The distribution of epigenetic histone marks differs between the X and Y chromosomes in Silene latifolia

. 2019 Aug ; 250 (2) : 487-494. [epub] 20190508

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31069521

Grantová podpora
18-06147S Grantová Agentura České Republiky
16-08698S Grantová Agentura České Republiky

Odkazy

PubMed 31069521
DOI 10.1007/s00425-019-03182-7
PII: 10.1007/s00425-019-03182-7
Knihovny.cz E-zdroje

Contrasting patterns of histone modifications between the X and Y chromosome in Silene latifolia show euchromatic histone mark depletion on the Y chromosome and indicate hyperactivation of one X chromosome in females. Silene latifolia (white campion) is a dioecious plant with heteromorphic sex chromosomes (24, XX in females and 24, XY in males), and a genetically degenerated Y chromosome that is 1.4 times larger than the X chromosome. Although the two sex chromosomes differ in their DNA content, information about epigenetic histone marks and evidence of their function are scarce. We performed immunolabeling experiments using antibodies specific for active and suppressive histone modifications as well as pericentromere-specific histone modifications. We show that the Y chromosome is partially depleted of histone modifications important for transcriptionally active chromatin, and carries these marks only in the pseudo-autosomal region, but that it is not enriched for suppressive and pericentromere histone marks. We also show that two of the active marks are specifically enriched in one of the X chromosomes in females and in the X chromosome in males. Our data support recent findings that genetic imprinting mediates dosage compensation of sex chromosomes in S. latifolia.

Zobrazit více v PubMed

Genome. 1999 Apr;42(2):343-50 PubMed

Plant Cell. 2000 Nov;12(11):2087-100 PubMed

Chromosoma. 2001 May;110(2):83-92 PubMed

Genome. 2002 Apr;45(2):243-52 PubMed

Plant J. 2003 Mar;33(6):967-73 PubMed

Theor Appl Genet. 2004 May;108(7):1193-9 PubMed

Chromosoma. 2006 Oct;115(5):376-82 PubMed

Curr Opin Genet Dev. 2006 Dec;16(6):578-85 PubMed

Mol Genet Genomics. 2007 Dec;278(6):633-8 PubMed

Genetics. 2008 Feb;178(2):1085-92 PubMed

Curr Biol. 2008 Apr 8;18(7):545-9 PubMed

Genome. 2008 May;51(5):350-6 PubMed

Chromosome Res. 2008;16(7):961-76 PubMed

Genetics. 2009 Feb;181(2):811-7 PubMed

Trends Ecol Evol. 2009 Feb;24(2):94-102 PubMed

Heredity (Edinb). 2009 Jun;102(6):533-41 PubMed

Cell Cycle. 2009 Nov 15;8(22):3688-94 PubMed

Curr Opin Plant Biol. 2011 Apr;14(2):116-22 PubMed

Biochim Biophys Acta. 2011 Aug;1809(8):369-78 PubMed

Curr Biol. 2011 Sep 13;21(17):1475-9 PubMed

Curr Biol. 2011 Sep 13;21(17):1470-4 PubMed

Methods Enzymol. 2012;504:163-81 PubMed

Curr Opin Genet Dev. 2012 Apr;22(2):148-55 PubMed

Plant Cell Rep. 2012 Aug;31(8):1393-405 PubMed

PLoS Biol. 2012;10(4):e1001308 PubMed

Nat Rev Mol Cell Biol. 2012 Jun 22;13(7):436-47 PubMed

Planta. 2013 Jul;238(1):23-33 PubMed

Theor Appl Genet. 1977 May;50(3):121-4 PubMed

New Phytol. 2014 Apr;202(2):662-78 PubMed

Cytogenet Genome Res. 2014;143(1-3):87-95 PubMed

Cytogenet Genome Res. 2014;143(1-3):96-103 PubMed

Science. 2014 Oct 31;346(6209):646-50 PubMed

Curr Biol. 2015 May 4;25(9):1234-40 PubMed

Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):13021-6 PubMed

Front Plant Sci. 2016 Feb 15;7:28 PubMed

Curr Opin Plant Biol. 2016 Apr;30:82-7 PubMed

Plant Cell. 2016 Dec;28(12):2905-2915 PubMed

Chromosome Res. 2017 Jun;25(2):191-200 PubMed

Sci Rep. 2017 Mar 27;7:45388 PubMed

BMC Genomics. 2018 Feb 20;19(1):153 PubMed

Nat Plants. 2018 Sep;4(9):677-680 PubMed

Biol Chem. 1998 Oct;379(10):1235-41 PubMed

Chromosome Res. 1998 Sep;6(6):441-6 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace