Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21156758
PubMed Central
PMC3025733
DOI
10.1093/aob/mcq235
PII: mcq235
Knihovny.cz E-zdroje
- MeSH
- Fritillaria genetika MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- genom rostlinný MeSH
- heterochromatin genetika MeSH
- koncové repetice MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- oblasti bohaté na AT * MeSH
- repetitivní sekvence nukleových kyselin MeSH
- retroelementy genetika MeSH
- satelitní DNA genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterochromatin MeSH
- retroelementy MeSH
- satelitní DNA MeSH
BACKGROUND AND AIMS: The genus Fritillaria (Liliaceae) comprises species with extremely large genomes (1C = 30 000-127 000 Mb) and a bicontinental distribution. Most North American species (subgenus Liliorhiza) differ from Eurasian Fritillaria species by their distinct phylogenetic position and increased amounts of heterochromatin. This study examined the contribution of major repetitive elements to the genome obesity found in Fritillaria and identified repeats contributing to the heterochromatin arrays in Liliorhiza species. METHODS: Two Fritillaria species of similar genome size were selected for detailed analysis, one from each phylogeographical clade: F. affinis (1C = 45·6 pg, North America) and F. imperialis (1C = 43·0 pg, Eurasia). Fosmid libraries were constructed from their genomic DNAs and used for identification, sequence characterization, quantification and chromosome localization of clones containing highly repeated sequences. KEY RESULTS AND CONCLUSIONS: Repeats corresponding to 6·7 and 4·7 % of the F. affinis and F. imperialis genome, respectively, were identified. Chromoviruses and the Tat lineage of Ty3/gypsy group long terminal repeat retrotransposons were identified as the predominant components of the highly repeated fractions in the F. affinis and F. imperialis genomes, respectively. In addition, a heterogeneous, extremely AT-rich satellite repeat was isolated from F. affinis. The FriSAT1 repeat localized in heterochromatic bands makes up approx. 26 % of the F. affinis genome and substantial genomic fractions in several other Liliorhiza species. However, no evidence of a relationship between heterochromatin content and genome size variation was observed. Also, this study was unable to reveal any predominant repeats which tracked the increasing/decreasing trends of genome size evolution in Fritillaria. Instead, the giant Fritillaria genomes seem to be composed of many diversified families of transposable elements. We hypothesize that the genome obesity may be partly determined by the failure of removal mechanisms to counterbalance effectively the retrotransposon amplification.
Zobrazit více v PubMed
Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 1997;25:3389–3402. PubMed PMC
Bakhshi Khaniki G. Giemsa C-banding and karyological studies in species of Rhinopetalum (Liliaceae) National Academy of Science Letters. 2004;27:399–411.
Bennett MD, Leitch IJ. Plant DNA C-values database. 2005 (release 4·0, October 2005). http://data.kew.org/cvalues/ PubMed
Bennett MD, Smith JB. Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London. B, Biological Sciences. 1976;274:227–274. PubMed
Darlington CD. The internal mechanics of the chromosomes I.-The nuclear cycle in Fritillaria. Proceedings of the Royal Society of London-Series B. 1935;118:33–59.
Darlington CD. Recent Advances in Cytology. London: Churchill; 1937.
Darlington CD, La Cour LF. The detection of inert genes. Journal of Heredity. 1941;32:115–121.
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113–113. PubMed PMC
Frankel OH. The causal sequence of meiosis. I. Chiasma formation and the order of pairing in Fritillaria. Journal of Genetics. 1940;41:9–34.
Grandbastien MA, Spielmann A, Caboche M. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature. 1989;337:376–380. PubMed
Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Research. 2006;16:1252–1261. PubMed PMC
Hawkins JS, Hu G, Rapp RA, Grafenberg JL, Wendel JF. Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Genome. 2008;51:11–18. PubMed
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research. 2005;110:462–467. PubMed
Kentner EK, Arnold ML, Wessler SR. Characterization of high-copy-number retrotransposons from the large genomes of the Louisiana iris species and their use as molecular markers. Genetics. 2003;164:685–697. PubMed PMC
Kohany O, Gentles AJ, Hankus L, Jurka J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics. 2006;7:474. doi:10.1186/1471-2105-7-474. PubMed DOI PMC
La Cour LF. Heterochromatin and the organization of nucleoli in plants. Heredity. 1951;5:37–50. PubMed
La Cour LF. The constitutive heterochromatin in chromosomes of Fritillaria sp., as revealed by Giemsa Banding. Philosophical Transactions of the Royal Society of London Series B. 1978;285:61–71. PubMed
Leeton PR, Smyth DR. An abundant LINE-like element amplified in the genome of Lilium speciosum. Molecular and General Genetics. 1993;237:97–104. PubMed
Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak MA, Fay MF. Punctuated genome size evolution in Liliaceae. Journal of Evolutionary Biology. 2007;20:2296–2308. PubMed
Li R, Shang Z. The chromosome observation on five species of rare plants of China. Journal of Wuhan Botanical Research. 1989;7:217–220.
Llorens C, Fares MA, Moya A. Relationships of gag-pol diversity between Ty3/Gypsy and Retroviridae LTR retroelements and the three kings hypothesis. BMC Evolutionary Biology. 2008;8:276. doi:10.1186/1471-2148-8-276. PubMed DOI PMC
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research. 1997;25:955–964. PubMed PMC
Macas J, Neumann P, Navrátilova A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics. 2007;8:427. doi:10.1186/1471-2164-8-427. PubMed DOI PMC
Mandáková T, Lysak MA. Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae) Plant Cell. 2008;20:2559–2570. PubMed PMC
Marchant CJ, Macfarlane RM. Chromosome polymorphism in triploid populations of Fritillaria lanceolata Pursh (Liliaceae) in California. Botanical Journal of the Linnean Society. 1980;81:135–154.
Marchler-Bauer A, Anderson JB, DeWeese-Scott C, et al. CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Research. 2003;31:383–387. PubMed PMC
Moisy C, Garrison KE, Meredith CP, Pelsy F. Characterization of ten novel Ty1/copia-like retrotransposon families of the grapevine genome. BMC Genomics. 2008;9:469. doi:10.1186/1471-2164-9-469. PubMed DOI PMC
Neumann P, Koblizkova A, Navratilova A, Macas J. Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics. 2006;173:1047–1056. PubMed PMC
Noda S. Cytology in the genus Fritillaria. I. Variations in karyotypes and B-chromosomes in F. amabilis. Bulletin of the Osaka Gakuin University. 1964;2:125–132.
Noda S. Cytology in the genus Fritillaria. II. Karyotypes and B-chromosomes in F. japonica var. japonica and var. koidzumiana. Bulletin of the Osaka Gakuin University. 1968;10:127–141.
Patterson TB, Givnish TJ. Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: insights from rbcL and ndhF sequence data. Evolution. 2002;56:233–252. PubMed
Pellicer J, Fay MF, Leitch IJ. The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society. 2010;164:10–15.
Peruzzi L, Leitch IJ, Caparelli KF. Chromosome diversity and evolution in Liliaceae. Annals of Botany. 2009;103:459–475. PubMed PMC
Pfosser M, Amon A, Lelley T, Heberle-Bors E. Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry. 1995;21:387–393. PubMed
Rix EM. Fritillaria. A revised classification. The Fritillaria Group of the Alpine Garden Society, UK. 2001
Rønsted N, Law S, Thornton H, Fay MF, Chase MW. Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Molecular Phylogenetics and Evolution. 2005;35:509–527. PubMed
SanMiguel P, Tikhonov A, Jin YK, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274:765–768. PubMed
Sentry JW, Smyth DR. An element with long terminal repeats and its variant arrangements in the genome of Lilium henryi. Molecular and General Genetics. 1989;215:349–354. PubMed
Smyth DR, Kalitsis P, Joseph JL, Sentry JW. Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila. The Proceedings of the National Academy of Sciences USA. 1989;86:5015–5019. PubMed PMC
Sonnhammer EL, Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995;167:1–10. PubMed
Staden R. The Staden sequence analysis package. Molecular Biotechnology. 1996;5:233–241. PubMed
Sun HY, Dai HY, Zhao GL, et al. Genome-wide characterization of long terminal repeat-retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons. Journal of Integrative Plant Biology. 2008;50:1130–1139. PubMed
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research. 1994;22:4673–4680. PubMed PMC
Van't Hof J. Relationships between mitotic cycle duration, S period duration and the average rate of DNA synthesis in the root meristem cells of several plants. Experimental Cell Research. 1965;39:48–58. PubMed
Vinnersten A, Bremer K. Age and biogeography of major clades in Liliales. American Journal of Botany. 2001;88:1695–1703. PubMed
Vitte C, Bennetzen JL. Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. The Proceedings of the National Academy of Sciences USA. 2006;103:17638–17643. PubMed PMC
Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. The Plant Journal. 2001;26:307–316. PubMed
Wicker T, Sabot F, Hua-Van A, et al. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics. 2007;8:973–982. PubMed
Zonneveld BJM. New record holders for maximum genome size in eudicots and monocots. Journal of Botany. 2010;2010:527357. doi:10.1155/2010/527357. DOI
Zonneveld BJM, Leitch IJ, Bennett MD. First nuclear DNA amounts in more than 300 angiosperms. Annals of Botany. 2005;96:229–244. PubMed PMC
Zuccolo A, Sebastian A, Talag J, et al. Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evolutionary Biology. 2007;7:152. doi:10.1186/1471-2148-7-152. PubMed DOI PMC
Genomic repeat abundances contain phylogenetic signal
GENBANK
GU182252, GU182253, GU182254, GU182255, GU182256, GU188675, GU188676, GU188677, GU188678, GU188679, GU188680, GU188681, GU188682