Genomic repeat abundances contain phylogenetic signal

. 2015 Jan ; 64 (1) : 112-26. [epub] 20140925

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25261464

Grantová podpora
P 21440 Austrian Science Fund FWF - Austria

A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution.

Zobrazit více v PubMed

Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009;161:105–121.

Ambrozova K., Mandakova T., Bures P., Neumann P., Leitch I.J., Koblizkova A., Macas J., Lysak M.A. Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann. Bot. 2011;107:255–268. PubMed PMC

Bai C., Alverson W.S., Follansbee A., Waller D.M. New reports of nuclear DNA content for 407 vascular plant taxa from the United States. Ann. Bot. 2012;110:1623–1629. PubMed PMC

Barrett C.F., Davis J.I., Leebens-Mack J., Conran J.G., Stevenson D.W. Plastid genomes and deep relationships among the commelinid monocot angiosperms. Cladistics. 2013;29:65–87. PubMed

Bock D.G., Kane N.C., Ebert D.P., Rieseberg L.H. Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phyt. 2014;201:1021–1030. PubMed

Brookfield J.F.Y. The ecology of the genome – mobile DNA elements and their hosts. Nat. Rev. Gen. 2005;6:128–136. PubMed

Bybee S.M., Bracken-Grissom H., Haynes B.D., Hermansen R.A., Byers R.L., Clement M.J., Udall J.A., Wilcox E.R., Crandall K.A. Targeted amplicon sequencing (TAS): A scalable next-gen approach to multilocus, multitaxa phylogenetics. Genome Biol. Evol. 2011;3:1312–1323. PubMed PMC

Carpenter M.L., Buenrostro J.D., Valdiosera C., Schroeder H., Allentoft M.E., Sikora M., Rasmussen M., Gravel S., Guillén S., Nekhrizov G., Leshtakov K., Dimitrova D., Theodossiev N., Pettener D., Luiselli D., Sandoval K., Morena-Estrada A., Li Y., Wang J., Gilbert T.P., Willerslev E., Greenleaf W.J., Bustamante C.D. Pulling out the 1%: Whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 2013;93:852–864. PubMed PMC

CBOL Working Plant Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA. 2009;106:12794–12797. PubMed PMC

Chase M.W., Knapp S., Cox A.V., Clarkson J.J., Butsko Y., Joseph J., Savolainen V., Parokonny A.S. Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae) Ann. Bot. 2003;92:107–127. PubMed PMC

Clarkson J.J., Knapp S., Garcia V.F., Olmstead R.G., Leitch A.R., Chase M.W. Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol. Phyl. Evol. 2004;33:75–90. PubMed

Clarkson J.J., Lim K.Y., Kovarik A., Chase M.W., Knapp S., Leitch A.R. Long-term genome diploidisation in allopolyploid Nicotiana section Repandae (Solanaceae) New Phytol. 2005;168:241–252. PubMed

Clarkson J.J., Kelly L.J., Leitch A.R., Knapp S., Chase M.W. Nuclear glutamine synthetase evolution in Nicotiana: Phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids. Mol. Phyl. Evol. 2010;55:99–112. PubMed

Coleman A.W. Is there a molecular key to the level of ‘biological species’ in eukaryotes? A DNA guide. Mol. Phyl. Evol. 2009;50:197–203. PubMed

Cronn R., Knaus B.J., Liston A., Maughan P.J., Parks M., Syring J.V., Udall J. Targeted enrichment strategies for next-generation plant biology. Am. J. Bot. 2012;99:291–311. PubMed

Day P.D., Berger M., Hill L., Fay M.F., Leitch A.R., Leitch I.J., Kelly L.J. Evolutionary relationships in the medicinally important genus Fritillaria L. (Liliaceae) Mol. Phyl. Evol. 2014;80:11–19. PubMed

Ebersberger I., de Matos Simoes R., Kupczok A., Gube M., Kothe E., Voigt K., von Haeseler A. A consistent phylogenetic backbone for the fungi. Mol. Biol. Evol. 2011;29:1319–1334. PubMed PMC

Edwards S.V., Fertil B., Giron A., Deschavanne P.J. A genomic schism in birds revealed by phylogenetic analysis of DNA strings. Syst. Biol. 2002;51:599–613. PubMed

Fedoroff N.V. Transposable elements, epigenetics, and genome evolution. Science. 2012;338:758–767. PubMed

Felsenstein J. PHYLIP – Phylogeny Inference Package (Version 3.2) Cladistics. 1989;5:164–166.

Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Seattle: Department of Genome Sciences, University of Washington; 2005.

Flavell R.B., Bennett M.D., Smith J.B., Smith D.B. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem. Genet. 1974;12:257–269. PubMed

Glenn T.C. Field guide to next-generation DNA sequencers. Mol. Ecol. Res. 2011 doi:10.1111/j.1755- 0998.2011.03024.x. PubMed

Goloboff P.A., Farris J.S., Nixon K. 2003a. Tree analysis using new technology [Internet]. Program and documentation. Distributed by the authors. Available from: http://www.zmuc.dk/public/phylogeny.

Goloboff P.A., Farris J.S., Kallersjo M., Oxelman B., Ramirez M.J., Szumik C.A. Improvements to resampling measures of group support. Cladistics. 2003b;19:324–332.

Goloboff P.A., Mattoni C.I., Quinteros A.S. Continuous characters analyzed as such. Cladistics. 2006;22:589–601. PubMed

Goloboff P.A., Farris J.S., Nixon K.C. TNT, a free program for phylogenetic analysis. Cladistics. 2008;24:774–786.

Goloboff P.A., Catalano S.A., Mirande J.M., Szumik C.A., Arias J.S., Kallersjo M., Farris J.S. Phylogenetic analysis of 73060 taxa corroborates major eukaryotic groups. Cladistics. 2009;25:211–230. PubMed

Guschanski K., Krause J., Sawyer S., Valente L.M., Bailey S., Finstermeier K., Sabin R., Gilissen E., Sonet G., Nagy Z.T., Lenglet G., Mayer F., Savolainen V. Next-generation museomics disentangles one of the largest primate radiations. Syst. Biol. 2013;62(4):539–554. PubMed PMC

Hansen C.N., Heslop-Harrison J.S. Sequences and phylogenies of plant pararetroviruses, viruses and transposable elements. Adv. Bot. Res. 2004;41:165–193.

Hebert P.D.N., Cywinska A., Ball S.L., deWaard J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Biol. Sci. SerB. 2003;270:313–321. PubMed PMC

Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23:254–267. PubMed

Jurka J., Bao W., Kojima K.K. Families of transposable elements, population structure and the origin of species. Biol. Direct. 2011;6:44. PubMed PMC

Jurka J., Bao W., Kojima K.K., Kohany O., Yurka M.G. Distinct groups of repetitive families preserved in mammals correspond to different periods of regulatory innovations in vertebrates. Biol. Direct. 2012;7:36. PubMed PMC

Kayal E., Roure B., Philippe H., Collins A.G., Lavrov D.V. Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol. Biol. 2013;13:5. PubMed PMC

Kejnovsky E., Leitch I.J., Leitch A.R. Contrasting evolutionary dynamics between angiosperm and mammalian genomes. TREE. 2009;24:572–582. PubMed

Kelly L.J., Leitch A.R., Clarkson J.J., Hunter R.B., Knapp S., Chase M.W. Intragenic recombination events and evidence for hybrid speciation in Nicotiana (Solanaceae) Mol. Biol. Evo. 2010;27:781–799. PubMed

Kelly L.J., Leitch I.J. Why size really matters when sequencing plant genomes. Plant Ecol. Div. 2011;5:415–425.

Kelly L.J., Leitch A.R., Fay M.F., Renny-Byfield S., Pellicer J., Macas J., Leitch I.J. Why size really matters when sequencing plant genomes. Plant Ecol. Div. 2012;5:415–425.

Kelly L.J., Leitch A.R., Clarkson J.J., Knapp S., Chase M.W. Reconstructing the complex evolutionary origin of wild allopolyploid tobaccos (Nicotiana section Suaveolentes) Evolution. 2013;67:80–94. PubMed

Kovarik A., Renny-Byfield S., Grandbastien M-A., Leitch A.R. Evolutionary implications of genome and karyotype restructuring in Nicotiana tabacum L. In: Soltis P.S., Soltis D.E., editors. Polyploidy and Genome Evolution. London: Springer; 2012.

Leitch A.R., Leitch I.J. Perspective—genomic plasticity and the diversity of polyploid plants. Science. 2008;320:481–483. PubMed

Leitch A.R., Leitch I.J. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol. 2012;194:629–646. PubMed

Lim K.Y., Matyasek R., Lichtenstein C.P., Leitch A.R. Molecular cytogenetic analyses and phylogenetic studies in Nicotiana section Tomentosae. Chromosoma. 2000;109:245–258. PubMed

Lim K.Y., Kovarik A., Matyasek R., Chase M.W., Knapp S., McCarthy E., Clarkson J.J., Leitch A.R. Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae. Plant J. 2006;48:907–919. PubMed

Macas J., Neumann P., Navratilova A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterisation using 454 sequencing and comparison to soybean and Medicago trunculata. BMC Genomics. 2007;8:427. PubMed PMC

Mallatt J., Waggoner Craig C., Yoder M.J. Nearly complete rRNA genes assembled from across the metazoan animals: effects of more taxa, a structure-based alignment, and paired-sites evolutionary models on phylogeny reconstruction. Mol. Phyl. Evol. 2010;55:1–17. PubMed

Meyer M., Stenzel U., Myles S., Prufer K., Hofreiter M. Targeted high-throughput sequencing of tagged nucleic acid samples. Nucleic Acids Res. 2007;35:e97. PubMed PMC

Murray M.G., Peters D.L., Thompson W.F. Ancient repeated sequences in the pea and mung bean genomes and implications for genome evolution. J. Mol. Evol. 1981;17:31–42.

Nichols R. Gene trees and species trees are not the same. Trends Ecol. Evol. 2001;16:364. PubMed

Neumann P., Navratilova A., Schroeder-Reiter E., Koblizkova A., Steinbauerova V., Chocholova E., Novak P., Wanner G., Macas J. Stretching the rules: Monocentric chromosomes with multiple centromere domains. PLoS Genetics. 2012;8:e1002777. PubMed PMC

Novak P., Neumann P., Macas J. Graph-based clustering and characterisation of repetitive sequences in next-generation sequencing data. BMC Bioinformatics. 2010;11:378. PubMed PMC

Novak P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterisation of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29(6):792–793. PubMed

Obbard D.J., Maclennan J., Kim K.W., Rambaut A., O'Grady P.M., Jiggins F.M. Estimating divergence dates and substitution rates in the Drosophila phylogeny. Mol. Biol. Evol. 2012;29:3459–3473. PubMed PMC

Pellicer J., Fay M.F., Leitch I.J. The largest eukaryotic genome of them all? Bot J. Linn. Soc. 2010;164:10–15.

Philippe H., Derelle R., Lopez P., Pick K., Borchiellini C., Boury-Esnault N., Vacelet J., Renard E., Houliston E., Queinnec E., Da Silva C., Wincker P., Le Guyader H., Leys S., Jackson D.J., Schreiber F., Erpenbeck D., Morgenstern B., Worheide G., Manuel M. Phylogenomics revives traditional views on deep animal relationships. Curr. Biol. 2009;19:706–712. PubMed

Pagan H.J.T., Macas J., Novak P., McCulloch E.S., Stevens R.D., Ray D.A. Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among bats. Genome Biol. Evol. 2012;4:575–585. PubMed PMC

Parisod C., Mhiri C., Lim K.Y., Clarkson J.J., Chase M.W., Leitch A.R., Grandbastien M-A. Differential dynamics of transposable elements during long-term diploidisation of Nicotiana section Repandae (Solanaceae) allopolyploid genomes. PLoS One. 2012;7:e50352.s. PubMed PMC

Park J.M., Manen J.F., Colwell A.E., Schneeweiss G.M. A plastid gene phylogeny of the non-photosynthetic parasitic Orobanche (Orobanchaceae) and related genera. J. Plant Res. 2008;121:365–376. PubMed

Piednoël M., Aberer A.J., Schneeweiss G.M., Macas J., Novak P., Gundlach H., Temsch E.M., Renner S.S. Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely-related genomes of Orobanchaceae. Mol. Biol. Evol. 2012;29:3601–3611. PubMed PMC

Piednoël M., Carrete-Vega G., Renner S.S. Characterization of the LTR retrotransposon repertoire of a plant clade of six diploid and one tetraploid species. Plant J. 2013;75(4):699–709. PubMed

Pillon Y., Johansen J., Sakishima T., Chamala S., Brad Barbazuk W., Roalson E.H., Price D.K., Stacy E.A. Potential use of low-copy nuclear genes in DNA barcoding: a comparison with plastid genes in two Hawaiian plant radiations. BMC Evol. Biol. 2013;13:35. PubMed PMC

Pride D.T., Meinersmann R.J., Wassenaar T.M., Blaser M.J. Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Res. 2003;13:145–158. PubMed PMC

Renny-Byfield S., Chester M., Kovarik A., LeComber S.C., Grandbastien M-A., Deloger M., Nichols R.A., Macas J., Novak P., Chase M.W., Leitch A.R. Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol. Biol. Evol. 2011;28:2843–2854. PubMed

Renny-Byfield S., Kovarik A., Chester M., Nichols R.A., Macas J., Novak P., Leitch A.R. Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PLoS One. 2012;7:e36963. PubMed PMC

Renny-Byfield S., Kovarik A., Kelly L.J., Macas J., Novak P., Chase M.W., Nichols R.A., Pancholi M.R., Grandbastien M-A., Leitch A.R. Diploidisation and genome size change in allopolyploids is associated with differential dynamics of low and high copy sequences. Plant J. 2013;74(5):829–839. PubMed

Rønsted N., Law S., Thornton H., Fay M.F., Chase M.W. Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Mol. Phyl. Evol. 2005;35:509–527. PubMed

Rubin B.E.R., Ree R.H., Moreau C.S. Inferring phylogenies from RAD sequence data. PLoS One. 2012;7:e33394. PubMed PMC

Sarkiinen T., Staats M., Richardson J.E., Cowan R.S., Bakker F.T. How to open the treasure chest? Optimising DNA extraction from herbarium specimens. PloS One. 2012;7:e43808. PubMed PMC

Schaefer H., Hechenleitner P., Santos-Guerra A., Menezes de Sequeira M., Pennington R.T., Kenicer G., Carine M.A. Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evol. Biol. 2012;12:250. PubMed PMC

Schneeweiss G.M., Colwell A.E., Park J.M., Jang C.G., Stuessy T.F. Phylogeny of holoparasitic Orobanche (Orobanchaceae) inferred from nuclear ITS-sequences. Mol. Phyl. Evol. 2004;30:465–478. PubMed

Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W. Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc. Natl. Acad. Sci. 2012;109:6241–6246. PubMed PMC

Seetharam A.S., Stuart G.W. Whole genome phylogeny for 21 Drosophila species using predicted 2b-RAD fragments. PeerJ. 2013;1:e226. PubMed PMC

Smith U.E., Hendricks J.R. Geometric morphometric character suites as phylogenetic data: Extracting phylogenetic signal from gastropod shells. Syst. Biol. 2013;62(3):366–385. PubMed

Soltis D.E., Smith S.A., Cellinese N., Wurdack K.J., Tank D.C., Brockington S.F., Refulio-Rodriguez N.F., Walker J.B., Moore M.J., Carlsward B.S., Bell C.D., Latvis M., Crawley S., Black C., Diouf D., Xi Z., Rushworth C.A., Gitzendanner M.A., Sytsma K.J., Qiu Y-L., Hilu K.W., Davis C.C., Sanderson M.J., Beaman R.S., Olmstead R.G., Judd W.S., Donoghue M.J., Soltis P.S. Angiosperm phylogeny: 17 genes, 640 taxa. Am. J. Bot. 2011;98:704–730. PubMed

Straub S.C.K., Parks M., Weitemier K., Fishbein M., Cronn R.C., Liston A. Navigating the tip of the genomic iceberg: Next generation sequencing for plant systematics. Am. J. Bot. 2012;99:349–364. PubMed

Tautz D., Arctander P., Minelli A., Thomas R.H., Vogler A.P. A plea for DNA taxonomy. Trends Ecol. Evol. 2003;18:70–74.

Telford M.J., Copley R.R. Improving animal phylogenies with genomic data. Trends Gen. 2011;27:186–195. PubMed

Timmermans M.J.T.N., Dodsworth S., Culverwell C.L., Bocak L., Ahrens D., Littlewood D.T.J., Pons J., Vogler A.P. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res. 2010;38:e197. PubMed PMC

Turner B., Munzinger J., Duangjai S., Temsch E.M., Stockenhuber R., Barfuss M.H.J., Chase M.W., Samuel R. Molecular phylogenetics of New Caledonian Diospyros (Ebenaceae) using plastid and nuclear markers. Mol. Phyl. Evol. 2013;69:740–763. PubMed PMC

Wagner C.E., Keller I., Wittwer S., Selz O.M., Mwaiko S., Greuter L., Sivasundar A., Seehausen O. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol. Ecol. 2012;22(3):787–798. PubMed

Wicker T., Sabot F., Hua-Van A., Bennetzen J.L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M., Panaud O., Paux E., SanMiguel P., Schulman A.H. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007;8:973–982. PubMed

Will K.W., Rubinoff D. Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics. 2004;20:47–55. PubMed

Yang Y., Hou Z.C., Qian Y.H., Kang H., Zeng Q.T. Increasing the data size to accurately reconstruct the phylogenetic relationships between nine subgroups of the Drosophila melanogaster species group (Drosophilidae, Diptera) Mol. Phyl. Evol. 2012;62:214–223. PubMed

Zhou X., Xu S., Xu J., Chen B., Zhou K., Yang G. Phylogenomic analysis resolves the interordinal relationships and rapid diversification of the Laurasiatherian mammals. Syst. Biol. 2012;61:150–164. PubMed PMC

Yoder J.B., Briskine R., Mudge J., Farmer A., Paape T., Steele K., Weiblen G.D., Bharti A.K., Zhou P., May G.D., Young N.D., Tiffin P. Phylogenetic signal variation in the genomes of Medicago (Fabaceae) Syst. Biol. 2013;62(3):424–438. PubMed

Zhang N., Zeng L., Shan H., Ma H. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. New Phytol. 2012;195:923–937. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Contrasting distributions and expression characteristics of transcribing repeats in Setaria viridis

. 2025 Mar ; 18 (1) : e20551.

The first insight into Acanthocephalus (Palaeacanthocephala) satellitome: species-specific satellites as potential cytogenetic markers

. 2025 Jan 23 ; 15 (1) : 2945. [epub] 20250123

Holocentric repeat landscapes: From micro-evolutionary patterns to macro-evolutionary associations with karyotype evolution

. 2024 Dec ; 33 (24) : e17100. [epub] 20230814

Highly contiguous genomes of human clinical isolates of Giardia duodenalis reveal assemblage- and sub-assemblage-specific presence-absence variation in protein-coding genes

. 2023 Mar ; 9 (3) : .

Telomeres and Their Neighbors

. 2022 Sep 16 ; 13 (9) : . [epub] 20220916

Power and Weakness of Repetition - Evaluating the Phylogenetic Signal From Repeatomes in the Family Rosaceae With Two Case Studies From Genera Prone to Polyploidy and Hybridization (Rosa and Fragaria)

. 2021 ; 12 () : 738119. [epub] 20211207

Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses

. 2020 Jun 17 ; 20 (1) : 280. [epub] 20200617

Asymmetrical canina meiosis is accompanied by the expansion of a pericentromeric satellite in non-recombining univalent chromosomes in the genus Rosa

. 2020 Jun 01 ; 125 (7) : 1025-1038.

Differential Genome Size and Repetitive DNA Evolution in Diploid Species of Melampodium sect. Melampodium (Asteraceae)

. 2020 ; 11 () : 362. [epub] 20200331

The Utility of Graph Clustering of 5S Ribosomal DNA Homoeologs in Plant Allopolyploids, Homoploid Hybrids, and Cryptic Introgressants

. 2020 ; 11 () : 41. [epub] 20200210

Evolution of Tandem Repeats Is Mirroring Post-polyploid Cladogenesis in Heliophila (Brassicaceae)

. 2020 ; 11 () : 607893. [epub] 20210112

Natural History of a Satellite DNA Family: From the Ancestral Genome Component to Species-Specific Sequences, Concerted and Non-Concerted Evolution

. 2019 Mar 09 ; 20 (5) : . [epub] 20190309

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...