Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
32552738
PubMed Central
PMC7302162
DOI
10.1186/s12870-020-02495-0
PII: 10.1186/s12870-020-02495-0
Knihovny.cz E-zdroje
- Klíčová slova
- Centromere organization, Festuca, Illumina sequencing, Lolium, Repetitive DNA,
- MeSH
- centromera genetika MeSH
- chromozomy rostlin * MeSH
- Festuca genetika MeSH
- genom rostlinný genetika MeSH
- jílek genetika MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Cultivated grasses are an important source of food for domestic animals worldwide. Increased knowledge of their genomes can speed up the development of new cultivars with better quality and greater resistance to biotic and abiotic stresses. The most widely grown grasses are tetraploid ryegrass species (Lolium) and diploid and hexaploid fescue species (Festuca). In this work, we characterized repetitive DNA sequences and their contribution to genome size in five fescue and two ryegrass species as well as one fescue and two ryegrass cultivars. RESULTS: Partial genome sequences produced by Illumina sequencing technology were used for genome-wide comparative analyses with the RepeatExplorer pipeline. Retrotransposons were the most abundant repeat type in all seven grass species. The Athila element of the Ty3/gypsy family showed the most striking differences in copy number between fescues and ryegrasses. The sequence data enabled the assembly of the long terminal repeat (LTR) element Fesreba, which is highly enriched in centromeric and (peri)centromeric regions in all species. A combination of fluorescence in situ hybridization (FISH) with a probe specific to the Fesreba element and immunostaining with centromeric histone H3 (CENH3) antibody showed their co-localization and indicated a possible role of Fesreba in centromere function. CONCLUSIONS: Comparative repeatome analyses in a set of fescues and ryegrasses provided new insights into their genome organization and divergence, including the assembly of the LTR element Fesreba. A new LTR element Fesreba was identified and found in abundance in centromeric regions of the fescues and ryegrasses. It may play a role in the function of their centromeres.
Zobrazit více v PubMed
Inda LA, Segarra-Moragues JG, Müller J, Peterson PM, Catalán P. Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. Mol Phylogenet Evol. 2008;46:932–957. doi: 10.1016/j.ympev.2007.11.022. PubMed DOI
Watson L, Dawitz MJ. The grass genera of the world. Wallingford: C. A. B. International; 1992.
Catalán P, Torrecilla P, López Rodriguez JA, Olmstead RG. Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poaea, Pooideae) inferred from ITS and trnL-F sequences. Mol Phylogenet Evol. 2004;31(2):517–541. doi: 10.1016/j.ympev.2003.08.025. PubMed DOI
Torrecilla P, Catalán P. Phylogeny of broad-leaved and fine-leaved Festuca lineages (Poaceae) based on nuclear ITS sequences. Syst Bot. 2002;27(2):241–252. doi: 10.1043/0363-6445-27.2.241. DOI
Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27(2):221–224. doi: 10.1093/molbev/msp259. PubMed DOI
Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Zuloaga FO, Judziewicz EJ, et al. A worldwide phylogenetic classification of the Poaceae (Gramineae) J Syst Evol. 2015;53:117–137. doi: 10.1111/jse.12150. DOI
Šmarda P, Bureš P, Horová L, Foggi B, Rossi G. Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Ann Bot. 2008;101(3):421–433. doi: 10.1093/aob/mcm307. PubMed DOI PMC
Kopecký D, Havránková M, Loureiro J, Castro S, Lukaszewski AJ, Bartoš J, et al. Physical distribution of homoeologous recombination in individual chromosomes of Festuca pratensis in Lolium multiflorum. Cytogenet Genome Res. 2010;129(1–3):162–172. doi: 10.1159/000313379. PubMed DOI
Kopecký D, Lukaszewski AJ, Doležel J. Cytogenetics of Festulolium (Festuca x Lolium hybrids) Cytogenet Genome Res. 2008;120(3–4):370–383. doi: 10.1159/000121086. PubMed DOI
Loureiro J, Kopecký D, Castro S, Santos C, Silveira P. Flow cytometric and cytogenetic analyses of Iberian Peninsula Festuca spp. Plant Syst Evol. 2007;269:89–105. doi: 10.1007/s00606-007-0564-8. DOI
Hand ML, Cogan NO, Stewart AV, Forster JW. Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex. BMC Evol Biol. 2010;10:303. doi: 10.1186/1471-2148-10-303. PubMed DOI PMC
Humphreys J, Harper JA, Armstead IP, Humhreys MW. Introgression-mapping of genes for drought resistance transferred from Festuca arundinaceae var. glaucescens into Lolium multiflorum. Theor Appl Genet. 2005;110:579–587. doi: 10.1007/s00122-004-1879-2. PubMed DOI
Kopecký D, Bartoš J, Christelová P, Černoch V, Kilian A, Doležel J. Genomic constitution of Festuca x Lolium hybrids revealed by the DArTFest array. Theor Appl Genet. 2011;122(2):355–363. doi: 10.1007/s00122-010-1451-1. PubMed DOI
Kosmala A, Zwierzykowski Z, Gasior D, Rapacz M, Zwierzykowska E, Humphreys MW. GISH/FISH mapping of genes for freezing tolerance transferred from Festuca pratensis to Lolium multiflorum. Heredity. 2006;96:243–251. doi: 10.1038/sj.hdy.6800787. PubMed DOI
Ezquerro-López D, Kopecký D, Inda Luis Á. Cytogenetic relationships within the Maghrebian clade of Festuca subgen. Schedonorus (Poaceae), using flow cytometry and FISH. Anales del Jardín Botánico de Madrid. 2017;74(1):e052. doi:10.3989/ajbm.2455.
Czaban A, Sharma S, Byrne SL, Spannagl M, Mayer KF, Asp T. Comparative transcriptome analysis within the Lolium/Festuca species complex reveals high sequence conservation. BMC Genomics. 2015;16(1):249. doi: 10.1186/s12864-015-1447-y. PubMed DOI PMC
Byrne SL, Nagy I, Pfeifer M, Armstead I, Swain S, Studer B, et al. A synteny-based draft genome sequence of the forage grass Lolium perenne. Plant J. 2015;84:816–826. doi: 10.1111/tpj.13037. PubMed DOI
Kopecký D, Martis M, Číhalíková J, Hřibová E, Vrána J, Bartoš J, et al. Flow sorting and sequencing meadow fescue chromosome 4F. Plant Physiol. 2013;163(3):1323–1337. doi: 10.1104/pp.113.224105. PubMed DOI PMC
SanMiguel P, Bennetzen JL. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot. 1998;82(1):37–44. doi: 10.1006/anbo.1998.0746. DOI
Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González RH, et al. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 2018;19(1):103. doi: 10.1186/s13059-018-1479-0. PubMed DOI PMC
Hřibová E, Neumann P, Matsumoto T, Roux N, Macas J, Doležel J. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol. 2010;10:204. doi: 10.1186/1471-2229-10-204. PubMed DOI PMC
Piednoel M, Aberer AJ, Schneeweiss GM, Macas J, Novák P, Gundlach H, et al. Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol Biol Evol. 2012;29(11):3601–11. doi: 10.1093/molbev/mss168. PubMed DOI PMC
Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, Novák P, et al. Genomic repeat abundances contain phylogenetic signal. Syst Biol. 2015;64(1):112–126. doi: 10.1093/sysbio/syu080. PubMed DOI PMC
Macas J, Novák P, Pellicer J, Čížková J, Koblížková A, Neumann P, et al. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the vegume vribe Fabeae. PLoS One. 2015;10(11):e0143424. doi: 10.1371/journal.pone.0143424. PubMed DOI PMC
Leitch IJ, Bennett MD. Genome downsizing in polyploid plants. Biol J Linn Soc. 2004;82:651–663. doi: 10.1111/j.1095-8312.2004.00349.x. DOI
Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysák MA. Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell. 2010;22(7):2277–2290. doi: 10.1105/tpc.110.074526. PubMed DOI PMC
Renny-Byfield S, Kovařík A, Kelly LJ, Macas J, Novák P, Chase MW, et al. Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences. Plant J. 2013;74(5):829–839. doi: 10.1111/tpj.12168. PubMed DOI
Ananiev EV, Phillips RL, Rines HW. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc. Natl Acad. Sci. USA. 1998;95:13073–13078. doi: 10.1073/pnas.95.22.13073. PubMed DOI PMC
Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H. The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. DNA Res. 2001;8:285–290. doi: 10.1093/dnares/8.6.285. PubMed DOI
Li Y, Zuo S, Zhang Z, Li Z, Han J, Chu Z, et al. Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus. Plant J. 2018;93(6):1088–1101. doi: 10.1111/tpj.13832. PubMed DOI
Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, et al. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell. 2002;14(8):1691–1704. doi: 10.1105/tpc.003079. PubMed DOI PMC
Gorinšek B, Gubenšek F, Kordiš D. Phylogenomic analysis of chromoviruses. Cytogenet Genome Res. 2005;110(1–4):543–552. doi: 10.1159/00008487. PubMed DOI
Hudakova S, Michalek W, Presting GG, ten Hoopen R, dos Santos K, Jasencakova Z, et al. Sequence organization of barley centromeres. Nucleic Acids Res. 2001;29:5029–5035. doi: 10.1093/nar/29.24.5029. PubMed DOI PMC
Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, et al. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA. 2011;2(1):4. doi: 10.1186/1759-8753-2-4. PubMed DOI PMC
Křivánková A, Kopecký D, Stočes Š, Doležel J, Hřibová E. Repetitive DNA: A versatile tool for karyotyping in Festuca pratensis Huds. Cytogenet Genome Res 2017;151(2):96–105. doi:10.1159/000462915. PubMed
Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, et al. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J. 2006;48(3):463–474. doi: 10.1111/j.1365-313X.2006.02891.x. PubMed DOI
Fu K, Guo Z, Zhang X, Fan Y, Wu W, Li D, et al. Insight into the genetic variability analysis and cultivar identification of tall fescue by using SSR markers. Hereditas. 2016;153:9. doi: 10.1186/s41065-016-0013-1. PubMed DOI PMC
Koo DH, Nam YW, Choi D, Bang JW, de Jong H, Hur Y. Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences. Chromosom Res. 2010;18(3):325–336. doi: 10.1007/s10577-010-9116-0. PubMed DOI
Mehrotra S, Goyal V. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genom Proteom Bioinf. 2014;12(4):164–171. doi: 10.1016/j.gpb.2014.07.003. PubMed DOI PMC
Nybom H, Weising K1, Rotter B. DNA fingerprinting in botany: past, present, future. Investig Genet. 2014;5(1):1. doi:10.1186/2041-2223-5-1. PubMed PMC
Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, et al. Plant genome size estimation by flow Cytometry: inter-laboratory comparison. Ann Bot. 1998;82:17–26. doi: 10.1093/aob/mci005. DOI
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29(6):792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI
Presting GG, Malysheva L, Fuchs J, Schubert I. A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 1998;16(6):721–728. doi: 10.1046/j.1362-313x.1998.00341.x. PubMed DOI
Sanei M, Pickering R, Kumke K, Nasuda S, Houben A. Loss of centromeric histone H3 (CENH3) from cetromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci U S A. 2011;108:E498–E505. doi: 10.1073/pnas.1103190108. PubMed DOI PMC
Murray BG, De Lange PJ, Ferguson AR. Nuclear DNA variation, chromosome numbers and polyploidy in the endemic and indigenous grass flora of New Zealand. Ann Bot. 2005;96(7):1293–1305. doi: 10.1093/aob/mci281. PubMed DOI PMC
Zhang Q-J, Gao L-I. Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species. G3 (Bethesda). 2017;7(6). doi:10.1534/g3.116.037572. PubMed PMC
McCann J, Macas J, Novák P, Stuessy TF, Villasenor JL, Weiss-Schneweiss H. Differential genome size and repetitive DNA evolution in diploid species of Melampodium sect. Melampodium (Asteraceae). Front. Plant Sci. 2020;11:362. doi: 10.3389/fpls.2020.00362. PubMed DOI PMC
Novák P, Neumann P, Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC
Novák P, Hřibová E, Neumann P, Koblížková A, Doležel J, Macas J. Genome-wide analysis of repeat diversity across the family Musaceae. PLoS One. 2014;9(6):e98918. doi: 10.1371/journal.pone.0098918. PubMed DOI PMC
McCann J, Jang TS, Macas J, Schneeweiss GM, Matzke NJ, Novák P, et al. Dating the species network: Allopolyploidy and repetitive DNA evolution in American daisies (Melampodium sect. Melampodium, Asteraceae) Syst Biol. 2018;67(6):1010–1024. doi: 10.1093/sysbio/syy024. PubMed DOI PMC
Renny-Byfield S, Kovařík A, Chester M, Nichols RA, Macas J, Novák P, et al. Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PLoS One. 2012;7(5):e36963. doi: 10.1371/journal.pone.0036963. PubMed DOI PMC
Macas J, Kejnovský E, Neumann P, Novák P, Koblížková A, Vyskot B. Next generation sequencing-based analysis of repetitive DNA in the model dioecious plant Silene latifolia. PLoS One. 2011;6(11):e27335. doi: 10.1371/journal.pone.0027335. PubMed DOI PMC
Said M, Hřibová E, Danilova TV, Karafiátová M, Čížková J, Friebe B, et al. The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theor Appl Genet. 2018;131(10):2213–2227. doi: 10.1007/s00122-018-3148-9. PubMed DOI PMC
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112–1115. doi: 10.1126/science.1178534. PubMed DOI
International Rice Genome Sequencing Project. Sasaki T. The map-based sequence of the rice genome. Nature. 2005;436(7052):793–800. doi: 10.1038/nature03895. PubMed DOI
International Barley Genome Sequencing Consortium. Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, et al. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491(7426):711–716. doi: 10.1038/nature11543. PubMed DOI
Grandbastien MA, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa A-PP, et al. Stress activation and genomic impact of Tnt1 retrotransposon in Solanaceae. Cytogenet Genome Res. 2005;110(1–4):229–241. doi: 10.1159/000084957. PubMed DOI
Lee J, Waminal NE, Choi HI, Perumal S, Lee SC, Nguyen VB, et al. Rapid amplification of four retrotransposon families promoted speciation and genome size expansion in the genus Panax. Sci Rep. 2017;7(1):17986. doi: 10.1038/s41598-017-08194-5. PubMed DOI PMC
Bennetzen JL, Wang H. The contribution of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol. 2014;65:505–530. doi: 10.1146/annurev-arplant-050213-035811. PubMed DOI
Kelly LJ, Renny-Byfield S, Pellicer J, Macas J, Novák P, Neumann P, et al. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansion in genome size. New Phytol. 2015;208(2):596–607. doi: 10.1111/nph.13471. PubMed DOI PMC
Hřibová E, Doleželová M, Town CD, Macas J, Doležel J. Isolation and characterization of the highly repeated fraction of the banana genome. Cytogenet Genome Res. 2007;119(3–4):268–274. doi: 10.1159/000112073. PubMed DOI
Macas J, Neumann P, Navrátilová A. Repetitive DNA In the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 2007;8:427. doi:10.1186/1471-2164-8-427. PubMed PMC
Badaeva ED, Amosova AV, Goncharov NP, Macas J, Ruban AS, Grechishnikova IV, et al. A set of cytogenetic markers allows the precise identification of all A-genome chromosomes in diploid and polyploid wheat. Cytogenet Genome Res. 2015;146(1):71–79. doi: 10.1159/000433458. PubMed DOI
Koo DH, Tiwari VK, Hřibová E, Doležel J, Friebe B, Gill BS. Molecular cytogenetic mapping of satellite DNA sequences in Aegilops geniculata and wheat. Cytogenet Genome Res. 2016;148(4):314–321. doi: 10.1159/000447471. PubMed DOI
Li B, Choulet F, Heng Y, Hao W, Paux E, Liu Z, et al. Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. Plant J. 2013;73(6):952–965. doi: 10.1111/tpj.12086. PubMed DOI
Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nature Prot. 2007;2(9):2233–2244. doi: 10.1038/nprot.2007.310. PubMed DOI
Otto F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Crissman HA, Darzynkiewicz Z, editors. Methods in cell biology, Vol 33, pp 105–110. New York: Acad Press; 1990. PubMed
Doležel J, Bartoš J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytometry A. 2003;51:127–128. doi: 10.1002/cyto.a.10013. PubMed DOI
Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinf. 2008;9:286–298. doi: 10.1093/bib/bbn013. PubMed DOI
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol. 2006;55:539–552. doi: 10.1080/106351506007555453. PubMed DOI
Sonnhammer EL, Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995;167(1–2):GC1–G10. doi: 10.1016/0378-1119(95)00714-8. PubMed DOI
Neumann P, Schubert V, Fuková I, Manning JE, Houben A, Macas J. Epigenetic histone marks of extended meta-polycentric centromeres of Lathyrus and Pisum chromosomes. Front Plant Sci. 2016;7:234. doi: 10.3389/fpls.2016.00234. PubMed DOI PMC
Doležel J, Binarová P, Lucretti S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plantarum. 1989;31:113–120. doi: 10.1007/BF02907241. DOI
Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, et al. Sequencing of a rice centromere uncovers active genes. Nat Genet. 2004;36(2):138–145. doi: 10.1038/ng1289. PubMed DOI
Advances in the Molecular Cytogenetics of Bananas, Family Musaceae
On the Origin of Tetraploid Vernal Grasses (Anthoxanthum) in Europe
The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths