Dynamic patterns of repeats and retrotransposons in the centromeres of Humulus lupulus L
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
22-00301S
Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004581
ERDF Programme Johannes Amos Comenius
MZe - 51834/2017-MZE-17253/6.2.1
Ministerstvo Zemědělství
90254
Ministry of Education, Youth and Sport
90255
ELIXIR-CZ project
PubMed
40665624
PubMed Central
PMC12371157
DOI
10.1111/nph.70380
Knihovny.cz E-zdroje
- Klíčová slova
- Cannabaceae, asymmetric cell division, centromere, retrotransposons, sex chromosomes,
- MeSH
- centromera * genetika MeSH
- chromozomy rostlin genetika MeSH
- Humulus * genetika MeSH
- meióza genetika MeSH
- repetitivní sekvence nukleových kyselin * genetika MeSH
- retroelementy * genetika MeSH
- segregace chromozomů genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- retroelementy * MeSH
The centromere has a conserved function across eukaryotes; however, the associated DNA sequences exhibit remarkable diversity in both size and structure. In plants, some species possess well-defined centromeres dominated by tandem satellite repeats and centromeric retrotransposons, while others have centromeric regions composed almost entirely of retrotransposons. Using a combination of bioinformatic, molecular, and cytogenetic approaches, we analyzed the centromeric landscape of Humulus lupulus. We identified novel centromeric repeats and characterized two types of centromeric organization. Cytogenetic localization on metaphase chromosomes confirmed the genomic distribution of the major repeats and revealed unique centromeric organization specifically on chromosomes 2, 8, and Y. Two centromeric types are composed of the major repeats SaazCEN and SaazCRM1 (Ty3/Gypsy) which are further accompanied by chromosome-specific centromeric satellites, Saaz40, Saaz293, Saaz85, and HuluTR120. Chromosome 2 displays unbalanced segregation during mitosis and meiosis, implicating an important role for its centromere structure in segregation patterns. Moreover, chromosome 2-specific centromeric repeat Saaz293 is a new marker for studying aneuploidy in hops. Our findings provide new insights into chromosome segregation in hops and highlight the diversity and complexity of the centromere organization in H. lupulus.
Advanced Genomics Center National Institute of Genetics Mishima 411 8540 Shizuoka Japan
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czech Republic
Hop Research Institute Co Ltd 43846 Žatec Czech Republic
School of Life Science and Technology Institute of Science Tokyo Tokyo 152 8550 Japan
Zobrazit více v PubMed
Abugammie B, Wang R, Hu Y, Pang J, Luan Y, Liu B, Jiang L, Lv R. 2024. Spontaneous chromosome instability and tissue culture‐induced karyotypic alteration in wheat–Thinopyrum intermedium alien addition lines. Planta 260: 17. PubMed
Ahmed HI, Heuberger M, Schoen A, Koo DH, Quiroz‐Chavez J, Adhikari L, Raupp J, Cauet S, Rodde N, Cravero C PubMed PMC
Akagi T, Segawa T, Uchida R, Tanaka H, Shirasawa K, Yamagishi N, Yaegashi H, Natsume S, Takagi H, Abe A PubMed
Bačovský V, Čegan R, Šimoníková D, Hřibová E, Hobza R. 2020. The formation of sex chromosomes in PubMed PMC
Bačovský V, Houben A, Kumke K, Hobza R. 2019. The distribution of epigenetic histone marks differs between the X and Y chromosomes in PubMed
Bi G, Zhao S, Yao J, Wang H, Zhao M, Sun Y, Hou X, Haas FB, Varshney D, Prigge M PubMed
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. PubMed PMC
D'amato F. 1985. Cytogenetics of plant cell and tissue cultures and their regenerates. Critical Reviews in Plant Sciences 3: 73–112.
De Storme N, Mason A. 2014. Plant speciation through chromosome instability and ploidy change: Cellular mechanisms, molecular factors and evolutionary relevance. Current Plant Biology 1: 10–33.
Divashuk MG, Alexandrov OS, Kroupin PY, Karlov GI. 2011. Molecular cytogenetic mapping of PubMed
Divashuk MG, Alexandrov OS, Razumova OV, Kirov IV, Karlov GI. 2014. Molecular cytogenetic characterization of the dioecious PubMed PMC
Doležalová A, Sládeková L, Šimoníková D, Holušová K, Karafiátová M, Varshney RK, Doležel J, Hřibová E. 2022. Karyotype differentiation in cultivated chickpea revealed by oligopainting fluorescence PubMed PMC
Draizen EJ, Shaytan AK, Mari~ No‐Ram Irez L, Talbert PB, Landsman D, Panchenko AR. 2016. HistoneDB 2.0: a histone database with variants‐an integrated resource to explore histones and their variants. Database 2016: 14. PubMed PMC
Easterling KA, Pitra NJ, Jones RJ, Lopes LG, Aquino JR, Zhang D, Matthews PD, Bass HW. 2018. 3D molecular cytology of hop ( PubMed PMC
Easterling KA, Pitra NJ, Morcol TB, Aquino JR, Lopes LG, Bussey KC, Matthews PD, Bass HW. 2020. Identification of tandem repeat families from long‐read sequences of PubMed PMC
Gent JI, Wang N, Dawe RK. 2017. Stable centromere positioning in diverse sequence contexts of complex and satellite centromeres of maize and wild relatives. Genome Biology 18: 121. PubMed PMC
Gong Z, Wu Y, Koblížková A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novák P, Robin Buell C PubMed PMC
Han Y, Zhang Z, Liu C, Liu J, Huang S, Jiang J, Jin W. 2009. Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proceedings of the National Academy of Sciences, USA 106: 14937–14941. PubMed PMC
Hassan AH, Mokhtar MM, El Allali A. 2023. Transposable elements: multifunctional players in the plant genome. Frontiers in Plant Science 14: 1330127. PubMed PMC
Haunold A. 1974. Meiotic chromosome behavior and pollen fertility of a triploid Hop 1. Crop Science 14: 849–852.
Henikoff S, Ahmad K, Malik HS. 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102. PubMed
Heuberger M, Koo D‐H, Ahmed HI, Tiwari VK, Abrouk M, Poland J, Krattinger SG, Wicker T. 2024. Evolution of Einkorn wheat centromeres is driven by the mutualistic interplay of two LTR retrotransposons. Mobile DNA 15: 16. PubMed PMC
Hill ST, Sudarsanam R, Henning J, Hendrix D. 2017. HopBase: a unified resource for PubMed PMC
Hobza R, Bačovský V, Čegan R, Horáková L, Hubinský M, Janíček T, Janoušek B, Jedlička P, Kružlicová J, Kubát Z PubMed PMC
Houben A, Demidov D, Gernand D, Meister A, Leach CR, Schubert I. 2003. Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. The Plant Journal 33: 967–973. PubMed
Houben A, Schroeder‐Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR. 2007. CENH3 interacts with the centromeric retrotransposon cereba and GC‐rich satellites and locates to centromeric substructures in barley. Chromosoma 116: 275–283. PubMed
Jedlicka P, Lexa M, Kejnovsky E. 2020. What can long terminal repeats tell us about the age of LTR retrotransposons, gene conversion and ectopic recombination? Frontiers in Plant Science 11: 644. PubMed PMC
Jiang J. 2019. Fluorescence PubMed
Katoh K, Standley DM. 2013. Mafft multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. PubMed PMC
Kordiš D. 2005. A genomic perspective on the chromodomain‐containing retrotransposons: chromoviruses. Gene 347: 161–173. PubMed
Kuo YT, Câmara AS, Schubert V, Neumann P, Macas J, Melzer M, Chen J, Fuchs J, Abel S, Klocke E PubMed PMC
Kyte J, Doolittle RF. 1982. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157: 105–132. PubMed
Langdon T, Seago C, Mende M, Leggett M, Thomas H, Forster JW, Jones RN, Jenkins G. 2000. Retrotransposon evolution in diverse plant genomes. Genetics 156: 313–325. PubMed PMC
Lee H‐R, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J. 2005. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in PubMed PMC
Li B, Choulet F, Heng Y, Hao W, Paux E, Liu Z, Yue W, Jin W, Feuillet C, Zhang X. 2013. Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. The Plant Journal 73: 952–965. PubMed
Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM. arXiv:1303.3997.
Lisch D. 2013. How important are transposons for plant evolution? Nature Reviews Genetics 14: 49–61. PubMed
Liu Y, Liu Q, Su H, Liu K, Xiao X, Li W, Sun Q, Birchler JA, Han F. 2021. Genome‐wide mapping reveals R‐loops associated with centromeric repeats in maize. Genome Research 31: 1409–1418. PubMed PMC
Liu Y, Su H, Zhang J, Liu Y, Feng C, Han F. 2020. Back‐spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biology 18: e3000582. PubMed PMC
Liu Y, Yi C, Fan C, Liu Q, Liu S, Shen L, Zhang K, Huang Y, Liu C, Wang Y PubMed PMC
Liu Z, Yue W, Li D, Wang RRC, Kong X, Lu K, Wang G, Dong Y, Jin W, Zhang X. 2008. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117: 445–456. PubMed
Lunerová J, Vozárová R. 2023. Preparation of male meiotic chromosomes for fluorescence PubMed
Lynch RC, Padgitt‐Cobb LK, Garfinkel AR, Knaus BJ, Hartwick NT, Allsing N, Aylward A, Bentz PC, Carey SB, Mamerto A PubMed DOI PMC
Macas J, Robledillo LÁ, Kreplak J, Novák P, Koblížková A, Vrbová I, Burstin J, Neumann P. 2023. Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes. PLoS Genetics 19: e1010633. PubMed PMC
Maheshwari S, Ishii T, Brown CT, Houben A, Comai L. 2017. Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence. Genome Research 27: 471–478. PubMed PMC
Majka J, Glombik M, Doležalová A, Kneřová J, Ferreira MTM, Zwierzykowski Z, Duchoslav M, Studer B, Doležel J, Bartoš J PubMed
Mandáková T, Hloušková P, Koch MA, Lysak MA. 2020. Genome evolution in Arabideae was marked by frequent centromere repositioning. Plant Cell 32: 650–665. PubMed PMC
McAdam EL, Freeman JS, Whittock SP, Buck EJ, Jakse J, Cerenak A, Javornik B, Kilian A, Wang CH, Andersen D PubMed PMC
Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D PubMed PMC
Mendiburo MJ, Padeken J, Fülöp S, Schepers A, Heun P. 2011. Drosophila CENH3 is sufficient for centromere formation. Science 334: 683–686. PubMed
Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J. 2005. Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Molecular Biology and Evolution 22: 845–855. PubMed
Naish M, Henderson IR. 2024. The structure, function, and evolution of plant centromeres. Genome Research 34: 161–178. PubMed PMC
Natsume S, Takagi H, Shiraishi A, Murata J, Toyonaga H, Patzak J, Takagi M, Yaegashi H, Uemura A, Mitsuoka C PubMed
Navrátilová P, Toegelová H, Tulpová Z, Kuo YT, Stein N, Doležel J, Houben A, Šimková H, Mascher M. 2022. Prospects of telomere‐to‐telomere assembly in barley: analysis of sequence gaps in the MorexV3 reference genome. Plant Biotechnology Journal 20: 1373–1386. PubMed PMC
Neumann P, Navrátilová A, Koblížková A, Kejnovsk E, Hřibová E, Hobza R, Widmer A, Doležel J, MacAs J. 2011. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mobile DNA 2: 4. PubMed PMC
Neumann P, Navrátilová A, Schroeder‐Reiter E, Koblížková A, Steinbauerová V, Chocholová E, Novák P, Wanner G, Macas J. 2012. Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genetics 8: e1002777. PubMed PMC
Neumann P, Novák P, Hoštáková N, Macas J. 2019. Systematic survey of plant LTR‐retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA 10: 1. PubMed PMC
Neumann P, Schubert V, Fuková I, Manning JE, Houben A, Macas J. 2016. Epigenetic histone marks of extended meta‐polycentric centromeres of Lathyrus and Pisum chromosomes. Frontiers in Plant Science 7: 234. PubMed PMC
Neve RA. 1958. Sex chromosomes in the hop
Neve RA. 1991. Hops. Dordrecht, the Netherlands: Springer Netherlands.
Novák P, Hoštáková N, Neumann P, Macas J. 2024. DANTE and DANTE_LTR: lineage‐centric annotation pipelines for long terminal repeat retrotransposons in plant genomes. NAR Genomics and Bioinformatics 6: lqae113. PubMed PMC
Novák P, Neumann P, Macas J. 2020. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nature Protocols 15: 3745–3776. PubMed
Novák P, Neumann P, Pech J, Steinhaisl J, MacAs J. 2013. RepeatExplorer: a Galaxy‐based web server for genome‐wide characterization of eukaryotic repetitive elements from next‐generation sequence reads. Bioinformatics 29: 792–793. PubMed
Ono T. 1955. Studies in Hop. Chromosomes of common hop and its relatives. Bulletin of Brewing Science 2: 3–65.
Ostberg CO, Hauser L, Pritchard VL, Garza JC, Naish KA. 2013. Chromosome rearrangements, recombination suppression, and limited segregation distortion in hybrids between Yellowstone cutthroat trout ( PubMed PMC
Padgitt‐Cobb LK, Pitra NJ, Matthews PD, Henning JA, Hendrix DA. 2023. An improved assembly of the “Cascade” hop ( PubMed PMC
Peterson R, Slovin JP, Chen C. 2010. A simplified method for differential staining of aborted and non‐aborted pollen grains. International Journal of Plant Biology 1: 66–69.
Presting GG, Malysheva L, Fuchs J, Schubert I. 1998. A PubMed
Price MN, Dehal PS, Arkin AP. 2010. FastTree 2 – Approximately maximum‐likelihood trees for large alignments. PLoS ONE 5: e9490. PubMed PMC
Razumova OV, Divashuk MG, Alexandrov OS, Karlov GI. 2023. GISH painting of the Y chromosomes suggests advanced phases of sex chromosome evolution in three dioecious Cannabaceae species ( PubMed
Sacchi B, Humphries Z, Kružlicová J, Bodláková M, Pyne C, Choudhury BI, Gong Y, Bačovský V, Hobza R, Barrett SCH PubMed PMC
Sanei M, Pickering R, Kumke K, Nasuda S, Houben A. 2011. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proceedings of the National Academy of Sciences, USA 108: E498–E505. PubMed PMC
Schneider KL, Xie Z, Wolfgruber TK, Presting GG. 2016. Inbreeding drives maize centromere evolution. Proceedings of the National Academy of Sciences, USA 113: E987–E996. PubMed PMC
Seefelder S, Ehrmaier H, Schweizer G, Seigner E. 2000. Male and female genetic linkage map of hops,
She C, Liu J, Diao Y, Hu Z, Song Y. 2007. The distribution of repetitive DNAs along chromosomes in plants revealed by self‐genomic PubMed
Sinotô Y. 1929. On the tetrapartite chromosome in
Small E. 1978. A numerical and nomenclatural analysis of morpho‐geographic taxa of
Talbert PB, Henikoff S. 2018. Transcribing centromeres: noncoding RNAs and kinetochore assembly. Trends in Genetics 34: 587–599. PubMed
Tarailo‐Graovac M, Chen N. 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics 25: 4.10.1–4.10.14. PubMed
Vasimuddin MD, Misra S, Li H, Aluru S. 2019. Efficient architecture‐aware acceleration of BWA‐MEM for multicore systems. In: 2019 IEEE international parallel and distributed processing symposium (IPDPS). Rio de Janeiro, Brazil: IEEE, 314–324.
Winge O. 1923. On sex chromosomes, sex determination and preponderance of females in some dioecious plants. Comptes‐Rendus des Travaux du Laboratoire Carlsberg 15: 1–16.
Wlodzimierz P, Rabanal FA, Burns R, Naish M, Primetis E, Scott A, Mandáková T, Gorringe N, Tock AJ, Holland D PubMed
Yang Y, Wu Z, Wu Z, Li T, Shen Z, Zhou X, Wu X, Li G, Zhang Y. 2023. A near‐complete assembly of asparagus bean provides insights into anthocyanin accumulation in pods. Plant Biotechnology Journal 21: 2473–2489. PubMed PMC
Zamariola L, Tiang CL, De Storme N, Pawlowski W, Geelen D. 2014. Chromosome segregation in plant meiosis. Frontiers in Plant Science 5: 279. PubMed PMC
Zanoli P, Zavatti M. 2008. Pharmacognostic and pharmacological profile of PubMed
Zhang D, Easterling KA, Pitra NJ, Coles MC, Buckler ES, Bass HW, Matthews PD. 2017. Non‐Mendelian single‐nucleotide polymorphism inheritance and atypical meiotic configurations are prevalent in hop. The Plant Genome 10. doi: 10.3835/plantgenome2017.04.0032. PubMed DOI
Zhang GJ, Jia KL, Wang J, Gao WJ, Li SF. 2023. Genome‐wide analysis of transposable elements and satellite DNA in Humulus scandens, a dioecious plant with XX/XY1Y2 chromosomes. Frontiers in Plant Science 14: 1230250. PubMed PMC
Zhang L, Hu J, Han X, Li J, Gao Y, Richards CM, Zhang C, Tian Y, Liu G, Gul H PubMed PMC
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W PubMed PMC
Zhao J, Xie Y, Kong C, Lu Z, Jia H, Ma Z, Zhang Y, Cui D, Ru Z, Wang Y PubMed PMC
Contrasting pattern of subtelomeric satellites in the Cannabaceae family