Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30622655
PubMed Central
PMC6317226
DOI
10.1186/s13100-018-0144-1
PII: 144
Knihovny.cz E-zdroje
- Klíčová slova
- LTR-retrotransposons, Polyprotein domains, Primer binding site, RepeatExplorer, Transposable elements,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Plant LTR-retrotransposons are classified into two superfamilies, Ty1/copia and Ty3/gypsy. They are further divided into an enormous number of families which are, due to the high diversity of their nucleotide sequences, usually specific to a single or a group of closely related species. Previous attempts to group these families into broader categories reflecting their phylogenetic relationships were limited either to analyzing a narrow range of plant species or to analyzing a small numbers of elements. Furthermore, there is no reference database that allows for similarity based classification of LTR-retrotransposons. RESULTS: We have assembled a database of retrotransposon encoded polyprotein domains sequences extracted from 5410 Ty1/copia elements and 8453 Ty3/gypsy elements sampled from 80 species representing major groups of green plants (Viridiplantae). Phylogenetic analysis of the three most conserved polyprotein domains (RT, RH and INT) led to dividing Ty1/copia and Ty3/gypsy retrotransposons into 16 and 14 lineages respectively. We also characterized various features of LTR-retrotransposon sequences including additional polyprotein domains, extra open reading frames and primer binding sites, and found that the occurrence and/or type of these features correlates with phylogenies inferred from the three protein domains. CONCLUSIONS: We have established an improved classification system applicable to LTR-retrotransposons from a wide range of plant species. This system reflects phylogenetic relationships as well as distinct sequence and structural features of the elements. A comprehensive database of retrotransposon protein domains (REXdb) that reflects this classification provides a reference for efficient and unified annotation of LTR-retrotransposons in plant genomes. Access to REXdb related tools is implemented in the RepeatExplorer web server (https://repeatexplorer-elixir.cerit-sc.cz/) or using a standalone version of REXdb that can be downloaded seaparately from RepeatExplorer web page (http://repeatexplorer.org/).
Zobrazit více v PubMed
Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon JM, et al. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet. 2009;5:e1000732. doi: 10.1371/journal.pgen.1000732. PubMed DOI PMC
Galindo-González L, Mhiri C, Deyholos MK, Grandbastien MA. LTR-retrotransposons in plants: engines of evolution. Gene. 2017;626:14–25. doi: 10.1016/j.gene.2017.04.051. PubMed DOI
Grover CE, Wendel JF. Recent insights into mechanisms of genome size change in plants. J Bot. 2010;2010:1–8. doi: 10.1155/2010/382732. DOI
Vitte C, Panaud O. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res. 2005;110:91–107. doi: 10.1159/000084941. PubMed DOI
Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González RH, et al. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 2018;19:103. doi: 10.1186/s13059-018-1479-0. PubMed DOI PMC
Kelly LJ, Renny-Byfield S, Pellicer J, Macas J, Novák P, Neumann P, et al. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytol. 2015;208:596–607. doi: 10.1111/nph.13471. PubMed DOI PMC
Hirsch CD, Springer NM. Transposable element influences on gene expression in plants. Biochim Biophys Acta. 2017;1860:157–165. doi: 10.1016/j.bbagrm.2016.05.010. PubMed DOI
Brunner S. Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell. 2005;17:343–60. PubMed PMC
Zhang Q-J, Gao L-Z. Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species. G3-Genes Genomes Genet. 2017;7:1875–85. PubMed PMC
Liu Z, Yue W, Li D, Wang RRC, Kong X, Lu K, et al. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma. 2008;117:445–456. doi: 10.1007/s00412-008-0161-9. PubMed DOI
Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, et al. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA. 2011;2:4. doi: 10.1186/1759-8753-2-4. PubMed DOI PMC
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8:973–982. doi: 10.1038/nrg2165. PubMed DOI
Krupovic M, Blomberg J, Coffin JM, Dasgupta I, Fan H, Geering AD, et al. Ortervirales : new virus order unifying five families of reverse-transcribing viruses. J Virol. 2018;92:1–5. doi: 10.1128/JVI.00515-18. PubMed DOI PMC
Gifford RJ, Blomberg J, Coffin JM, Fan H, Heidmann T, Mayer J, et al. Nomenclature for endogenous retrovirus (ERV) loci. Retrovirology. 2018;15:59. doi: 10.1186/s12977-018-0442-1. PubMed DOI PMC
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110:462–467. doi: 10.1159/000084979. PubMed DOI
McCarthy EM, Liu J, Lizhi G, JF MD. Long terminal repeat retrotransposons of Oryza sativa. Genome Biol. 2002;3:RESEARCH0053. PubMed PMC
Kumekawa N, Ohmido N, Fukui K, Ohtsubo E, Ohtsubo H. A new gypsy-type retrotransposon, RIRE7: preferential insertion into the tandem repeat sequence TrsD in pericentromeric heterochromatin regions of rice chromosomes. Mol Gen Genomics. 2001;265:480–488. doi: 10.1007/s004380000436. PubMed DOI
Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, et al. Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol. 2005;22:845–855. doi: 10.1093/molbev/msi069. PubMed DOI
Eickbush TH, Jamburuthugoda VK. The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res. 2008;134:221–234. doi: 10.1016/j.virusres.2007.12.010. PubMed DOI PMC
Llorens C, Futami R, Covelli L, Domínguez-Escribá L, Viu JM, Tamarit D, et al. The gypsy database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 2011;39(SUPPL. 1):D70–4. PubMed PMC
Llorens C, Muñoz-Pomer A, Bernad L, Botella H, Moya A. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct. 2009;4:41. doi: 10.1186/1745-6150-4-41. PubMed DOI PMC
Malik HS. Ribonuclease H evolution in retrotransposable elements. Cytogenet Genome Res. 2005;110:392–401. doi: 10.1159/000084971. PubMed DOI
Malik HS, Eickbush TH. Modular evolution of the integrase domain in the Ty3/gypsy class of LTR retrotransposons. J Virol. 1999;73:5186–5190. PubMed PMC
Wicker T, Keller B. Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res. 2007;17:1072–1081. doi: 10.1101/gr.6214107. PubMed DOI PMC
Macas J, Neumann P, Navrátilová A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics. 2007;8:427. doi: 10.1186/1471-2164-8-427. PubMed DOI PMC
Macas J, Kejnovský E, Neumann P, Novák P, Koblížková A, Vyskot B. Next generation sequencing-based analysis of repetitive DNA in the model dioecious plant Silene latifolia. PLoS One. 2011;6:e27335. doi: 10.1371/journal.pone.0027335. PubMed DOI PMC
Gorinšek B, Gubenšek F, Kordiš D. Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol. 2004;21:781–98. PubMed
Kordiš D. A genomic perspective on the chromodomain-containing retrotransposons: Chromoviruses. Gene. 2005;347:161–173. doi: 10.1016/j.gene.2004.12.017. PubMed DOI
Novikov A, Smyshlyaev G, Novikova O. Evolutionary history of LTR retrotransposon chromodomains in plants. Int J Plant Genomics. 2012;2012:874743. doi: 10.1155/2012/874743. PubMed DOI PMC
Novikova O. Chromodomains and LTR retrotransposons in plants. Commun Integr Biol. 2009;2:158–162. doi: 10.4161/cib.7702. PubMed DOI PMC
Novikova O, Smyshlyaev G, Blinov A. Evolutionary genomics revealed interkingdom distribution of Tcn1-like chromodomain-containing gypsy LTR retrotransposons among fungi and plants. BMC Genomics. 2010;11:231. doi: 10.1186/1471-2164-11-231. PubMed DOI PMC
Wright DA, Voytas DF. Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res. 2002;12:122–131. doi: 10.1101/gr.196001. PubMed DOI PMC
Macas J, Neumann P. Ogre elements - a distinct group of plant Ty3/gypsy-like retrotransposons. Gene. 2007;390:108–116. doi: 10.1016/j.gene.2006.08.007. PubMed DOI
Ustyantsev K, Novikova O, Blinov A, Smyshlyaev G. Convergent evolution of ribonuclease H in LTR retrotransposons and retroviruses. Mol Biol Evol. 2015;32:1197–1207. doi: 10.1093/molbev/msv008. PubMed DOI PMC
Bousios A, Darzentas N. Sirevirus LTR retrotransposons: phylogenetic misconceptions in the plant world. Mob DNA. 2013;4:9. doi: 10.1186/1759-8753-4-9. PubMed DOI PMC
Bousios A, Minga E, Kalitsou N, Pantermali M, Tsaballa A, Darzentas N. MASiVEdb: the Sirevirus plant retrotransposon database. BMC Genomics. 2012;13:158. doi: 10.1186/1471-2164-13-158. PubMed DOI PMC
Bousios A, Kourmpetis YAI, Pavlidis P, Minga E, Tsaftaris A, Darzentas N. The turbulent life of Sirevirus retrotransposons and the evolution of the maize genome: more than ten thousand elements tell the story. Plant J. 2012;69:475–488. doi: 10.1111/j.1365-313X.2011.04806.x. PubMed DOI
Xu Z, Wang H. LTR-FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35:265–268. doi: 10.1093/nar/gkm286. PubMed DOI PMC
Gypsy Database. 2017. http://gydb.uv.es/. Accessed 14 Sept 2017.
FlyBase. 2017. http://flybase.org/. Accessed 14 Sept 2017.
The Saccharomyces Genome Database. 2017. http://www.yeastgenome.org/. Accessed 14 Sept 2017.
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 2011;39:D225–D229. doi: 10.1093/nar/gkq1189. PubMed DOI PMC
Das D, Georgiadis MM. The crystal structure of the monomeric reverse transcriptase from moloney murine leukemia virus. Structure. 2004;12:819–829. doi: 10.1016/j.str.2004.02.032. PubMed DOI
Xiong Y, Eickbush TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990;9:3353–3362. doi: 10.1002/j.1460-2075.1990.tb07536.x. PubMed DOI PMC
Skalka AM. Retroviral proteases: first glimpses at the anatomy of a processing machine. Cell. 1989;56:911–913. doi: 10.1016/0092-8674(89)90621-1. PubMed DOI
Maignan S, Guilloteau JP, Zhou-Liu Q, Clément-Mella C, Mikol V. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J Mol Biol. 1998;282:359–368. doi: 10.1006/jmbi.1998.2002. PubMed DOI
Malik HS, Eickbush TH. Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res. 2001;11:1187–1197. doi: 10.1101/gr.185101. PubMed DOI
Gorinšek B, Gubenšek F, Kordiš D. Phylogenomic analysis of chromoviruses. Cytogenet Genome Res. 2005;110:543–552. doi: 10.1159/000084987. PubMed DOI
Gao X, Hou Y, Ebina H, Levin HL, Voytas DF. Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res. 2008;18:359–369. doi: 10.1101/gr.7146408. PubMed DOI PMC
Yap KL, Zhou MM. Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry. 2011;50:1966–1980. doi: 10.1021/bi101885m. PubMed DOI PMC
Wright DA, Voytas DF. Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics. 1998;149:703–715. PubMed PMC
Paris Z, Fleming IMC, Alfonzo JD. Determinants of tRNA editing and modification: avoiding conundrums, affecting function. Semin Cell Dev Biol. 2012;23:269–274. doi: 10.1016/j.semcdb.2011.10.009. PubMed DOI PMC
Torres AG, Piñeyro D, Filonava L, Stracker TH, Batlle E, Ribas De Pouplana L. A-to-I editing on tRNAs: biochemical, biological and evolutionary implications. FEBS Lett. 2014;588:4279–4286. doi: 10.1016/j.febslet.2014.09.025. PubMed DOI
RepeatExplorer: discover repeats in your next generation sequencing data. 2018. https://repeatexplorer-elixir.cerit-sc.cz/. Accessed 23 Oct 2018.
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI
RepeatExplorer : discover repeats in your next generation sequencing data. 2018. http://repeatexplorer.org/. Accessed 23 Oct 2018.
Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol. 2014;14:23. doi: 10.1186/1471-2148-14-23. PubMed DOI PMC
Le Grice SFJ. “In the beginning”: initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons. Biochemistry. 2003;42:14349–55. PubMed
Butler M, Goodwin T, Simpson M, Singh M, Poulter R. Vertebrate LTR retrotransposons of the Tf1/sushi group. J Mol Evol. 2001;52:260–274. doi: 10.1007/s002390010154. PubMed DOI
Lin JH, Levin HL. Self-primed reverse transcription is a mechanism shared by several LTR-containing retrotransposons. RNA. 1997;3:952–953. PubMed PMC
Atwood-Moore A, Yan K, Judson RL, Levin HL. The self primer of the long terminal repeat retrotransposon Tf1 is not removed during reverse transcription. J Virol. 2006;80:8267–8270. doi: 10.1128/JVI.01915-05. PubMed DOI PMC
Capy P. Classification and nomenclature of retrotransposable elements. Cytogenet Genome Res. 2005;110:457–461. doi: 10.1159/000084978. PubMed DOI
Sanz-Alferez S, SanMiguel P, Jin Y-K, Springer PS, Bennetzen JL. Structure and evolution of the Cinful retrotransposon family of maize. Genome. 2003;46:745–752. doi: 10.1139/g03-061. PubMed DOI
Martínez-Izquierdo JA, García-Martínez J, Vicient CM. What makes Grande1 retrotransposon different? Genetica. 1997;100:15–28. doi: 10.1023/A:1018332218319. PubMed DOI
Kejnovský E, Kubát Z, Macas J, Hobza R, Mráček J, Vyskot B. Retand: a novel family of gypsy-like retrotransposons harboring an amplified tandem repeat. Mol Gen Genomics. 2006;276:254–263. doi: 10.1007/s00438-006-0140-x. PubMed DOI
Macas J, Koblížková A, Navrátilová A, Neumann P. Hypervariable 3′ UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene. 2009;448:198–206. doi: 10.1016/j.gene.2009.06.014. PubMed DOI
Gao X, Havecker ER, Baranov PV, Atkins JF, Voytas DF. Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA. 2003;9:1422–1430. doi: 10.1261/rna.5105503. PubMed DOI PMC
Neumann P, Požárková D, Macas J. Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced. Plant Mol Biol. 2003;53:399–410. doi: 10.1023/B:PLAN.0000006945.77043.ce. PubMed DOI
Steinbauerová V, Neumann P, Macas J. Experimental evidence for splicing of intron-containing transcripts of plant LTR retrotransposon Ogre. Mol Gen Genomics. 2008;280:427–436. doi: 10.1007/s00438-008-0376-8. PubMed DOI PMC
Laten HM, Morris RO. SIRE-1, a long interspersed repetitive DNA element from soybean with weak sequence similarity to retrotransposons: initial characterization and partial sequence. Gene. 1993;134:153–159. doi: 10.1016/0378-1119(93)90089-L. PubMed DOI
Laten HM. Phylogenetic evidence for Ty1-copia-like endogenous retroviruses in plant genomes. Genetica. 1999;107:87–93. doi: 10.1023/A:1003901009861. PubMed DOI
Laten HM, Havecker ER, Farmer LM, Voytas DF. SIRE1, an endogenous retrovirus family from Glycine max, is highly homogeneous and evolutionarily young. Mol Biol Evol. 2003;20:1222–1230. doi: 10.1093/molbev/msg142. PubMed DOI
Havecker ER. The Sireviruses, a plant-specific lineage of the Ty1/copia retrotransposons, interact with a family of proteins related to dynein light chain 8. Plant Physiol. 2005;139:857–868. doi: 10.1104/pp.105.065680. PubMed DOI PMC
Peterson-Burch BD, Voytas DF. Genes of the Pseudoviridae (Ty1/copia retrotransposons) Mol Biol Evol. 2002;19:1832–1845. doi: 10.1093/oxfordjournals.molbev.a004008. PubMed DOI
Virus Taxonomy: 2018 Release. 2018. https://talk.ictvonline.org/taxonomy/. Accessed 10 Dec 2018.
Hua SST, Tarun AS, Pandey SN, Chang L, Chang PK. Characterization of AFLAV, a Tf1/sushi retrotransposon from Aspergillus flavus. Mycopathologia. 2007;163:97–104. doi: 10.1007/s11046-006-0088-8. PubMed DOI
Goodwin TJD, Poulter RTM. The diversity of retrotransposons in the yeast Cryptococcus neoformans. Yeast. 2001;18:865–880. doi: 10.1002/yea.733. PubMed DOI
Phytozome. 2017. https://phytozome.jgi.doe.gov/pz/portal.html. Accessed 14 Sept 2017.
Dendrome. 2015. https://treegenesdb.org/. Accessed 22 Apr 2015.
The Conserved Domain Database (CDD). 2017. https://www.ncbi.nlm.nih.gov/cdd. Accessed 14 Sept 2017.
Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45:D200–D203. doi: 10.1093/nar/gkw1129. PubMed DOI PMC
Pearson WR, Wood T, Zhang Z, Miller W. Comparison of DNA sequences with protein sequences. Genomics. 1997;46:24–36. doi: 10.1006/geno.1997.4995. PubMed DOI
Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci. 1988;85:2444–2448. doi: 10.1073/pnas.85.8.2444. PubMed DOI PMC
Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence comparison. Genome Res. 2011;21:487–493. doi: 10.1101/gr.113985.110. PubMed DOI PMC
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Gascuel O, Gouy M, Lyon D. SeaView version 4 : a multiplatform graphical user Interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–224. doi: 10.1093/molbev/msp259. PubMed DOI
RepeatExplorer2 with TAREAN (Tandem Repeat Analyzer). 2018. https://bitbucket.org/petrnovak/repex_tarean. Accessed 23 Oct 2018.
BioPerl. 2018. https://bioperl.org/. Accessed 23 Oct 2018.
The R project for statistical computing. 2018. http://www.r-project.org. Accessed 23 Oct 2018.
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1996;25:955–64. PubMed PMC
GtRNAdb. 2017. http://gtrnadb.ucsc.edu/. Accessed 14 Sept 2017.
Prüfer K, Stenzel U, Dannemann M, Green RE, Lachmann M, Kelso J. PatMaN: rapid alignment of short sequences to large databases. Bioinformatics. 2008;24:1530–1531. doi: 10.1093/bioinformatics/btn223. PubMed DOI PMC
Rice P, Longden L, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16:276–277. doi: 10.1016/S0168-9525(00)02024-2. PubMed DOI
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC
Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics. 1996;12:543–548. doi: 10.1093/bioinformatics/12.6.543. PubMed DOI
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–1659. doi: 10.1093/bioinformatics/btl158. PubMed DOI
PhyML 3.0: new algorithms, methods and utilities. 2017. http://www.atgc-montpellier.fr/phyml/. Accessed 14 Sept 2017.
Lefort V, Longueville JE, Gascuel O. SMS: smart model selection in PhyML. Mol Biol Evol. 2017;34:2422–2424. doi: 10.1093/molbev/msx149. PubMed DOI PMC
Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol. 1997;14:685–695. doi: 10.1093/oxfordjournals.molbev.a025808. PubMed DOI
FigTree. 2017. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 14 Sept 2017.
Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012;61:1061–1067. doi: 10.1093/sysbio/sys062. PubMed DOI
Contrasting distributions and expression characteristics of transcribing repeats in Setaria viridis
A chromosome-scale reference genome of grasspea (Lathyrus sativus)
Sexy ways: approaches to studying plant sex chromosomes
Holocentromeres can consist of merely a few megabase-sized satellite arrays
The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera
The giant diploid faba genome unlocks variation in a global protein crop
The ecology of palm genomes: repeat-associated genome size expansion is constrained by aridity