Karyotype Differentiation in Cultivated Chickpea Revealed by Oligopainting Fluorescence in situ Hybridization

. 2021 ; 12 () : 791303. [epub] 20220125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35145533

Chickpea (Cicer arietinum L.) is one of the main sources of plant proteins in the Indian subcontinent and West Asia, where two different morphotypes, desi and kabuli, are grown. Despite the progress in genome mapping and sequencing, the knowledge of the chickpea genome at the chromosomal level, including the long-range molecular chromosome organization, is limited. Earlier cytogenetic studies in chickpea suffered from a limited number of cytogenetic landmarks and did not permit to identify individual chromosomes in the metaphase spreads or to anchor pseudomolecules to chromosomes in situ. In this study, we developed a system for fast molecular karyotyping for both morphotypes of cultivated chickpea. We demonstrate that even draft genome sequences are adequate to develop oligo-fluorescence in situ hybridization (FISH) barcodes for the identification of chromosomes and comparative analysis among closely related chickpea genotypes. Our results show the potential of oligo-FISH barcoding for the identification of structural changes in chromosomes, which accompanied genome diversification among chickpea cultivars. Moreover, oligo-FISH barcoding in chickpea pointed out some problematic, most probably wrongly assembled regions of the pseudomolecules of both kabuli and desi reference genomes. Thus, oligo-FISH appears as a powerful tool not only for comparative karyotyping but also for the validation of genome assemblies.

Zobrazit více v PubMed

Abbo S., Berger J., Turner N. C. (2003). Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. PubMed DOI

Albert P. S., Zhang T., Semrau K., Rouillard J. M., Kao Y. H., Wang C. J. R., et al. (2019). Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. PubMed DOI PMC

Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. PubMed DOI

Arumuganathan K., Earle E. D. (1991). Nuclear DNA content of some important plant species. DOI

Barmukh R., Roorkiwal M., Jaba J., Chitikineni A., Mishra S. P., Sagurthi S. R., et al. (2021). Development of a dense genetic map and QTL analysis for pod borer Helicoverpa armigera (Hübner) resistance component traits in chickpea ( PubMed DOI

Begum K. N., Alam S. S. (2016a). Karyomorphological analysis with differential staining of nine

Begum K. N., Alam S. S. (2016b). Differential fluorescent banding in nine varieties of DOI

Belser C., Istace B., Denis E., Dubarry M., Baurens F. C., Falentin C., et al. (2018). Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. PubMed DOI

Braz G. T., do Vale Martins L., Zhang T., Albert P. S., Birchler J. A., Jiang J. (2020). A universal chromosome identification system for maize and wild Zea species. PubMed DOI

Braz G. T., He L., Zhao H., Zhang T., Semrau K., Rouillard J. M. (2018). Comparative oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. PubMed DOI PMC

Bredeson J. V., Lyons J. B., Oniyinde I. O., Okereke N. R., Kolade O., Nnabue I., et al. (2021). High contiguity de novo genome sequence of Trifoliate yam ( DOI

Chen L., Su D., Sun J., Li Z., Han Y. (2020). Development of a set of chromosome-specific oligonucleotide markers and karyotype analysis in the Japanese morning glory Ipomoea nil. DOI

Deokar A., Sagi M., Tar’an B. (2019). Genome-wide SNP discovery for development of high-density genetic map and QTL mapping of ascochyta blight resistance in chickpea ( PubMed DOI PMC

Deschamps S., Zhang Y., Llaca V., Ye L., Sanyal A., King M., et al. (2018). Chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. PubMed DOI PMC

do Vale Martins L., de Oliveira Bustamante F., da Silva Oliveira A. R., da Costa A. F., de Lima Feitoza L., Liang Q., et al. (2021). BAC- and oligo-FISH mapping reveals chromosome evolution among PubMed DOI

Doležel J., Doleželová M., Roux N., Van den houwe I. (1998). A novel method to prepare slides for high resolution chromosome studies in

Galasso I., Pignone D., Frediani M., Maggiani M., Cremonini R. (1996). Chromatin characterization by banding techniques, in situ hybridization, and nuclear DNA content in PubMed DOI

Gaur R., Jeena G., Shah N., Gupta S., Pradhan S., Tyagi A. K., et al. (2015). High density linkage mapping of genomic and transcriptomic SNPs for synteny analysis and anchoring the genome sequence of chickpea. PubMed DOI PMC

Gerlach W. L., Bedbrook J. R. (1979). Cloning and characterization of ribosomal RNA genes from wheat and barley. PubMed DOI PMC

Gortner G., Nenno M., Weising K., Zink D., Nagl W., Kahl G. (1998). Chromosomal localization and distribution of simple sequence repeat and the PubMed DOI

Gupta S., Nawaz K., Parween S., Roy R., Sahu K., Pole A. K., et al. (2017). Draft genome sequence of PubMed DOI PMC

Han Y., Zhang T., Thammapichai P., Weng Y., Jiang J. (2015). Chromosome-specific painting in PubMed DOI PMC

Hiremath P. J., Kumar A., Penmetsa R. V., Farmer A., Schlueter J. A., Chamarthi S., et al. (2012). Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. PubMed DOI PMC

Hou L., Xu M., Zhang T., Xu Z., Wang W., Zhang J., et al. (2018). Chromosome painting and its applications in cultivated and wild rice. PubMed DOI PMC

Jain M., Misra G., Patel R. K., Priya P., Jhanwar S., Khan A. W., et al. (2013). A draft genome sequence of the pulse crop chickpea ( PubMed DOI

Jiang J. (2019). Fluorescence in situ hybridization in plants: recent developments and future applications. PubMed DOI

Karafiátová M., Hřibová E., Doležel J. (2017). “Cytogenetics of Cicer,” in DOI

Li H., Durbin R. (2010). Fast and accurate long-read alignment with burrows–wheeler transform. PubMed DOI PMC

Liu X., Sun S., Wu Y., Zhou Y., Gu S., Yu H., et al. (2020). Dual-color oligo-FISH can reveal chromosomal variations and evolution in PubMed DOI

Ohri D., Pal M. (1991). The origin of chickpea ( DOI

Parween S., Nawaz K., Roy R., Pole A. K., Suresh B. V., Misra G., et al. (2015). An advanced draft genome assembly of a desi type chickpea ( PubMed DOI PMC

Quinlan A. R., Hall I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. PubMed DOI PMC

Rajesh P. N., Sant V. J., Gupta V. S., Muehlbauer F. J., Rajesh P. K. (2003). Genetic relationships among annual and perennial wild species of DOI

Redden R. J., Berger J. D. (2007). “History and origin of chickpea,” in DOI

Roorkiwal M., Jarquin D., Singh M. K., Gaur P. M., Bharadwaj C., Rathore A., et al. (2018). Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype× environment interaction on prediction accuracy in chickpea. PubMed DOI PMC

Roorkiwal M., von Wettberg E. J., Upadhyaya H. D., Warschefsky E., Rathore A., Varshney R. K. (2014). Exploring germplasm diversity to understand the domestication process in PubMed DOI PMC

Ruperao P., Chan C. K. K., Azam S., Karafiátová M., Hayashi S., Čížková J., et al. (2014). A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. PubMed DOI

Schwarzacher T., Heslop-Harrison P. (2000).

Sharma P. C., Winter P., Bünger T., Hüttel B., Weising K., Kahl G. (1995). Abundance and polymorphism of di-, tri- and tetra-nucleotide tandem repeats in chickpea ( PubMed DOI

Šimoníková D., Němečková A., Čížková J., Brown A., Swennen R., Doležel J., et al. (2020). Chromosome painting in cultivated bananas and their wild relatives ( PubMed DOI PMC

Šimoníková D., Němečková A., Karafiátová M., Uwimana B., Swennen R., Doležel J., et al. (2019). Chromosome painting facilitates anchoring reference genome sequence to chromosomes in situ and integrated karyotyping in banana ( PubMed DOI PMC

Staginnus C., Desel C., Schmidt T., Kahl G. (2010). Assembling a puzzle of dispersed retrotransposable sequences in the genome of chickpea ( PubMed DOI

Staginnus C., Huettel B., Desel C., Schmidt T., Kahl G. (2001). A PCR-based assay to detect En/Spm-like transposon sequences in plants. PubMed DOI

Staginnus C., Winter P., Desel C., Schmidt T., Kahl G. (1999). Molecular structure and chromosomal localization of major repetitive DNA families in the chickpea ( PubMed DOI

Sudupak M. A., Akkaya M. S., Kence A. (2002). Analysis of genetic relationships omong perennial and annual PubMed DOI

Thudi M., Bohra A., Nayak S. N., Varghese N., Shah T. M., Penmetsa R. V., et al. (2011). Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea ( PubMed DOI PMC

Thudi M., Chitikineni A., Liu X., He W., Roorkiwal M., Yang W. (2016). Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea ( PubMed DOI PMC

Upadhyaya H. D., Dwicedi S. L., Baum M., Varshney R. K., Udupa S. M., Gowda C. L., et al. (2008). Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea ( PubMed DOI PMC

Varshney R. K., Song C., Saxena R. K., Azam S., Yu S., Sharpe A. G., et al. (2013). Draft genome sequence of chickpea ( PubMed DOI

Varshney R. K., Thudi M., Roorkiwal M., He W., Upadhyaya H. D., Yang W., et al. (2019). Resequencing of 429 chickpea accessions from 45 countries provides insight into genome diversity, domestication and agronomic traits. PubMed DOI

Vláčilová K., Ohri D., Vrána J., Číhalíková J., Kubaláková M., Kahl G., et al. (2002). Development of flow cytogenetics and physical genome mapping in chickpea ( PubMed DOI

Wang J., Liu W., Zhu D., Hong P., Zhang S., Xiao S., et al. (2020). Chromosome-scale genome assembly of sweet cherry ( PubMed DOI PMC

Xin H., Zhang T., Han Y., Wu Y., Shi J., Xi M., et al. (2018). Chromosome painting and comparative physical mapping of the sex chromosomes in PubMed DOI

Zatloukalová P., Hřibová E., Kubaláková M., Suchánková P., Šimková H., Adoración C., et al. (2011). Integration of genetic and physical maps of the chickpea ( PubMed DOI

Zimin A. V., Marçais G., Puiu D., Roberts M., Salzberg S. L., Yorke J. A. (2013). The MaSuRCA genome assembler. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Dynamic patterns of repeats and retrotransposons in the centromeres of Humulus lupulus L

. 2025 Sep ; 247 (6) : 2766-2780. [epub] 20250715

Zobrazit více v PubMed

Dryad
10.5061/dryad.66t1g1k32

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...