Karyotype Differentiation in Cultivated Chickpea Revealed by Oligopainting Fluorescence in situ Hybridization
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35145533
PubMed Central
PMC8822127
DOI
10.3389/fpls.2021.791303
Knihovny.cz E-zdroje
- Klíčová slova
- Cicer arietinum L., chromosome identification, chromosome translocation, desi type, kabuli type, oligopainting FISH,
- Publikační typ
- časopisecké články MeSH
Chickpea (Cicer arietinum L.) is one of the main sources of plant proteins in the Indian subcontinent and West Asia, where two different morphotypes, desi and kabuli, are grown. Despite the progress in genome mapping and sequencing, the knowledge of the chickpea genome at the chromosomal level, including the long-range molecular chromosome organization, is limited. Earlier cytogenetic studies in chickpea suffered from a limited number of cytogenetic landmarks and did not permit to identify individual chromosomes in the metaphase spreads or to anchor pseudomolecules to chromosomes in situ. In this study, we developed a system for fast molecular karyotyping for both morphotypes of cultivated chickpea. We demonstrate that even draft genome sequences are adequate to develop oligo-fluorescence in situ hybridization (FISH) barcodes for the identification of chromosomes and comparative analysis among closely related chickpea genotypes. Our results show the potential of oligo-FISH barcoding for the identification of structural changes in chromosomes, which accompanied genome diversification among chickpea cultivars. Moreover, oligo-FISH barcoding in chickpea pointed out some problematic, most probably wrongly assembled regions of the pseudomolecules of both kabuli and desi reference genomes. Thus, oligo-FISH appears as a powerful tool not only for comparative karyotyping but also for the validation of genome assemblies.
Zobrazit více v PubMed
Abbo S., Berger J., Turner N. C. (2003). Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. PubMed DOI
Albert P. S., Zhang T., Semrau K., Rouillard J. M., Kao Y. H., Wang C. J. R., et al. (2019). Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. PubMed DOI PMC
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. PubMed DOI
Arumuganathan K., Earle E. D. (1991). Nuclear DNA content of some important plant species. DOI
Barmukh R., Roorkiwal M., Jaba J., Chitikineni A., Mishra S. P., Sagurthi S. R., et al. (2021). Development of a dense genetic map and QTL analysis for pod borer Helicoverpa armigera (Hübner) resistance component traits in chickpea ( PubMed DOI
Begum K. N., Alam S. S. (2016a). Karyomorphological analysis with differential staining of nine
Begum K. N., Alam S. S. (2016b). Differential fluorescent banding in nine varieties of DOI
Belser C., Istace B., Denis E., Dubarry M., Baurens F. C., Falentin C., et al. (2018). Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. PubMed DOI
Braz G. T., do Vale Martins L., Zhang T., Albert P. S., Birchler J. A., Jiang J. (2020). A universal chromosome identification system for maize and wild Zea species. PubMed DOI
Braz G. T., He L., Zhao H., Zhang T., Semrau K., Rouillard J. M. (2018). Comparative oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. PubMed DOI PMC
Bredeson J. V., Lyons J. B., Oniyinde I. O., Okereke N. R., Kolade O., Nnabue I., et al. (2021). High contiguity de novo genome sequence of Trifoliate yam ( DOI
Chen L., Su D., Sun J., Li Z., Han Y. (2020). Development of a set of chromosome-specific oligonucleotide markers and karyotype analysis in the Japanese morning glory Ipomoea nil. DOI
Deokar A., Sagi M., Tar’an B. (2019). Genome-wide SNP discovery for development of high-density genetic map and QTL mapping of ascochyta blight resistance in chickpea ( PubMed DOI PMC
Deschamps S., Zhang Y., Llaca V., Ye L., Sanyal A., King M., et al. (2018). Chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. PubMed DOI PMC
do Vale Martins L., de Oliveira Bustamante F., da Silva Oliveira A. R., da Costa A. F., de Lima Feitoza L., Liang Q., et al. (2021). BAC- and oligo-FISH mapping reveals chromosome evolution among PubMed DOI
Doležel J., Doleželová M., Roux N., Van den houwe I. (1998). A novel method to prepare slides for high resolution chromosome studies in
Galasso I., Pignone D., Frediani M., Maggiani M., Cremonini R. (1996). Chromatin characterization by banding techniques, in situ hybridization, and nuclear DNA content in PubMed DOI
Gaur R., Jeena G., Shah N., Gupta S., Pradhan S., Tyagi A. K., et al. (2015). High density linkage mapping of genomic and transcriptomic SNPs for synteny analysis and anchoring the genome sequence of chickpea. PubMed DOI PMC
Gerlach W. L., Bedbrook J. R. (1979). Cloning and characterization of ribosomal RNA genes from wheat and barley. PubMed DOI PMC
Gortner G., Nenno M., Weising K., Zink D., Nagl W., Kahl G. (1998). Chromosomal localization and distribution of simple sequence repeat and the PubMed DOI
Gupta S., Nawaz K., Parween S., Roy R., Sahu K., Pole A. K., et al. (2017). Draft genome sequence of PubMed DOI PMC
Han Y., Zhang T., Thammapichai P., Weng Y., Jiang J. (2015). Chromosome-specific painting in PubMed DOI PMC
Hiremath P. J., Kumar A., Penmetsa R. V., Farmer A., Schlueter J. A., Chamarthi S., et al. (2012). Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. PubMed DOI PMC
Hou L., Xu M., Zhang T., Xu Z., Wang W., Zhang J., et al. (2018). Chromosome painting and its applications in cultivated and wild rice. PubMed DOI PMC
Jain M., Misra G., Patel R. K., Priya P., Jhanwar S., Khan A. W., et al. (2013). A draft genome sequence of the pulse crop chickpea ( PubMed DOI
Jiang J. (2019). Fluorescence in situ hybridization in plants: recent developments and future applications. PubMed DOI
Karafiátová M., Hřibová E., Doležel J. (2017). “Cytogenetics of Cicer,” in DOI
Li H., Durbin R. (2010). Fast and accurate long-read alignment with burrows–wheeler transform. PubMed DOI PMC
Liu X., Sun S., Wu Y., Zhou Y., Gu S., Yu H., et al. (2020). Dual-color oligo-FISH can reveal chromosomal variations and evolution in PubMed DOI
Ohri D., Pal M. (1991). The origin of chickpea ( DOI
Parween S., Nawaz K., Roy R., Pole A. K., Suresh B. V., Misra G., et al. (2015). An advanced draft genome assembly of a desi type chickpea ( PubMed DOI PMC
Quinlan A. R., Hall I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. PubMed DOI PMC
Rajesh P. N., Sant V. J., Gupta V. S., Muehlbauer F. J., Rajesh P. K. (2003). Genetic relationships among annual and perennial wild species of DOI
Redden R. J., Berger J. D. (2007). “History and origin of chickpea,” in DOI
Roorkiwal M., Jarquin D., Singh M. K., Gaur P. M., Bharadwaj C., Rathore A., et al. (2018). Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype× environment interaction on prediction accuracy in chickpea. PubMed DOI PMC
Roorkiwal M., von Wettberg E. J., Upadhyaya H. D., Warschefsky E., Rathore A., Varshney R. K. (2014). Exploring germplasm diversity to understand the domestication process in PubMed DOI PMC
Ruperao P., Chan C. K. K., Azam S., Karafiátová M., Hayashi S., Čížková J., et al. (2014). A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. PubMed DOI
Schwarzacher T., Heslop-Harrison P. (2000).
Sharma P. C., Winter P., Bünger T., Hüttel B., Weising K., Kahl G. (1995). Abundance and polymorphism of di-, tri- and tetra-nucleotide tandem repeats in chickpea ( PubMed DOI
Šimoníková D., Němečková A., Čížková J., Brown A., Swennen R., Doležel J., et al. (2020). Chromosome painting in cultivated bananas and their wild relatives ( PubMed DOI PMC
Šimoníková D., Němečková A., Karafiátová M., Uwimana B., Swennen R., Doležel J., et al. (2019). Chromosome painting facilitates anchoring reference genome sequence to chromosomes in situ and integrated karyotyping in banana ( PubMed DOI PMC
Staginnus C., Desel C., Schmidt T., Kahl G. (2010). Assembling a puzzle of dispersed retrotransposable sequences in the genome of chickpea ( PubMed DOI
Staginnus C., Huettel B., Desel C., Schmidt T., Kahl G. (2001). A PCR-based assay to detect En/Spm-like transposon sequences in plants. PubMed DOI
Staginnus C., Winter P., Desel C., Schmidt T., Kahl G. (1999). Molecular structure and chromosomal localization of major repetitive DNA families in the chickpea ( PubMed DOI
Sudupak M. A., Akkaya M. S., Kence A. (2002). Analysis of genetic relationships omong perennial and annual PubMed DOI
Thudi M., Bohra A., Nayak S. N., Varghese N., Shah T. M., Penmetsa R. V., et al. (2011). Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea ( PubMed DOI PMC
Thudi M., Chitikineni A., Liu X., He W., Roorkiwal M., Yang W. (2016). Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea ( PubMed DOI PMC
Upadhyaya H. D., Dwicedi S. L., Baum M., Varshney R. K., Udupa S. M., Gowda C. L., et al. (2008). Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea ( PubMed DOI PMC
Varshney R. K., Song C., Saxena R. K., Azam S., Yu S., Sharpe A. G., et al. (2013). Draft genome sequence of chickpea ( PubMed DOI
Varshney R. K., Thudi M., Roorkiwal M., He W., Upadhyaya H. D., Yang W., et al. (2019). Resequencing of 429 chickpea accessions from 45 countries provides insight into genome diversity, domestication and agronomic traits. PubMed DOI
Vláčilová K., Ohri D., Vrána J., Číhalíková J., Kubaláková M., Kahl G., et al. (2002). Development of flow cytogenetics and physical genome mapping in chickpea ( PubMed DOI
Wang J., Liu W., Zhu D., Hong P., Zhang S., Xiao S., et al. (2020). Chromosome-scale genome assembly of sweet cherry ( PubMed DOI PMC
Xin H., Zhang T., Han Y., Wu Y., Shi J., Xi M., et al. (2018). Chromosome painting and comparative physical mapping of the sex chromosomes in PubMed DOI
Zatloukalová P., Hřibová E., Kubaláková M., Suchánková P., Šimková H., Adoración C., et al. (2011). Integration of genetic and physical maps of the chickpea ( PubMed DOI
Zimin A. V., Marçais G., Puiu D., Roberts M., Salzberg S. L., Yorke J. A. (2013). The MaSuRCA genome assembler. PubMed DOI PMC
Dynamic patterns of repeats and retrotransposons in the centromeres of Humulus lupulus L
Dryad
10.5061/dryad.66t1g1k32