comparative karyotyping

. 2024 Sep 13 ; 24 (1) : 859. [epub] 20240913

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid39266954

Grantová podpora
IGA PrF-2024-001 Palacký University, Olomouc

Odkazy

PubMed 39266954
PubMed Central PMC11395855
DOI 10.1186/s12870-024-05497-4
PII: 10.1186/s12870-024-05497-4
Knihovny.cz E-zdroje

BACKGROUND: The genus Pulmonaria (Boraginaceae) represents a taxonomically complex group of species in which morphological similarity contrasts with striking karyological variation. The presence of different numbers of chromosomes in the diploid state suggests multiple hybridization/polyploidization events followed by chromosome rearrangements (dysploidy). Unfortunately, the phylogenetic relationships and evolution of the genome, have not yet been elucidated. Our study focused on the P. officinalis group, the most widespread species complex, which includes two morphologically similar species that differ in chromosome number, i.e. P. obscura (2n = 14) and P. officinalis (2n = 16). Ornamental cultivars, morphologically similar to P. officinalis (garden escapes), whose origin is unclear, were also studied. Here, we present a pilot study on genome size and repeatome dynamics of these closely related species in order to gain new information on their genome and chromosome structure. RESULTS: Flow cytometry confirmed a significant difference in genome size between P. obscura and P. officinalis, corresponding to the number of chromosomes. Genome-wide repeatome analysis performed on genome skimming data showed that retrotransposons were the most abundant repeat type, with a higher proportion of Ty3/Gypsy elements, mainly represented by the Tekay lineage. Comparative analysis revealed no species-specific retrotransposons or striking differences in their copy number between the species. A new set of chromosome-specific cytogenetic markers, represented by satellite DNAs, showed that the chromosome structure in P. officinalis was more variable compared to that of P. obscura. Comparative karyotyping supported the hybrid origin of putative hybrids with 2n = 15 collected from a mixed population of both species and outlined the origin of ornamental garden escapes, presumably derived from the P. officinalis complex. CONCLUSIONS: Large-scale genome size analysis and repeatome characterization of the two morphologically similar species of the P. officinalis group improved our knowledge of the genome dynamics and differences in the karyotype structure. A new set of chromosome-specific cytogenetic landmarks was identified and used to reveal the origin of putative hybrids and ornamental cultivars morphologically similar to P. officinalis.

Zobrazit více v PubMed

Chacón J, Luebert F, Hilger HH, Ovchinnikova S, Selvi F, Cecchi L, et al. The borage family (Boraginaceae s.s.): a revised infrafamilial classification based on new phylogenetic evidence, with emphasis on the placement of some enigmatic genera. Taxon. 2016;65(3):523–46. 10.12705/653.6.10.12705/653.6 DOI

Merxmüller H, Grau J. Dysploidie Bei Pulmonaria. Rev Roum Biol-Botanique. 1969;14(1):57–63.

Sauer W. Karyo-Systematische Untersuchungen an Der Gattung Pulmonaria (Boraginaceae). Chromosomen-Zahlen, Karyotyp-Analysen und allgemeine Hinweise Auf die Entwicklungsgeschichte. Bibliot Bot. 1975;131:1–85.

Sauer W. A phylogenetic model for North-Eurasiatic Tubifloras on the base of comparative morphology, zytogenetics and ecology. Acta Bot Yunnanica. 1986;8(4):383–95.

Májovský J, Murín A. Cytotaxonomy of the genus Pulmonaria L. in Slovakia. Bol Soc Brot Ser 2. 1980;53:25–739.

Bolliger M. Die Gattung Pulmonaria in Westeuropa. Liechtenstein, Vaduz: J. Cramer; 1982.

Sauer W. The Pulmonaria dacica group: its affinities with central and south-east European allies and with the genus paraskeria (Boraginaceae). PIant Syst Evol. 1987;55:257–76. 10.1007/BF00936303.10.1007/BF00936303 DOI

Ge-ling Z, Riedl H, Kamelin R. Boraginaceae. In: Wu ZY, Raven PH, eds. Flora of China, Vol. 16: Gentianaceae through Boraginaceae. China, Beijing: Science Press and USA, St. Louis: Missouri Botanical Garden Press; 1995. pp. 329–427.

Baasanmunkh S, Oyuntsetseg B, Tsegmed Z, Oyundelger K, Urgamal M, Gantuya B, et al. Distribution of vascular plants in Mongolia – I Part. Mong J Biol Sci. 2022;20(1):3–28. 10.22353/mjbs.2022.20.01.10.22353/mjbs.2022.20.01 DOI

Liu L, Astuti G, Coppi A, Peruzzi L. Different chromosome numbers but slight morphological differentiation and genetic admixture among populations of the Pulmonaria hirta complex (Boraginaceae). Taxon. 2022;71(5):1025–43. 10.1002/tax.12721.10.1002/tax.12721 DOI

Kirchner D. Molekulare Phylogenie und Biogeographie Der Gattung Pulmonaria L. (Boraginaceae). Germany, Aachen: Verlag Mainz; 2004.

Şuteu D, Băcilă I, Coldea G. Detection of barcode markers able to differentiate the endemic taxon Pulmonaria Filarzskyana Jáv. From Pulmonaria Rubra Schott. Contrib Bot. 2016;51:7–16.

Meeus S, Janssens S, Helsen K, Jacquemyn H. Evolutionary trends in the distylous genus Pulmonaria (Boraginaceae): evidence of ancient hybridization and current interspecific gene flow. Mol Phylogenet Evol. 2016;98:63–73. 10.1016/j.ympev.2015.11.022. 10.1016/j.ympev.2015.11.022 PubMed DOI

Grünig S, Fischer M. Recent hybrid speciation at the origin of the narrow endemic Pulmonaria helvetica. Ann Bot. 2021;127(1):21–31. 10.1093/aob/mcaa145. 10.1093/aob/mcaa145 PubMed DOI PMC

Bennett M. Pulmonarias and the borage family. UK, London: BT Batsford; 2003.

Bolliger M. Die Pulmonaria Obscura-Officinalis-Gruppe in Der Schweiz. Ber Schweiz Bot Ges. 1978;88(1/2):30–62.

Dersch G. Über Pulmonaria officinalis L., Pulmonaria obscura Dum. Und ihren Bastard in Nordhessen Und Südniedersachsen. Hessische Floristische Briefe. 1994;43:49–63.

Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. Genome size diversity and its impact on the evolution of land plants. Genes. 2018;9:88. soltis10.3390/genes9020088. 10.3390/genes9020088 PubMed DOI PMC

Soltis PS, Soltis DE. Plant genomes: markers of evolutionary history and drivers of evolutionary change. Plants People Planet. 2021;3(1):74–82. 10.1002/ppp3.10159.10.1002/ppp3.10159 DOI

Wendel JF. Genome evolution in polyploids. Plant Mol Biol. 2000;42(1):225–49. Doi:. 10.1023/A:1006392424384 PubMed DOI

Ibarra-Laclette E, Lyons E, Hernández-Guzmán G, Pérez-Torres CA, Carretero-Paulet L, Chang T-H, et al. Architecture and evolution of a minute plant genome. Nature. 2013;498:94–8. 10.1038/nature12132. 10.1038/nature12132 PubMed DOI PMC

Macas J, Novák P, Pellicer J, Čížková J, Koblížková A, Neumann P, et al. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS ONE. 2015;10(11):e0143424. 10.1371/journal.pone.0143424. 10.1371/journal.pone.0143424 PubMed DOI PMC

Leitch IJ, Bennet MD. Genome downsizing in polyploid plants. Biol J Linn Soc. 2004;82(4):651–63. 10.1111/j.1095-8312.2004.00349.x.10.1111/j.1095-8312.2004.00349.x DOI

Bennetzen JL, Ma J, Devos KM. Mechanisms of recent genome size variation in flowering plants. Ann Bot. 2005;95:127–32. 10.1093/aob/mci008. 10.1093/aob/mci008 PubMed DOI PMC

Renny-Byfield S, Kovarik A, Kelly LJ, Macas J, Novak P, Chase MW, et al. Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences. Plant J. 2013;74(5):829–39. 10.1111/tpj.12168. 10.1111/tpj.12168 PubMed DOI

Zenil-Ferguson R, Ponciano JM, Burleigh JG. Evaluating the role of genome downsizing and size thresholds from genome size distributions in angiosperms. Am J Bot. 2016;103(7):1175–86. 10.3732/ajb.1500408. 10.3732/ajb.1500408 PubMed DOI

Simonin KA, Roddy AB. Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biol. 2018;16(1):e2003706. 10.1371/journal.pbio.2003706. 10.1371/journal.pbio.2003706 PubMed DOI PMC

Wang X, Morto JA, Pellicer J, Leitch IJ, Leitch AR. Genome downsizing after polyploidy: mechanisms, rates and selection pressures. Plant J. 2021;107:1003–15. 10.1111/tpj.15363. 10.1111/tpj.15363 PubMed DOI

Chase MW, Samuel R, Leitch AR, Guignard MS, Conran JG, Nollet F, et al. Down, then up: non-parallel genome size changes and a descending chromosome series in a recent radiation of the Australian allotetraploid plant species, Nicotiana section suaveolentes (Solanaceae). Ann Bot. 2023;131(1):123–42. 10.1093/aob/mcac006. 10.1093/aob/mcac006 PubMed DOI PMC

Weigend M, Selvi F, Thomas DC, Hilger HH. Boraginaceae. In: Kadereit JW, Bittrich V, editors. The families and genera of vascular plants, Vol. 14. Flowering plants. Eudicots. Aquifoliales, Boraginales, Bruniales, Dipsacales, Escalloniales, Garryales, Paracryphiales, Solanales (except Convolvulaceae), Icacinaceae, Metteniusaceae, Vahliaceae. China, Cham: Springer; 2016. pp. 41–102.

Kobrlová L, Hroneš M. First insights into the evolution of genome size in the borage family–complete data set of Boraginaceae in the Czech Republic. Bot J Linn Soc. 2019;189(2):115–31. 10.1093/botlinnean/boy079.10.1093/botlinnean/boy079 DOI

Selvi F, Coppi A, Bigazzi M. Karyotype variation, evolution and phylogeny in Borago (Boraginaceae), with emphasis on subgenus buglossites in the Corso-Sardinian system. Ann Bot. 2006;98:857–68. 10.1093/aob/mcl167. 10.1093/aob/mcl167 PubMed DOI PMC

Bigazzi M, Selvi F. Karyotype morphology and cytogeography in Brunnera and Cynoglottis (Boraginaceae). Bot J Linn Soc. 2001;136(4):365–78. 10.1111/j.1095-8339.2001.tb00580.x.10.1111/j.1095-8339.2001.tb00580.x DOI

Bigazzi M, Selvi F. Chromosome variation in Anatolian species of Nonea Medik. (Boraginaceae), with special reference to endemics and N. persica. Caryologia. 2003;56(4):509–19. 10.1080/00087114.2003.10589364.10.1080/00087114.2003.10589364 DOI

Kobrlová L, Hroneš M, Koutecký P, Štech M, Trávníček B. Symphytum tuberosum complex in central Europe: cytogeography, morphology, ecology and taxonomy. Preslia. 2016;88:77–112.

Kobrlová L, Duchoslav M, Hroneš M. Morphological, ecological and geographic differences between diploids and tetraploids of Symphytum officinale (Boraginaceae) justify both cytotypes as separate species. AoB Plants. 2022;144:plac028. 10.1093/aobpla/plac028.10.1093/aobpla/plac028 PubMed DOI PMC

Kolarčik V, Kocová V, Cakovic´ D, Kačmárová T, Piovár J, Mártonfi P. Nuclear genome size variation in the allopolyploid Onosma Arenaria – O. pseudoarenaria species group: methodological issues and revised data. Botany. 2018;96:397–410. 10.1139/cjb-2017-0164.10.1139/cjb-2017-0164 DOI

Merxmüller H, Sauer W. Pulmonaria L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA, editors. Flora Europaea. Volume 3. Cambridge: Cambridge University Press;: UK; 1972. pp. 100–2.

Hultén E, Fries M. Atlas of North European vascular plants north of the Tropic of Cancer. Germany, Königstein: Koeltz Scientific Books; 1986.

Sauer W, Gruber G. Beitrag Zur Kenntnis Der Gattung Pulmonaria in Bayern: Kritische Sippen, Verbreitung und allgemeine Hinweise Auf die Arealbildung. Bayerische Bot Gesellschaft Zur Erforschung Der Heimischen Flora. 1979;50:127–60.

Hroneš M, Kobrlová L. 12. Pulmonaria L. In: Kaplan Z, Danihelka J, Chrtek J Jr, Kirschner J, Kubát K, Štech M eds. Key to the Flora of the Czech Republic. Ed.2. CZ, Praha: Academia; 2019. pp. 815–816.

Vejvodová K, Kúr P, Koutecký P, Diewald W, Grulich V, Máchalová K, et al. Distribution and identification of Pulmonaria officinalis and P. obscura in the Bohemian Forest and its adjacent foothills. Silva Gabreta. 2021;27:97–119.

Astuti G, Cristofolini G, Peruzzi L, Pupillo P. A new subspecies of Pulmonaria officinalis (Boraginaceae) from the southern Alps. Phytotaxa. 2014;186(3):148–57. 10.11646/phytotaxa.186.3.3.10.11646/phytotaxa.186.3.3 DOI

Cecchi L, Selvi F. Synopsis of Boraginaceae subfam. Boraginoideae tribe Boragineae in Italy. Plant Biosyst. 2015;149(4):630–77. 10.1080/11263504.2015.1057261.10.1080/11263504.2015.1057261 DOI

POWO. Plants of the World Online Kew (UK): The Royal Botanic Gardens. 2024. http://www.plantsoftheworldonline.org/. Accessed 3 March 2024.

Scott P. Physiology and behaviour of plants. UK. Chichester: John Wiley & Sons Ltd.; 2008.

Meeus S, Brys R, Honnay O, Jacquemyn H. Biological Flora of the British Isles: Pulmonaria officinalis. J Ecol. 2013;101(5):1353–68. 10.1111/1365-2745.12150.10.1111/1365-2745.12150 DOI

Puppi G, Cristofolini G. Sul Significato Del Binomio Pulmonaria saccharata Miller. Webbia. 1991;45(2):221–34.10.1080/00837792.1991.10670497 DOI

Puppi G, Cristofolini G. Systematics of the complex Pulmonaria saccharata, Pulmonaria vallarsae and related species (Boraginaceae). Webbia. 1996;51(1):1–20.10.1080/00837792.1996.10670611 DOI

Novák P, Ávila Robledillo L, Koblížková A, Vrbová I, Neumann P, Macas J. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017;45(12):e111. 10.1093/nar/gkx257. 10.1093/nar/gkx257 PubMed DOI PMC

Koprivý L, Fráková V, Kolarčik V, Mártonfiová L, Dudáš M, Mártonfi P. Genome size and endoreplication in two pairs of cytogenetically contrasting species of Pulmonaria (Boraginaceae) in Central Europe. AoB PLANTS. 2022;14(5):plac036. 10.1093/aobpla/plac036. 10.1093/aobpla/plac036 PubMed DOI PMC

Leitch IJ, Soltis DE, Soltis PS, Bennett MD. Evolution of DNA amounts across land plants (Embryophyta). Ann Bot. 2005;95(1):207–17. 10.1093/aob/mci014. 10.1093/aob/mci014 PubMed DOI PMC

Hawkins JS, Proulx SR, Rapp RA, Wendel JF. Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci USA. 2009;106(42):17811–6. 10.1073/pnas.0904339106. 10.1073/pnas.0904339106 PubMed DOI PMC

Leitch IJ, Chase MW, Bennett MD. Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot. 1998;82:85–94.10.1006/anbo.1998.0783 DOI

Šmarda P, Knápek O, Březinová A, Horová L, Grulich V, Danihelka J, et al. Genome sizes and genomic guanine + cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species. Preslia. 2019;91(2):117–42. 10.23855/preslia.2019.117.10.23855/preslia.2019.117 DOI

Piednoel M, Aberer AJ, Schneeweiss GM, Macas J, Novak P, Gundlach H, et al. Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol Biol Evol. 2012;29(11):3601–11. 10.1093/molbev/mss168. 10.1093/molbev/mss168 PubMed DOI PMC

Novák P, Hřibová E, Neumann P, Koblížková A, Doležel J, Macas J. Genome-wide analysis of repeat diversity across the family Musaceae. PLoS ONE. 2014;9(6):e98918. 10.1371/journal.pone.0098918. 10.1371/journal.pone.0098918 PubMed DOI PMC

McCann J, Macas J, Novák P, Stuessy TF, Villasenor JL, Weiss-Schneweiss H. Differential genome size and repetitive DNA evolution in diploid species of Melampodium sect. Melampodium (Asteraceae). Front. Plant Sci. 2020;11:362. 10.3389/fpls.2020.00362.10.3389/fpls.2020.00362 PubMed DOI PMC

Zwyrtková J, Němečková A, Čížková J, Holušová K, Kapustová V, Svačina R, et al. Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses. BMC Plant Biol. 2020;20(1):280. 10.1186/s12870-020-02495-0. 10.1186/s12870-020-02495-0 PubMed DOI PMC

Ferraz ME, Ribeiro T, Sader M, Nascimento T, Pedrosa-Harand A. Comparative analysis of repetitive DNA in dysploid and non-dysploid Phaseolus beans. Chromosome Res. 2023;31(4):30. 10.1007/s10577-023-09739-3. 10.1007/s10577-023-09739-3 PubMed DOI

International Rice Genome Sequencing Project, Sasaki T. The map-based sequence of the rice genome. Nature. 2005;436(7052):793–800. 10.1038/nature03895. 10.1038/nature03895 PubMed DOI

Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112–5. 10.1126/science.1178534. 10.1126/science.1178534 PubMed DOI

Papon N, Lasserre-Zuber P, Rimbert H, De Oliveira R, Paux E, Choulet F. All families of transposable elements were active in the recent wheat genome evolution and polyploidy had no impact on their activity. Plant Genome. 2023;16(3):e20347. 10.1002/tpg2.20347. 10.1002/tpg2.20347 PubMed DOI

Kreplak J, Madoui MA, Cápal P, Novák P, Labadie K, Aubert G, et al. A reference genome for pea provides insight into legume genome evolution. Nat Genet. 2019;51:1411–22. 10.1038/s41588-019-0480-1. 10.1038/s41588-019-0480-1 PubMed DOI

Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee AH, et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet. 2014;46:270–8. 10.1038/ng.2877. 10.1038/ng.2877 PubMed DOI

Sierro N, Battey J, Ouadi S, Bakaher N, Bovet L, Willig A, et al. The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun. 2014;5:3833. 10.1038/ncomms4833. 10.1038/ncomms4833 PubMed DOI PMC

Dodsworth S, Jang TS, Struebig M, Chase MW, Weiss-Schneweiss H, Leitch AR. Genome-wide repeat dynamics reflect phylogenetic distance in closely related allotetraploid Nicotiana (Solanaceae). Plant Syst Evol. 2017;303:1013–20. 10.1007/s00606-016-1356-9. 10.1007/s00606-016-1356-9 PubMed DOI PMC

Gaiero P, Vaio M, Peters SA, Schranz ME, de Jong H, Speranza PR. Comparative analysis of repetitive sequences among species from the potato and the tomato clades. Ann Bot. 2019;123(3):521–32. 10.1093/aob/mcy186. 10.1093/aob/mcy186 PubMed DOI PMC

Song B, Song Y, Fu Y, Kizito EB, Kamenya SN, Kabod PN, et al. Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome. Gigascience. 2019;8(10):giz115. 10.1093/gigascience/giz115. 10.1093/gigascience/giz115 PubMed DOI PMC

Li N, He Q, Wang J, Wang B, Zhao J, Huang S, et al. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nat Genet. 2023;55:852–60. 10.1038/s41588-023-01340-y. 10.1038/s41588-023-01340-y PubMed DOI PMC

Song Z, Lin C, Xing P, Fen Y, Jin H, Zhou C, et al. A high-quality reference genome sequence of Salvia miltiorrhiza provides insights into tanshinone synthesis in its red rhizomes. Plant Genome. 2020;13(3):e20041. 10.1002/tpg2.20041. 10.1002/tpg2.20041 PubMed DOI

Jia KH, Liu H, Zhang RG, Xu J, Zhou S-S, Jiao S-Q, et al. Chromosome-scale assembly and evolution of the tetraploid Salvia splendens (Lamiaceae) genome. Hortic Res. 2021;8:177. 10.1038/s41438-021-00614-y. 10.1038/s41438-021-00614-y PubMed DOI PMC

Muravenko OV, Yurkevich OY, Kalnyuk JV, Samatadze TE, Zoshchuk SA, Amosova AV. Integration of repeatomic and Cytogenetic Data on Satellite DNA for the Genome Analysis in the Genus Salvia (Lamiaceae). Plants. 2022;11(17):2244. 10.3390/plants11172244. 10.3390/plants11172244 PubMed DOI PMC

Gams H, Pulmonaria L. In: Hegi G, editor. Illustrierte Flora Von Mitteleuropa. Volume V/3. Germany, München: J.F. Lehmanns; 1927. pp. 2209–21.

Meusel H, Jäger EJ, Rauschert S, Weinert E. Vergleichende Chorologie Der zentraleuropäischen Flora. Band II. Germany, Jena: Gustav Fischer; 1978.

Garcia S, Wendel JF, Borowska-Zuchowska N, Aïnouche M, Kuderova A, Kovarik A. The utility of graph clustering of 5S ribosomal DNA homoeologs in plant allopolyploids, homoploid hybrids, and cryptic introgressants. Front Plant Sci. 2020;11:41. 10.3389/fpls.2020.00041. 10.3389/fpls.2020.00041 PubMed DOI PMC

Vozárová R, Herklotz V, Kovařík A, Tynkevich YO, Volkov RA, Ritz CM, et al. Ancient origin of two 5S rDNA families dominating in the genus Rosa and their behavior in the Canina-type meiosis. Front Plant Sci. 2021;12:643548. 10.3389/fpls.2021.643548. 10.3389/fpls.2021.643548 PubMed DOI PMC

Greilhuber J, Doležel J, Lysák M, Bennett MD. The origin, evolution and proposed stabilization of the terms ‘Genome size’ and ‘C-Value’ to describe nuclear DNA contents. Ann Bot. 2005;95(1):255–66. 10.1093/aob/mci019. 10.1093/aob/mci019 PubMed DOI PMC

Šmarda P, Bureš P, Horová L, Foggi B, Rossi G. Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Ann Bot. 2008;101(3):421–33. 10.1093/aob/mcm307. 10.1093/aob/mcm307 PubMed DOI PMC

Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, et al. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot. 1998;82(Supplement A):17–26. 10.1093/oxfordjournals.aob.a010312.10.1093/oxfordjournals.aob.a010312 DOI

Barow M, Meister A. Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry A. 2002;47(1):1–7. 10.1002/cyto.10030.10.1002/cyto.10030 PubMed DOI

Doležel J, Bartoš J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytometry A. 2003;51(2):127–8. 10.1002/cyto.a.10013. author reply 129. 10.1002/cyto.a.10013 PubMed DOI

Hintze J. NCSS 9.0.15. 2013. https://www.ncss.com/

Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. 10.1093/bioinformatics/bty560. 10.1093/bioinformatics/bty560 PubMed DOI PMC

Novák P, Neumann P, Macas J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat Protoc. 2020;15(11):3745–76. 10.1038/s41596-020-0400-y. 10.1038/s41596-020-0400-y PubMed DOI

Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29(6):792–3. 10.1093/bioinformatics/btt054. 10.1093/bioinformatics/btt054 PubMed DOI

Neumann P, Novák P, Hoštáková N, Macas J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA. 2019;10:1. 10.1186/s13100-018-0144-1. 10.1186/s13100-018-0144-1 PubMed DOI PMC

Sonnhammer EL, Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995;167(1–2):GC1–10. 10.1016/0378-1119(95)00714-8. 10.1016/0378-1119(95)00714-8 PubMed DOI

Kapustová V, Tulpová Z, Toegelová H, Novák P, Macas J, Karafiátová M, et al. The dark matter of large cereal genomes: long tandem repeats. Int J Mol Sci. 2019;20(10):2483. 10.3390/ijms20102483. 10.3390/ijms20102483 PubMed DOI PMC

Šimoníková D, Němečková A, Čížková J, Brown A, Swennen R, Doležel J, et al. Chromosome painting in cultivated bananas and their wild relatives (Musa spp.) reveals differences in chromosome structure. Int J Mol Sci. 2020;21:7915. 10.3390/ijms21217915. 10.3390/ijms21217915 PubMed DOI PMC

Kato A, Lamb JC, Birchler JA. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA. 2004;101(37):13554–9. 10.1073/pnas.0403659101. 10.1073/pnas.0403659101 PubMed DOI PMC

Kato A, Albert PS, Vega JM, Birchler JA. Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem. 2006;81(2–3):71–8. 10.1080/10520290600643677. 10.1080/10520290600643677 PubMed DOI

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. 10.1093/nar/gks596. 10.1093/nar/gks596 PubMed DOI PMC

Gerlach WL, Bedbrook JR. Cloning and characterization of ribosomal-RNA genes from wheat and barley. Nucleic Acids Res. 1979;7(7):1869–85. 10.1093/nar/7.7.1869. 10.1093/nar/7.7.1869 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...