Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size

. 2015 Oct ; 208 (2) : 596-607. [epub] 20150608

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26061193

Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.

Zobrazit více v PubMed

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI‐BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402. PubMed PMC

Ambrožová K, Mandáková T, Bureš P, Neumann P, Leitch IJ, Koblížková A, Macas J, Lysak MA. 2011. Diverse retrotransposon families and an AT‐rich satellite DNA revealed in giant genomes of Fritillaria lilies. Annals of Botany 107: 255–268. PubMed PMC

Becher H, Ma L, Kelly LJ, Kovarik A, Leitch IJ, Leitch AR. 2014. Endogenous pararetrovirus sequences associated with 24 nt small RNAs at the centromeres of Fritillaria imperialis L. (Liliaceae), a species with a giant genome. Plant Journal 80: 823–833. PubMed

Bennett MD, Leitch IJ. 2012. Plant DNA C‐values database (release 6.0, Dec. 2012). [WWW document] URL http://data.kew.org/cvalues/. [accessed 14 October 2014].

Bennett MD, Leitch IJ, Price HJ, Johnston JS. 2003. Comparisons with Caenorhabditis (~100 Mb) and Drosophila (~175 Mb) using flow cytometry show genome size in Arabidopsis to be ~157 Mb and thus ~25% larger than the Arabidopsis Genome Initiative estimate of ~125 Mb. Annals of Botany 91: 547–557. PubMed PMC

Bennetzen JL, Wang H. 2014. The contributions of transposable elements to the structure, function and evolution of plant genomes. Annual Review of Plant Biology 65: 505–530. PubMed

Bensasson D, Petrov DA, Zhang D, Hartl DL, Hewitt GM. 2001. Genomic gigantism: DNA loss is slow in mountain grasshoppers. Molecular Biology and Evolution 18: 246–253. PubMed

Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27: 573–580. PubMed PMC

Blass E, Bell M, Boissinot S. 2012. Accumulation and rapid decay of non‐LTR retrotransposons in the genome of the three‐spine stickleback. Genome Biology and Evolution 4: 687–702. PubMed PMC

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421. PubMed PMC

D'Hont A, Denoeud F, Aury J‐M, Baurens F‐C, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M et al 2012. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488: 213–217. PubMed

Day PD, Berger M, Hill L, Fay MF, Leitch AR, Leitch IJ, Kelly LJ. 2014. Evolutionary relationships in the medicinally important genus Fritillaria L. (Liliaceae). Molecular Phylogenetics and Evolution 80: 11–19. PubMed

Doležel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nardi L, Obermayer R. 1998. Plant genome size estimation by flow cytometry: inter‐laboratory comparison. Annals of Botany 82: 17–26.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.

Elbaidouri M, Panaud O. 2013. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE‐driven genome evolution. Genome Biology and Evolution 5: 954–965. PubMed PMC

Elsik CG, Williams CG. 2000. Retroelements contribute to the excess low‐copy number DNA in pine. Molecular and General Genetics 264: 47–55. PubMed

Fedoroff NV. 2012. Transposable elements, epigenetics, and genome evolution. Science 338: 758–767. PubMed

Givnish TJ, Ames M, McNeal JR, McKain MR, Steele PR, dePamphilis CW, Graham SW, Pires JC, Stevenson DW, Zomlefer WB et al 2010. Assembling the tree of the monocotyledons: plastome sequence phylogeny and evolution of Poales. Annals of the Missouri Botanical Garden 97: 584–616.

Gomez‐Alvarez V, Teal TK, Schmidt TM. 2009. Systematic artifacts in metagenomes from complex microbial communities. ISME Journal 3: 1314–1317. PubMed

Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W. 2006. Smallest angiosperm genomes found in Lentibulariaceae with chromosomes of bacterial size. Plant Biology 8: 770–777. PubMed

Greilhuber J, Doležel J, Lysak MA, Bennett MD. 2005. The origin, evolution and proposed stabilization of the terms ‘Genome Size’ and ‘C‐Value’ to describe nuclear DNA contents. Annals of Botany 95: 91–98. PubMed PMC

Grover CE, Wendel JF. 2010. Recent insights into mechanisms of genome size change in plants. Journal of Botany 2010: article ID 382732.

Hawkins JS, Kim HR, Nason JD, Wing RA, Wendel JF. 2006. Differential lineage‐specific amplification of transposable elements is responsible for genome size variation in Gossypium . Genome Research 16: 1252–1261. PubMed PMC

Hawkins JS, Proulx SR, Rapp RA, Wendel JF. 2009. Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proceedings of the National Academy of Sciences, USA 106: 17811–17816. PubMed PMC

Henderson IR. 2012. Control of meiotic recombination frequency in plant genomes. Current Opinion in Plant Biology 15: 556–561. PubMed

Hollister JD, Smith LM, Guo Y‐L, Ott F, Weigel D, Gaut BS. 2011. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata . Proceedings of the National Academy of Sciences, USA 108: 2322–2327. PubMed PMC

Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H et al 2011. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics 43: 476–481. PubMed PMC

International Rice Genome Sequencing Project . 2005. The map‐based sequence of the rice genome. Nature 436: 793–800. PubMed

Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS et al 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97–100. PubMed

Kelly LJ, Leitch AR, Clarkson JJ, Knapp S, Chase MW. 2013. Reconstructing the complex evolutionary origin of wild allotetraploid tobaccos (Nicotiana section Suaveolentes). Evolution 67: 80–94. PubMed

Kelly LJ, Leitch AR, Fay MF, Renny‐Byfield S, Pellicer J, Macas J, Leitch IJ. 2012. Why size really matters when sequencing plant genomes. Plant Ecology & Diversity 5: 415–425.

Kelly LJ, Leitch IJ. 2011. Exploring giant plant genomes with next‐generation sequencing technology. Chromosome Research 19: 939–953. PubMed

Kovach A, Wegrzyn JL, Parra G, Holt C, Bruening GE, Loopstra CA, Hartigan J, Yandell M, Langley CH, Korf I et al 2010. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 11: 420. PubMed PMC

Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak MA, Fay MF. 2007. Punctuated genome size evolution in Liliaceae. Journal of Evolutionary Biology 20: 2296–2308. PubMed

Leushkin EV, Sutormin RA, Nabieva ER, Penin AA, Kondrashov AS, Logacheva MD. 2013. The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non‐coding sequences. BMC Genomics 14: 476. PubMed PMC

Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ. 2009. The dynamic ups and downs of genome size evolution in Brassicaceae. Molecular Biology and Evolution 26: 85–98. PubMed

Ma J, Devos KM, Bennetzen JL. 2004. Analyses of LTR‐retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Research 14: 860–869. PubMed PMC

Maddison DR, Maddison WP. 2002. MacClade 4: analysis of phylogeny and character evolution, Version 4.04. Sunderland, MA, USA: Sinauer Associates.

Metcalfe CJ, Casane D. 2013. Accommodating the load: the transposable element content of very large genomes. Mobile Genetic Elements 3: e24775. PubMed PMC

Metcalf CJ, Filée J, Germon I, Joss J, Casane D. 2012. Evolution of the Australian lungfish (Neoceratodus forsteri) genome: a major role for CR1 and L2 LINE elements. Molecular Biology and Evolution 29: 3529–3539. PubMed

Nam K, Ellegren H. 2012. Recombination drives vertebrate genome contraction. PLoS Genetics 8: 1002680. PubMed PMC

Neumann P, Koblížková A, Navrátilová A, Macas J. 2006. Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173: 1047–1056. PubMed PMC

Niu B, Fu L, Sun S, Li W. 2010. Artificial and natural duplicates in pyrosequencing reads of metagenomic data. BMC Bioinformatics 11: 187. PubMed PMC

Novák P, Neumann P, Macas J. 2010. Graph‐based clustering and characterization of repetitive sequences in next‐generation sequencing data. BMC Bioinformatics 11: 378. PubMed PMC

Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. 2013. RepeatExplorer: a Galaxy‐based web server for genome‐wide characterization of eukaryotic repetitive elements from next‐generation sequence reads. Bioinformatics 29: 792–793. PubMed

Nylander JAA. 2004. MrModeltest v2. Uppsala, Finland: Evolutionary Biology Centre, Uppsala University.

Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y‐C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A et al 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497: 579–584. PubMed

Pagel M. 1997. Inferring evolutionary processes from phylogenies. Zoologica Scripta 26: 331–348.

Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877–884. PubMed

Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J et al 2012. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492: 423–427. PubMed

Pellicer J, Kelly LJ, Leitch IJ, Zomlefer WB, Fay MF. 2014. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. New Phytologist 201: 1484–1497. PubMed

Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA et al 2006. Doubling genome size without polyploidization: dynamics of retrotransposition‐driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Research 16: 1262–1269. PubMed PMC

R Core Team . 2014. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Rambaut A, Drummond AJ. 2009. Tracer v1.5. [WWW document] URL http://tree.bio.ed.ac.uk/software/tracer. [accessed 14 October 2014].

Rix EM. 2001. Fritillaria: a revised classification. Oxford, UK: The Fritillaria Group of the Alpine Garden Society.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MRBAYES 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61: 539–542. PubMed PMC

Rønsted N, Law S, Thornton H, Fay MF, Chase MW. 2005. Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria . Molecular Phylogenetics and Evolution 35: 509–527. PubMed

Simillion C, Vandepoele K, Van Montagu MCE, Zabeau M, Van de Peer Y. 2002. The hidden duplication past of Arabidopsis thaliana . Proceedings of the National Academy of Sciences, USA 99: 13627–13632. PubMed PMC

Sun C, López Arriaza JR, Mueller RL. 2012a. Slow DNA loss in the gigantic genomes of salamanders. Genome Biology and Evolution 4: 1340–1348. PubMed PMC

Sun C, Shepard DB, Chong RA, López Arriaza JR, Hall K, Castoe TA, Feschotte C, Pollock DD, Mueller RL. 2012b. LTR retrotransposons contribute to genomic gigantism in Plethodontid salamanders. Genome Biology and Evolution 4: 168–183. PubMed PMC

Swofford DL. 2003. PAUP*: phylogenetic analysis using parsimony (*and other methods), Version 4. Sunderland, MA, USA: Sinauer Associates.

The Brassica rapa Genome Sequencing Project Consortium . 2011. The genome of the mesopolyploid crop species Brassica rapa . Nature Genetics 43: 1035–1039. PubMed

The International Brachypodium Initiative . 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon . Nature 493: 763–768. PubMed

Thompson W. 1978. Perspectives on the evolution of plant DNA. Carnegie Institute of Washington Year Book 77: 310–316.

Van't Hof J. 1965. Relationships between mitotic cycle duration S period duration and average rate of DNA synthesis in root meristem cells of several plants. Experimental Cell Research 39: 48–58. PubMed

Vanneste K, Baele G, Maere S, Van de Peer Y. 2014. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous‐Paleogene boundary. Genome Research 24: 1334–1347. PubMed PMC

Vitte C, Bennetzen JL. 2006. Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proceedings of the National Academy of Sciences, USA 103: 17638–17643. PubMed PMC

Wang H, Liu J‐S. 2008. LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice. BMC Genomics 9: 382. PubMed PMC

Wegrzyn JL, Liechty JD, Stevens KA, Wu L‐S, Loopstra CA, Vasquez‐Gross HA, Dougherty WM, Lin BY, Zieve JJ, Martínez‐García PJ et al 2014. Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 196: 891–909. PubMed PMC

Wenzel W, Hemleben V. 1982. A comparative study of genomes in angiosperms. Plant Systematics and Evolution 139: 209–227.

Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung F, Lee Y, Zheng L, van Heeringen S, Karamycheva S, Bennetzen JL et al 2003. Enrichment of gene‐coding sequences in maize by genome filtration. Science 302: 2118–2120. PubMed

Wicker T, Keller B. 2007. Genome‐wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Research 17: 1072–1081. PubMed PMC

Wicker T, Taudien S, Houben A, Keller B, Graner A, Platzer M, Stein N. 2009. A whole‐genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant Journal 59: 712–722. PubMed

Zonneveld B. 2010. New record holders for maximum genome size in eudicots and monocots. Journal of Botany 2010: article ID 527357.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Contrasting distributions and expression characteristics of transcribing repeats in Setaria viridis

. 2025 Mar ; 18 (1) : e20551.

DANTE and DANTE_LTR: lineage-centric annotation pipelines for long terminal repeat retrotransposons in plant genomes

. 2024 Sep ; 6 (3) : lqae113. [epub] 20240829

The ecology of palm genomes: repeat-associated genome size expansion is constrained by aridity

. 2022 Oct ; 236 (2) : 433-446. [epub] 20220707

Repeat Dynamics across Timescales: A Perspective from Sibling Allotetraploid Marsh Orchids (Dactylorhiza majalis s.l.)

. 2022 Aug 03 ; 39 (8) : .

Genome Size Doubling Arises From the Differential Repetitive DNA Dynamics in the Genus Heloniopsis (Melanthiaceae)

. 2021 ; 12 () : 726211. [epub] 20210906

Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses

. 2020 Jun 17 ; 20 (1) : 280. [epub] 20200617

Differential Genome Size and Repetitive DNA Evolution in Diploid Species of Melampodium sect. Melampodium (Asteraceae)

. 2020 ; 11 () : 362. [epub] 20200331

Comparative Dissection of Three Giant Genomes: Allium cepa, Allium sativum, and Allium ursinum

. 2019 Feb 09 ; 20 (3) : . [epub] 20190209

Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification

. 2019 ; 10 () : 1. [epub] 20190103

Dating the Species Network: Allopolyploidy and Repetitive DNA Evolution in American Daisies (Melampodium sect. Melampodium, Asteraceae)

. 2018 Nov 01 ; 67 (6) : 1010-1024.

Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana

. 2016 Nov ; 92 (4-5) : 457-471. [epub] 20160816

Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb

. 2016 Sep ; 125 (4) : 683-99. [epub] 20151205

The Enigma of Progressively Partial Endoreplication: New Insights Provided by Flow Cytometry and Next-Generation Sequencing

. 2016 Jul 02 ; 8 (6) : 1996-2005. [epub] 20160702

In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae

. 2015 ; 10 (11) : e0143424. [epub] 20151125

A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History

. 2015 Oct ; 27 (10) : 2770-84. [epub] 20150926

Angiosperms Are Unique among Land Plant Lineages in the Occurrence of Key Genes in the RNA-Directed DNA Methylation (RdDM) Pathway

. 2015 Sep 02 ; 7 (9) : 2648-62. [epub] 20150902

Zobrazit více v PubMed

GENBANK
KP998197, KP998208, S16132

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...