Dynamic patterns of repeats and retrotransposons in the centromeres of Humulus lupulus L

. 2025 Sep ; 247 (6) : 2766-2780. [epub] 20250715

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40665624

Grantová podpora
22-00301S Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004581 ERDF Programme Johannes Amos Comenius
MZe - 51834/2017-MZE-17253/6.2.1 Ministerstvo Zemědělství
90254 Ministry of Education, Youth and Sport
90255 ELIXIR-CZ project

The centromere has a conserved function across eukaryotes; however, the associated DNA sequences exhibit remarkable diversity in both size and structure. In plants, some species possess well-defined centromeres dominated by tandem satellite repeats and centromeric retrotransposons, while others have centromeric regions composed almost entirely of retrotransposons. Using a combination of bioinformatic, molecular, and cytogenetic approaches, we analyzed the centromeric landscape of Humulus lupulus. We identified novel centromeric repeats and characterized two types of centromeric organization. Cytogenetic localization on metaphase chromosomes confirmed the genomic distribution of the major repeats and revealed unique centromeric organization specifically on chromosomes 2, 8, and Y. Two centromeric types are composed of the major repeats SaazCEN and SaazCRM1 (Ty3/Gypsy) which are further accompanied by chromosome-specific centromeric satellites, Saaz40, Saaz293, Saaz85, and HuluTR120. Chromosome 2 displays unbalanced segregation during mitosis and meiosis, implicating an important role for its centromere structure in segregation patterns. Moreover, chromosome 2-specific centromeric repeat Saaz293 is a new marker for studying aneuploidy in hops. Our findings provide new insights into chromosome segregation in hops and highlight the diversity and complexity of the centromere organization in H. lupulus.

Zobrazit více v PubMed

Abugammie B, Wang R, Hu Y, Pang J, Luan Y, Liu B, Jiang L, Lv R. 2024. Spontaneous chromosome instability and tissue culture‐induced karyotypic alteration in wheat–Thinopyrum intermedium alien addition lines. Planta 260: 17. PubMed

Ahmed HI, Heuberger M, Schoen A, Koo DH, Quiroz‐Chavez J, Adhikari L, Raupp J, Cauet S, Rodde N, Cravero C PubMed PMC

Akagi T, Segawa T, Uchida R, Tanaka H, Shirasawa K, Yamagishi N, Yaegashi H, Natsume S, Takagi H, Abe A PubMed

Bačovský V, Čegan R, Šimoníková D, Hřibová E, Hobza R. 2020. The formation of sex chromosomes in PubMed PMC

Bačovský V, Houben A, Kumke K, Hobza R. 2019. The distribution of epigenetic histone marks differs between the X and Y chromosomes in PubMed

Bi G, Zhao S, Yao J, Wang H, Zhao M, Sun Y, Hou X, Haas FB, Varshney D, Prigge M PubMed

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. PubMed PMC

D'amato F. 1985. Cytogenetics of plant cell and tissue cultures and their regenerates. Critical Reviews in Plant Sciences 3: 73–112.

De Storme N, Mason A. 2014. Plant speciation through chromosome instability and ploidy change: Cellular mechanisms, molecular factors and evolutionary relevance. Current Plant Biology 1: 10–33.

Divashuk MG, Alexandrov OS, Kroupin PY, Karlov GI. 2011. Molecular cytogenetic mapping of PubMed

Divashuk MG, Alexandrov OS, Razumova OV, Kirov IV, Karlov GI. 2014. Molecular cytogenetic characterization of the dioecious PubMed PMC

Doležalová A, Sládeková L, Šimoníková D, Holušová K, Karafiátová M, Varshney RK, Doležel J, Hřibová E. 2022. Karyotype differentiation in cultivated chickpea revealed by oligopainting fluorescence PubMed PMC

Draizen EJ, Shaytan AK, Mari~ No‐Ram Irez L, Talbert PB, Landsman D, Panchenko AR. 2016. HistoneDB 2.0: a histone database with variants‐an integrated resource to explore histones and their variants. Database 2016: 14. PubMed PMC

Easterling KA, Pitra NJ, Jones RJ, Lopes LG, Aquino JR, Zhang D, Matthews PD, Bass HW. 2018. 3D molecular cytology of hop ( PubMed PMC

Easterling KA, Pitra NJ, Morcol TB, Aquino JR, Lopes LG, Bussey KC, Matthews PD, Bass HW. 2020. Identification of tandem repeat families from long‐read sequences of PubMed PMC

Gent JI, Wang N, Dawe RK. 2017. Stable centromere positioning in diverse sequence contexts of complex and satellite centromeres of maize and wild relatives. Genome Biology 18: 121. PubMed PMC

Gong Z, Wu Y, Koblížková A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novák P, Robin Buell C PubMed PMC

Han Y, Zhang Z, Liu C, Liu J, Huang S, Jiang J, Jin W. 2009. Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proceedings of the National Academy of Sciences, USA 106: 14937–14941. PubMed PMC

Hassan AH, Mokhtar MM, El Allali A. 2023. Transposable elements: multifunctional players in the plant genome. Frontiers in Plant Science 14: 1330127. PubMed PMC

Haunold A. 1974. Meiotic chromosome behavior and pollen fertility of a triploid Hop 1. Crop Science 14: 849–852.

Henikoff S, Ahmad K, Malik HS. 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102. PubMed

Heuberger M, Koo D‐H, Ahmed HI, Tiwari VK, Abrouk M, Poland J, Krattinger SG, Wicker T. 2024. Evolution of Einkorn wheat centromeres is driven by the mutualistic interplay of two LTR retrotransposons. Mobile DNA 15: 16. PubMed PMC

Hill ST, Sudarsanam R, Henning J, Hendrix D. 2017. HopBase: a unified resource for PubMed PMC

Hobza R, Bačovský V, Čegan R, Horáková L, Hubinský M, Janíček T, Janoušek B, Jedlička P, Kružlicová J, Kubát Z PubMed PMC

Houben A, Demidov D, Gernand D, Meister A, Leach CR, Schubert I. 2003. Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. The Plant Journal 33: 967–973. PubMed

Houben A, Schroeder‐Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR. 2007. CENH3 interacts with the centromeric retrotransposon cereba and GC‐rich satellites and locates to centromeric substructures in barley. Chromosoma 116: 275–283. PubMed

Jedlicka P, Lexa M, Kejnovsky E. 2020. What can long terminal repeats tell us about the age of LTR retrotransposons, gene conversion and ectopic recombination? Frontiers in Plant Science 11: 644. PubMed PMC

Jiang J. 2019. Fluorescence PubMed

Katoh K, Standley DM. 2013. Mafft multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. PubMed PMC

Kordiš D. 2005. A genomic perspective on the chromodomain‐containing retrotransposons: chromoviruses. Gene 347: 161–173. PubMed

Kuo YT, Câmara AS, Schubert V, Neumann P, Macas J, Melzer M, Chen J, Fuchs J, Abel S, Klocke E PubMed PMC

Kyte J, Doolittle RF. 1982. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157: 105–132. PubMed

Langdon T, Seago C, Mende M, Leggett M, Thomas H, Forster JW, Jones RN, Jenkins G. 2000. Retrotransposon evolution in diverse plant genomes. Genetics 156: 313–325. PubMed PMC

Lee H‐R, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J. 2005. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in PubMed PMC

Li B, Choulet F, Heng Y, Hao W, Paux E, Liu Z, Yue W, Jin W, Feuillet C, Zhang X. 2013. Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. The Plant Journal 73: 952–965. PubMed

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM. arXiv:1303.3997.

Lisch D. 2013. How important are transposons for plant evolution? Nature Reviews Genetics 14: 49–61. PubMed

Liu Y, Liu Q, Su H, Liu K, Xiao X, Li W, Sun Q, Birchler JA, Han F. 2021. Genome‐wide mapping reveals R‐loops associated with centromeric repeats in maize. Genome Research 31: 1409–1418. PubMed PMC

Liu Y, Su H, Zhang J, Liu Y, Feng C, Han F. 2020. Back‐spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biology 18: e3000582. PubMed PMC

Liu Y, Yi C, Fan C, Liu Q, Liu S, Shen L, Zhang K, Huang Y, Liu C, Wang Y PubMed PMC

Liu Z, Yue W, Li D, Wang RRC, Kong X, Lu K, Wang G, Dong Y, Jin W, Zhang X. 2008. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117: 445–456. PubMed

Lunerová J, Vozárová R. 2023. Preparation of male meiotic chromosomes for fluorescence PubMed

Lynch RC, Padgitt‐Cobb LK, Garfinkel AR, Knaus BJ, Hartwick NT, Allsing N, Aylward A, Bentz PC, Carey SB, Mamerto A PubMed DOI PMC

Macas J, Robledillo LÁ, Kreplak J, Novák P, Koblížková A, Vrbová I, Burstin J, Neumann P. 2023. Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes. PLoS Genetics 19: e1010633. PubMed PMC

Maheshwari S, Ishii T, Brown CT, Houben A, Comai L. 2017. Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence. Genome Research 27: 471–478. PubMed PMC

Majka J, Glombik M, Doležalová A, Kneřová J, Ferreira MTM, Zwierzykowski Z, Duchoslav M, Studer B, Doležel J, Bartoš J PubMed

Mandáková T, Hloušková P, Koch MA, Lysak MA. 2020. Genome evolution in Arabideae was marked by frequent centromere repositioning. Plant Cell 32: 650–665. PubMed PMC

McAdam EL, Freeman JS, Whittock SP, Buck EJ, Jakse J, Cerenak A, Javornik B, Kilian A, Wang CH, Andersen D PubMed PMC

Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D PubMed PMC

Mendiburo MJ, Padeken J, Fülöp S, Schepers A, Heun P. 2011. Drosophila CENH3 is sufficient for centromere formation. Science 334: 683–686. PubMed

Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J. 2005. Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Molecular Biology and Evolution 22: 845–855. PubMed

Naish M, Henderson IR. 2024. The structure, function, and evolution of plant centromeres. Genome Research 34: 161–178. PubMed PMC

Natsume S, Takagi H, Shiraishi A, Murata J, Toyonaga H, Patzak J, Takagi M, Yaegashi H, Uemura A, Mitsuoka C PubMed

Navrátilová P, Toegelová H, Tulpová Z, Kuo YT, Stein N, Doležel J, Houben A, Šimková H, Mascher M. 2022. Prospects of telomere‐to‐telomere assembly in barley: analysis of sequence gaps in the MorexV3 reference genome. Plant Biotechnology Journal 20: 1373–1386. PubMed PMC

Neumann P, Navrátilová A, Koblížková A, Kejnovsk E, Hřibová E, Hobza R, Widmer A, Doležel J, MacAs J. 2011. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mobile DNA 2: 4. PubMed PMC

Neumann P, Navrátilová A, Schroeder‐Reiter E, Koblížková A, Steinbauerová V, Chocholová E, Novák P, Wanner G, Macas J. 2012. Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genetics 8: e1002777. PubMed PMC

Neumann P, Novák P, Hoštáková N, Macas J. 2019. Systematic survey of plant LTR‐retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA 10: 1. PubMed PMC

Neumann P, Schubert V, Fuková I, Manning JE, Houben A, Macas J. 2016. Epigenetic histone marks of extended meta‐polycentric centromeres of Lathyrus and Pisum chromosomes. Frontiers in Plant Science 7: 234. PubMed PMC

Neve RA. 1958. Sex chromosomes in the hop

Neve RA. 1991. Hops. Dordrecht, the Netherlands: Springer Netherlands.

Novák P, Hoštáková N, Neumann P, Macas J. 2024. DANTE and DANTE_LTR: lineage‐centric annotation pipelines for long terminal repeat retrotransposons in plant genomes. NAR Genomics and Bioinformatics 6: lqae113. PubMed PMC

Novák P, Neumann P, Macas J. 2020. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nature Protocols 15: 3745–3776. PubMed

Novák P, Neumann P, Pech J, Steinhaisl J, MacAs J. 2013. RepeatExplorer: a Galaxy‐based web server for genome‐wide characterization of eukaryotic repetitive elements from next‐generation sequence reads. Bioinformatics 29: 792–793. PubMed

Ono T. 1955. Studies in Hop. Chromosomes of common hop and its relatives. Bulletin of Brewing Science 2: 3–65.

Ostberg CO, Hauser L, Pritchard VL, Garza JC, Naish KA. 2013. Chromosome rearrangements, recombination suppression, and limited segregation distortion in hybrids between Yellowstone cutthroat trout ( PubMed PMC

Padgitt‐Cobb LK, Pitra NJ, Matthews PD, Henning JA, Hendrix DA. 2023. An improved assembly of the “Cascade” hop ( PubMed PMC

Peterson R, Slovin JP, Chen C. 2010. A simplified method for differential staining of aborted and non‐aborted pollen grains. International Journal of Plant Biology 1: 66–69.

Presting GG, Malysheva L, Fuchs J, Schubert I. 1998. A PubMed

Price MN, Dehal PS, Arkin AP. 2010. FastTree 2 – Approximately maximum‐likelihood trees for large alignments. PLoS ONE 5: e9490. PubMed PMC

Razumova OV, Divashuk MG, Alexandrov OS, Karlov GI. 2023. GISH painting of the Y chromosomes suggests advanced phases of sex chromosome evolution in three dioecious Cannabaceae species ( PubMed

Sacchi B, Humphries Z, Kružlicová J, Bodláková M, Pyne C, Choudhury BI, Gong Y, Bačovský V, Hobza R, Barrett SCH PubMed PMC

Sanei M, Pickering R, Kumke K, Nasuda S, Houben A. 2011. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proceedings of the National Academy of Sciences, USA 108: E498–E505. PubMed PMC

Schneider KL, Xie Z, Wolfgruber TK, Presting GG. 2016. Inbreeding drives maize centromere evolution. Proceedings of the National Academy of Sciences, USA 113: E987–E996. PubMed PMC

Seefelder S, Ehrmaier H, Schweizer G, Seigner E. 2000. Male and female genetic linkage map of hops,

She C, Liu J, Diao Y, Hu Z, Song Y. 2007. The distribution of repetitive DNAs along chromosomes in plants revealed by self‐genomic PubMed

Sinotô Y. 1929. On the tetrapartite chromosome in

Small E. 1978. A numerical and nomenclatural analysis of morpho‐geographic taxa of

Talbert PB, Henikoff S. 2018. Transcribing centromeres: noncoding RNAs and kinetochore assembly. Trends in Genetics 34: 587–599. PubMed

Tarailo‐Graovac M, Chen N. 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics 25: 4.10.1–4.10.14. PubMed

Vasimuddin MD, Misra S, Li H, Aluru S. 2019. Efficient architecture‐aware acceleration of BWA‐MEM for multicore systems. In: 2019 IEEE international parallel and distributed processing symposium (IPDPS). Rio de Janeiro, Brazil: IEEE, 314–324.

Winge O. 1923. On sex chromosomes, sex determination and preponderance of females in some dioecious plants. Comptes‐Rendus des Travaux du Laboratoire Carlsberg 15: 1–16.

Wlodzimierz P, Rabanal FA, Burns R, Naish M, Primetis E, Scott A, Mandáková T, Gorringe N, Tock AJ, Holland D PubMed

Yang Y, Wu Z, Wu Z, Li T, Shen Z, Zhou X, Wu X, Li G, Zhang Y. 2023. A near‐complete assembly of asparagus bean provides insights into anthocyanin accumulation in pods. Plant Biotechnology Journal 21: 2473–2489. PubMed PMC

Zamariola L, Tiang CL, De Storme N, Pawlowski W, Geelen D. 2014. Chromosome segregation in plant meiosis. Frontiers in Plant Science 5: 279. PubMed PMC

Zanoli P, Zavatti M. 2008. Pharmacognostic and pharmacological profile of PubMed

Zhang D, Easterling KA, Pitra NJ, Coles MC, Buckler ES, Bass HW, Matthews PD. 2017. Non‐Mendelian single‐nucleotide polymorphism inheritance and atypical meiotic configurations are prevalent in hop. The Plant Genome 10. doi: 10.3835/plantgenome2017.04.0032. PubMed DOI

Zhang GJ, Jia KL, Wang J, Gao WJ, Li SF. 2023. Genome‐wide analysis of transposable elements and satellite DNA in Humulus scandens, a dioecious plant with XX/XY1Y2 chromosomes. Frontiers in Plant Science 14: 1230250. PubMed PMC

Zhang L, Hu J, Han X, Li J, Gao Y, Richards CM, Zhang C, Tian Y, Liu G, Gul H PubMed PMC

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W PubMed PMC

Zhao J, Xie Y, Kong C, Lu Z, Jia H, Ma Z, Zhang Y, Cui D, Ru Z, Wang Y PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Contrasting pattern of subtelomeric satellites in the Cannabaceae family

. 2025 ; 16 () : 1631369. [epub] 20250819

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...