Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies

. 2011 Feb ; 107 (2) : 255-68. [epub] 20101214

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21156758

BACKGROUND AND AIMS: The genus Fritillaria (Liliaceae) comprises species with extremely large genomes (1C = 30 000-127 000 Mb) and a bicontinental distribution. Most North American species (subgenus Liliorhiza) differ from Eurasian Fritillaria species by their distinct phylogenetic position and increased amounts of heterochromatin. This study examined the contribution of major repetitive elements to the genome obesity found in Fritillaria and identified repeats contributing to the heterochromatin arrays in Liliorhiza species. METHODS: Two Fritillaria species of similar genome size were selected for detailed analysis, one from each phylogeographical clade: F. affinis (1C = 45·6 pg, North America) and F. imperialis (1C = 43·0 pg, Eurasia). Fosmid libraries were constructed from their genomic DNAs and used for identification, sequence characterization, quantification and chromosome localization of clones containing highly repeated sequences. KEY RESULTS AND CONCLUSIONS: Repeats corresponding to 6·7 and 4·7 % of the F. affinis and F. imperialis genome, respectively, were identified. Chromoviruses and the Tat lineage of Ty3/gypsy group long terminal repeat retrotransposons were identified as the predominant components of the highly repeated fractions in the F. affinis and F. imperialis genomes, respectively. In addition, a heterogeneous, extremely AT-rich satellite repeat was isolated from F. affinis. The FriSAT1 repeat localized in heterochromatic bands makes up approx. 26 % of the F. affinis genome and substantial genomic fractions in several other Liliorhiza species. However, no evidence of a relationship between heterochromatin content and genome size variation was observed. Also, this study was unable to reveal any predominant repeats which tracked the increasing/decreasing trends of genome size evolution in Fritillaria. Instead, the giant Fritillaria genomes seem to be composed of many diversified families of transposable elements. We hypothesize that the genome obesity may be partly determined by the failure of removal mechanisms to counterbalance effectively the retrotransposon amplification.

Zobrazit více v PubMed

Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 1997;25:3389–3402. PubMed PMC

Bakhshi Khaniki G. Giemsa C-banding and karyological studies in species of Rhinopetalum (Liliaceae) National Academy of Science Letters. 2004;27:399–411.

Bennett MD, Leitch IJ. Plant DNA C-values database. 2005 (release 4·0, October 2005). http://data.kew.org/cvalues/ PubMed

Bennett MD, Smith JB. Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London. B, Biological Sciences. 1976;274:227–274. PubMed

Darlington CD. The internal mechanics of the chromosomes I.-The nuclear cycle in Fritillaria. Proceedings of the Royal Society of London-Series B. 1935;118:33–59.

Darlington CD. Recent Advances in Cytology. London: Churchill; 1937.

Darlington CD, La Cour LF. The detection of inert genes. Journal of Heredity. 1941;32:115–121.

Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113–113. PubMed PMC

Frankel OH. The causal sequence of meiosis. I. Chiasma formation and the order of pairing in Fritillaria. Journal of Genetics. 1940;41:9–34.

Grandbastien MA, Spielmann A, Caboche M. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature. 1989;337:376–380. PubMed

Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Research. 2006;16:1252–1261. PubMed PMC

Hawkins JS, Hu G, Rapp RA, Grafenberg JL, Wendel JF. Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Genome. 2008;51:11–18. PubMed

Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research. 2005;110:462–467. PubMed

Kentner EK, Arnold ML, Wessler SR. Characterization of high-copy-number retrotransposons from the large genomes of the Louisiana iris species and their use as molecular markers. Genetics. 2003;164:685–697. PubMed PMC

Kohany O, Gentles AJ, Hankus L, Jurka J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics. 2006;7:474. doi:10.1186/1471-2105-7-474. PubMed DOI PMC

La Cour LF. Heterochromatin and the organization of nucleoli in plants. Heredity. 1951;5:37–50. PubMed

La Cour LF. The constitutive heterochromatin in chromosomes of Fritillaria sp., as revealed by Giemsa Banding. Philosophical Transactions of the Royal Society of London Series B. 1978;285:61–71. PubMed

Leeton PR, Smyth DR. An abundant LINE-like element amplified in the genome of Lilium speciosum. Molecular and General Genetics. 1993;237:97–104. PubMed

Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak MA, Fay MF. Punctuated genome size evolution in Liliaceae. Journal of Evolutionary Biology. 2007;20:2296–2308. PubMed

Li R, Shang Z. The chromosome observation on five species of rare plants of China. Journal of Wuhan Botanical Research. 1989;7:217–220.

Llorens C, Fares MA, Moya A. Relationships of gag-pol diversity between Ty3/Gypsy and Retroviridae LTR retroelements and the three kings hypothesis. BMC Evolutionary Biology. 2008;8:276. doi:10.1186/1471-2148-8-276. PubMed DOI PMC

Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research. 1997;25:955–964. PubMed PMC

Macas J, Neumann P, Navrátilova A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics. 2007;8:427. doi:10.1186/1471-2164-8-427. PubMed DOI PMC

Mandáková T, Lysak MA. Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae) Plant Cell. 2008;20:2559–2570. PubMed PMC

Marchant CJ, Macfarlane RM. Chromosome polymorphism in triploid populations of Fritillaria lanceolata Pursh (Liliaceae) in California. Botanical Journal of the Linnean Society. 1980;81:135–154.

Marchler-Bauer A, Anderson JB, DeWeese-Scott C, et al. CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Research. 2003;31:383–387. PubMed PMC

Moisy C, Garrison KE, Meredith CP, Pelsy F. Characterization of ten novel Ty1/copia-like retrotransposon families of the grapevine genome. BMC Genomics. 2008;9:469. doi:10.1186/1471-2164-9-469. PubMed DOI PMC

Neumann P, Koblizkova A, Navratilova A, Macas J. Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics. 2006;173:1047–1056. PubMed PMC

Noda S. Cytology in the genus Fritillaria. I. Variations in karyotypes and B-chromosomes in F. amabilis. Bulletin of the Osaka Gakuin University. 1964;2:125–132.

Noda S. Cytology in the genus Fritillaria. II. Karyotypes and B-chromosomes in F. japonica var. japonica and var. koidzumiana. Bulletin of the Osaka Gakuin University. 1968;10:127–141.

Patterson TB, Givnish TJ. Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: insights from rbcL and ndhF sequence data. Evolution. 2002;56:233–252. PubMed

Pellicer J, Fay MF, Leitch IJ. The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society. 2010;164:10–15.

Peruzzi L, Leitch IJ, Caparelli KF. Chromosome diversity and evolution in Liliaceae. Annals of Botany. 2009;103:459–475. PubMed PMC

Pfosser M, Amon A, Lelley T, Heberle-Bors E. Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry. 1995;21:387–393. PubMed

Rix EM. Fritillaria. A revised classification. The Fritillaria Group of the Alpine Garden Society, UK. 2001

Rønsted N, Law S, Thornton H, Fay MF, Chase MW. Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Molecular Phylogenetics and Evolution. 2005;35:509–527. PubMed

SanMiguel P, Tikhonov A, Jin YK, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274:765–768. PubMed

Sentry JW, Smyth DR. An element with long terminal repeats and its variant arrangements in the genome of Lilium henryi. Molecular and General Genetics. 1989;215:349–354. PubMed

Smyth DR, Kalitsis P, Joseph JL, Sentry JW. Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila. The Proceedings of the National Academy of Sciences USA. 1989;86:5015–5019. PubMed PMC

Sonnhammer EL, Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995;167:1–10. PubMed

Staden R. The Staden sequence analysis package. Molecular Biotechnology. 1996;5:233–241. PubMed

Sun HY, Dai HY, Zhao GL, et al. Genome-wide characterization of long terminal repeat-retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons. Journal of Integrative Plant Biology. 2008;50:1130–1139. PubMed

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research. 1994;22:4673–4680. PubMed PMC

Van't Hof J. Relationships between mitotic cycle duration, S period duration and the average rate of DNA synthesis in the root meristem cells of several plants. Experimental Cell Research. 1965;39:48–58. PubMed

Vinnersten A, Bremer K. Age and biogeography of major clades in Liliales. American Journal of Botany. 2001;88:1695–1703. PubMed

Vitte C, Bennetzen JL. Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. The Proceedings of the National Academy of Sciences USA. 2006;103:17638–17643. PubMed PMC

Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. The Plant Journal. 2001;26:307–316. PubMed

Wicker T, Sabot F, Hua-Van A, et al. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics. 2007;8:973–982. PubMed

Zonneveld BJM. New record holders for maximum genome size in eudicots and monocots. Journal of Botany. 2010;2010:527357. doi:10.1155/2010/527357. DOI

Zonneveld BJM, Leitch IJ, Bennett MD. First nuclear DNA amounts in more than 300 angiosperms. Annals of Botany. 2005;96:229–244. PubMed PMC

Zuccolo A, Sebastian A, Talag J, et al. Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evolutionary Biology. 2007;7:152. doi:10.1186/1471-2148-7-152. PubMed DOI PMC

Zobrazit více v PubMed

GENBANK
GU182252, GU182253, GU182254, GU182255, GU182256, GU188675, GU188676, GU188677, GU188678, GU188679, GU188680, GU188681, GU188682

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace