Genomic repeat abundances contain phylogenetic signal
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 21440
Austrian Science Fund FWF - Austria
PubMed
25261464
PubMed Central
PMC4265144
DOI
10.1093/sysbio/syu080
PII: syu080
Knihovny.cz E-zdroje
- Klíčová slova
- Repetitive DNA, continuous characters, genomics, molecular systematics, next-generation sequencing, phylogenetics,
- MeSH
- DNA rostlinná genetika MeSH
- Drosophila klasifikace genetika MeSH
- fylogeneze * MeSH
- genom genetika MeSH
- hmyzí geny genetika MeSH
- Magnoliopsida genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- shluková analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution.
Zobrazit více v PubMed
Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009;161:105–121.
Ambrozova K., Mandakova T., Bures P., Neumann P., Leitch I.J., Koblizkova A., Macas J., Lysak M.A. Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann. Bot. 2011;107:255–268. PubMed PMC
Bai C., Alverson W.S., Follansbee A., Waller D.M. New reports of nuclear DNA content for 407 vascular plant taxa from the United States. Ann. Bot. 2012;110:1623–1629. PubMed PMC
Barrett C.F., Davis J.I., Leebens-Mack J., Conran J.G., Stevenson D.W. Plastid genomes and deep relationships among the commelinid monocot angiosperms. Cladistics. 2013;29:65–87. PubMed
Bock D.G., Kane N.C., Ebert D.P., Rieseberg L.H. Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phyt. 2014;201:1021–1030. PubMed
Brookfield J.F.Y. The ecology of the genome – mobile DNA elements and their hosts. Nat. Rev. Gen. 2005;6:128–136. PubMed
Bybee S.M., Bracken-Grissom H., Haynes B.D., Hermansen R.A., Byers R.L., Clement M.J., Udall J.A., Wilcox E.R., Crandall K.A. Targeted amplicon sequencing (TAS): A scalable next-gen approach to multilocus, multitaxa phylogenetics. Genome Biol. Evol. 2011;3:1312–1323. PubMed PMC
Carpenter M.L., Buenrostro J.D., Valdiosera C., Schroeder H., Allentoft M.E., Sikora M., Rasmussen M., Gravel S., Guillén S., Nekhrizov G., Leshtakov K., Dimitrova D., Theodossiev N., Pettener D., Luiselli D., Sandoval K., Morena-Estrada A., Li Y., Wang J., Gilbert T.P., Willerslev E., Greenleaf W.J., Bustamante C.D. Pulling out the 1%: Whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 2013;93:852–864. PubMed PMC
CBOL Working Plant Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA. 2009;106:12794–12797. PubMed PMC
Chase M.W., Knapp S., Cox A.V., Clarkson J.J., Butsko Y., Joseph J., Savolainen V., Parokonny A.S. Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae) Ann. Bot. 2003;92:107–127. PubMed PMC
Clarkson J.J., Knapp S., Garcia V.F., Olmstead R.G., Leitch A.R., Chase M.W. Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol. Phyl. Evol. 2004;33:75–90. PubMed
Clarkson J.J., Lim K.Y., Kovarik A., Chase M.W., Knapp S., Leitch A.R. Long-term genome diploidisation in allopolyploid Nicotiana section Repandae (Solanaceae) New Phytol. 2005;168:241–252. PubMed
Clarkson J.J., Kelly L.J., Leitch A.R., Knapp S., Chase M.W. Nuclear glutamine synthetase evolution in Nicotiana: Phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids. Mol. Phyl. Evol. 2010;55:99–112. PubMed
Coleman A.W. Is there a molecular key to the level of ‘biological species’ in eukaryotes? A DNA guide. Mol. Phyl. Evol. 2009;50:197–203. PubMed
Cronn R., Knaus B.J., Liston A., Maughan P.J., Parks M., Syring J.V., Udall J. Targeted enrichment strategies for next-generation plant biology. Am. J. Bot. 2012;99:291–311. PubMed
Day P.D., Berger M., Hill L., Fay M.F., Leitch A.R., Leitch I.J., Kelly L.J. Evolutionary relationships in the medicinally important genus Fritillaria L. (Liliaceae) Mol. Phyl. Evol. 2014;80:11–19. PubMed
Ebersberger I., de Matos Simoes R., Kupczok A., Gube M., Kothe E., Voigt K., von Haeseler A. A consistent phylogenetic backbone for the fungi. Mol. Biol. Evol. 2011;29:1319–1334. PubMed PMC
Edwards S.V., Fertil B., Giron A., Deschavanne P.J. A genomic schism in birds revealed by phylogenetic analysis of DNA strings. Syst. Biol. 2002;51:599–613. PubMed
Fedoroff N.V. Transposable elements, epigenetics, and genome evolution. Science. 2012;338:758–767. PubMed
Felsenstein J. PHYLIP – Phylogeny Inference Package (Version 3.2) Cladistics. 1989;5:164–166.
Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Seattle: Department of Genome Sciences, University of Washington; 2005.
Flavell R.B., Bennett M.D., Smith J.B., Smith D.B. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem. Genet. 1974;12:257–269. PubMed
Glenn T.C. Field guide to next-generation DNA sequencers. Mol. Ecol. Res. 2011 doi:10.1111/j.1755- 0998.2011.03024.x. PubMed
Goloboff P.A., Farris J.S., Nixon K. 2003a. Tree analysis using new technology [Internet]. Program and documentation. Distributed by the authors. Available from: http://www.zmuc.dk/public/phylogeny.
Goloboff P.A., Farris J.S., Kallersjo M., Oxelman B., Ramirez M.J., Szumik C.A. Improvements to resampling measures of group support. Cladistics. 2003b;19:324–332.
Goloboff P.A., Mattoni C.I., Quinteros A.S. Continuous characters analyzed as such. Cladistics. 2006;22:589–601. PubMed
Goloboff P.A., Farris J.S., Nixon K.C. TNT, a free program for phylogenetic analysis. Cladistics. 2008;24:774–786.
Goloboff P.A., Catalano S.A., Mirande J.M., Szumik C.A., Arias J.S., Kallersjo M., Farris J.S. Phylogenetic analysis of 73060 taxa corroborates major eukaryotic groups. Cladistics. 2009;25:211–230. PubMed
Guschanski K., Krause J., Sawyer S., Valente L.M., Bailey S., Finstermeier K., Sabin R., Gilissen E., Sonet G., Nagy Z.T., Lenglet G., Mayer F., Savolainen V. Next-generation museomics disentangles one of the largest primate radiations. Syst. Biol. 2013;62(4):539–554. PubMed PMC
Hansen C.N., Heslop-Harrison J.S. Sequences and phylogenies of plant pararetroviruses, viruses and transposable elements. Adv. Bot. Res. 2004;41:165–193.
Hebert P.D.N., Cywinska A., Ball S.L., deWaard J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Biol. Sci. SerB. 2003;270:313–321. PubMed PMC
Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23:254–267. PubMed
Jurka J., Bao W., Kojima K.K. Families of transposable elements, population structure and the origin of species. Biol. Direct. 2011;6:44. PubMed PMC
Jurka J., Bao W., Kojima K.K., Kohany O., Yurka M.G. Distinct groups of repetitive families preserved in mammals correspond to different periods of regulatory innovations in vertebrates. Biol. Direct. 2012;7:36. PubMed PMC
Kayal E., Roure B., Philippe H., Collins A.G., Lavrov D.V. Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol. Biol. 2013;13:5. PubMed PMC
Kejnovsky E., Leitch I.J., Leitch A.R. Contrasting evolutionary dynamics between angiosperm and mammalian genomes. TREE. 2009;24:572–582. PubMed
Kelly L.J., Leitch A.R., Clarkson J.J., Hunter R.B., Knapp S., Chase M.W. Intragenic recombination events and evidence for hybrid speciation in Nicotiana (Solanaceae) Mol. Biol. Evo. 2010;27:781–799. PubMed
Kelly L.J., Leitch I.J. Why size really matters when sequencing plant genomes. Plant Ecol. Div. 2011;5:415–425.
Kelly L.J., Leitch A.R., Fay M.F., Renny-Byfield S., Pellicer J., Macas J., Leitch I.J. Why size really matters when sequencing plant genomes. Plant Ecol. Div. 2012;5:415–425.
Kelly L.J., Leitch A.R., Clarkson J.J., Knapp S., Chase M.W. Reconstructing the complex evolutionary origin of wild allopolyploid tobaccos (Nicotiana section Suaveolentes) Evolution. 2013;67:80–94. PubMed
Kovarik A., Renny-Byfield S., Grandbastien M-A., Leitch A.R. Evolutionary implications of genome and karyotype restructuring in Nicotiana tabacum L. In: Soltis P.S., Soltis D.E., editors. Polyploidy and Genome Evolution. London: Springer; 2012.
Leitch A.R., Leitch I.J. Perspective—genomic plasticity and the diversity of polyploid plants. Science. 2008;320:481–483. PubMed
Leitch A.R., Leitch I.J. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol. 2012;194:629–646. PubMed
Lim K.Y., Matyasek R., Lichtenstein C.P., Leitch A.R. Molecular cytogenetic analyses and phylogenetic studies in Nicotiana section Tomentosae. Chromosoma. 2000;109:245–258. PubMed
Lim K.Y., Kovarik A., Matyasek R., Chase M.W., Knapp S., McCarthy E., Clarkson J.J., Leitch A.R. Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae. Plant J. 2006;48:907–919. PubMed
Macas J., Neumann P., Navratilova A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterisation using 454 sequencing and comparison to soybean and Medicago trunculata. BMC Genomics. 2007;8:427. PubMed PMC
Mallatt J., Waggoner Craig C., Yoder M.J. Nearly complete rRNA genes assembled from across the metazoan animals: effects of more taxa, a structure-based alignment, and paired-sites evolutionary models on phylogeny reconstruction. Mol. Phyl. Evol. 2010;55:1–17. PubMed
Meyer M., Stenzel U., Myles S., Prufer K., Hofreiter M. Targeted high-throughput sequencing of tagged nucleic acid samples. Nucleic Acids Res. 2007;35:e97. PubMed PMC
Murray M.G., Peters D.L., Thompson W.F. Ancient repeated sequences in the pea and mung bean genomes and implications for genome evolution. J. Mol. Evol. 1981;17:31–42.
Nichols R. Gene trees and species trees are not the same. Trends Ecol. Evol. 2001;16:364. PubMed
Neumann P., Navratilova A., Schroeder-Reiter E., Koblizkova A., Steinbauerova V., Chocholova E., Novak P., Wanner G., Macas J. Stretching the rules: Monocentric chromosomes with multiple centromere domains. PLoS Genetics. 2012;8:e1002777. PubMed PMC
Novak P., Neumann P., Macas J. Graph-based clustering and characterisation of repetitive sequences in next-generation sequencing data. BMC Bioinformatics. 2010;11:378. PubMed PMC
Novak P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterisation of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29(6):792–793. PubMed
Obbard D.J., Maclennan J., Kim K.W., Rambaut A., O'Grady P.M., Jiggins F.M. Estimating divergence dates and substitution rates in the Drosophila phylogeny. Mol. Biol. Evol. 2012;29:3459–3473. PubMed PMC
Pellicer J., Fay M.F., Leitch I.J. The largest eukaryotic genome of them all? Bot J. Linn. Soc. 2010;164:10–15.
Philippe H., Derelle R., Lopez P., Pick K., Borchiellini C., Boury-Esnault N., Vacelet J., Renard E., Houliston E., Queinnec E., Da Silva C., Wincker P., Le Guyader H., Leys S., Jackson D.J., Schreiber F., Erpenbeck D., Morgenstern B., Worheide G., Manuel M. Phylogenomics revives traditional views on deep animal relationships. Curr. Biol. 2009;19:706–712. PubMed
Pagan H.J.T., Macas J., Novak P., McCulloch E.S., Stevens R.D., Ray D.A. Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among bats. Genome Biol. Evol. 2012;4:575–585. PubMed PMC
Parisod C., Mhiri C., Lim K.Y., Clarkson J.J., Chase M.W., Leitch A.R., Grandbastien M-A. Differential dynamics of transposable elements during long-term diploidisation of Nicotiana section Repandae (Solanaceae) allopolyploid genomes. PLoS One. 2012;7:e50352.s. PubMed PMC
Park J.M., Manen J.F., Colwell A.E., Schneeweiss G.M. A plastid gene phylogeny of the non-photosynthetic parasitic Orobanche (Orobanchaceae) and related genera. J. Plant Res. 2008;121:365–376. PubMed
Piednoël M., Aberer A.J., Schneeweiss G.M., Macas J., Novak P., Gundlach H., Temsch E.M., Renner S.S. Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely-related genomes of Orobanchaceae. Mol. Biol. Evol. 2012;29:3601–3611. PubMed PMC
Piednoël M., Carrete-Vega G., Renner S.S. Characterization of the LTR retrotransposon repertoire of a plant clade of six diploid and one tetraploid species. Plant J. 2013;75(4):699–709. PubMed
Pillon Y., Johansen J., Sakishima T., Chamala S., Brad Barbazuk W., Roalson E.H., Price D.K., Stacy E.A. Potential use of low-copy nuclear genes in DNA barcoding: a comparison with plastid genes in two Hawaiian plant radiations. BMC Evol. Biol. 2013;13:35. PubMed PMC
Pride D.T., Meinersmann R.J., Wassenaar T.M., Blaser M.J. Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Res. 2003;13:145–158. PubMed PMC
Renny-Byfield S., Chester M., Kovarik A., LeComber S.C., Grandbastien M-A., Deloger M., Nichols R.A., Macas J., Novak P., Chase M.W., Leitch A.R. Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol. Biol. Evol. 2011;28:2843–2854. PubMed
Renny-Byfield S., Kovarik A., Chester M., Nichols R.A., Macas J., Novak P., Leitch A.R. Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PLoS One. 2012;7:e36963. PubMed PMC
Renny-Byfield S., Kovarik A., Kelly L.J., Macas J., Novak P., Chase M.W., Nichols R.A., Pancholi M.R., Grandbastien M-A., Leitch A.R. Diploidisation and genome size change in allopolyploids is associated with differential dynamics of low and high copy sequences. Plant J. 2013;74(5):829–839. PubMed
Rønsted N., Law S., Thornton H., Fay M.F., Chase M.W. Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Mol. Phyl. Evol. 2005;35:509–527. PubMed
Rubin B.E.R., Ree R.H., Moreau C.S. Inferring phylogenies from RAD sequence data. PLoS One. 2012;7:e33394. PubMed PMC
Sarkiinen T., Staats M., Richardson J.E., Cowan R.S., Bakker F.T. How to open the treasure chest? Optimising DNA extraction from herbarium specimens. PloS One. 2012;7:e43808. PubMed PMC
Schaefer H., Hechenleitner P., Santos-Guerra A., Menezes de Sequeira M., Pennington R.T., Kenicer G., Carine M.A. Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evol. Biol. 2012;12:250. PubMed PMC
Schneeweiss G.M., Colwell A.E., Park J.M., Jang C.G., Stuessy T.F. Phylogeny of holoparasitic Orobanche (Orobanchaceae) inferred from nuclear ITS-sequences. Mol. Phyl. Evol. 2004;30:465–478. PubMed
Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W. Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc. Natl. Acad. Sci. 2012;109:6241–6246. PubMed PMC
Seetharam A.S., Stuart G.W. Whole genome phylogeny for 21 Drosophila species using predicted 2b-RAD fragments. PeerJ. 2013;1:e226. PubMed PMC
Smith U.E., Hendricks J.R. Geometric morphometric character suites as phylogenetic data: Extracting phylogenetic signal from gastropod shells. Syst. Biol. 2013;62(3):366–385. PubMed
Soltis D.E., Smith S.A., Cellinese N., Wurdack K.J., Tank D.C., Brockington S.F., Refulio-Rodriguez N.F., Walker J.B., Moore M.J., Carlsward B.S., Bell C.D., Latvis M., Crawley S., Black C., Diouf D., Xi Z., Rushworth C.A., Gitzendanner M.A., Sytsma K.J., Qiu Y-L., Hilu K.W., Davis C.C., Sanderson M.J., Beaman R.S., Olmstead R.G., Judd W.S., Donoghue M.J., Soltis P.S. Angiosperm phylogeny: 17 genes, 640 taxa. Am. J. Bot. 2011;98:704–730. PubMed
Straub S.C.K., Parks M., Weitemier K., Fishbein M., Cronn R.C., Liston A. Navigating the tip of the genomic iceberg: Next generation sequencing for plant systematics. Am. J. Bot. 2012;99:349–364. PubMed
Tautz D., Arctander P., Minelli A., Thomas R.H., Vogler A.P. A plea for DNA taxonomy. Trends Ecol. Evol. 2003;18:70–74.
Telford M.J., Copley R.R. Improving animal phylogenies with genomic data. Trends Gen. 2011;27:186–195. PubMed
Timmermans M.J.T.N., Dodsworth S., Culverwell C.L., Bocak L., Ahrens D., Littlewood D.T.J., Pons J., Vogler A.P. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res. 2010;38:e197. PubMed PMC
Turner B., Munzinger J., Duangjai S., Temsch E.M., Stockenhuber R., Barfuss M.H.J., Chase M.W., Samuel R. Molecular phylogenetics of New Caledonian Diospyros (Ebenaceae) using plastid and nuclear markers. Mol. Phyl. Evol. 2013;69:740–763. PubMed PMC
Wagner C.E., Keller I., Wittwer S., Selz O.M., Mwaiko S., Greuter L., Sivasundar A., Seehausen O. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol. Ecol. 2012;22(3):787–798. PubMed
Wicker T., Sabot F., Hua-Van A., Bennetzen J.L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M., Panaud O., Paux E., SanMiguel P., Schulman A.H. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007;8:973–982. PubMed
Will K.W., Rubinoff D. Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics. 2004;20:47–55. PubMed
Yang Y., Hou Z.C., Qian Y.H., Kang H., Zeng Q.T. Increasing the data size to accurately reconstruct the phylogenetic relationships between nine subgroups of the Drosophila melanogaster species group (Drosophilidae, Diptera) Mol. Phyl. Evol. 2012;62:214–223. PubMed
Zhou X., Xu S., Xu J., Chen B., Zhou K., Yang G. Phylogenomic analysis resolves the interordinal relationships and rapid diversification of the Laurasiatherian mammals. Syst. Biol. 2012;61:150–164. PubMed PMC
Yoder J.B., Briskine R., Mudge J., Farmer A., Paape T., Steele K., Weiblen G.D., Bharti A.K., Zhou P., May G.D., Young N.D., Tiffin P. Phylogenetic signal variation in the genomes of Medicago (Fabaceae) Syst. Biol. 2013;62(3):424–438. PubMed
Zhang N., Zeng L., Shan H., Ma H. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. New Phytol. 2012;195:923–937. PubMed
Contrasting distributions and expression characteristics of transcribing repeats in Setaria viridis
Evolution of Tandem Repeats Is Mirroring Post-polyploid Cladogenesis in Heliophila (Brassicaceae)