The distribution of epigenetic histone marks differs between the X and Y chromosomes in Silene latifolia
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
18-06147S
Grantová Agentura České Republiky
16-08698S
Grantová Agentura České Republiky
PubMed
31069521
DOI
10.1007/s00425-019-03182-7
PII: 10.1007/s00425-019-03182-7
Knihovny.cz E-zdroje
- Klíčová slova
- Posttranslational histone modifications, Pseudo-autosomal region, Sex chromosomes,
- MeSH
- chromozomy rostlin genetika MeSH
- epigeneze genetická * MeSH
- histonový kód genetika MeSH
- Silene genetika MeSH
- Publikační typ
- časopisecké články MeSH
Contrasting patterns of histone modifications between the X and Y chromosome in Silene latifolia show euchromatic histone mark depletion on the Y chromosome and indicate hyperactivation of one X chromosome in females. Silene latifolia (white campion) is a dioecious plant with heteromorphic sex chromosomes (24, XX in females and 24, XY in males), and a genetically degenerated Y chromosome that is 1.4 times larger than the X chromosome. Although the two sex chromosomes differ in their DNA content, information about epigenetic histone marks and evidence of their function are scarce. We performed immunolabeling experiments using antibodies specific for active and suppressive histone modifications as well as pericentromere-specific histone modifications. We show that the Y chromosome is partially depleted of histone modifications important for transcriptionally active chromatin, and carries these marks only in the pseudo-autosomal region, but that it is not enriched for suppressive and pericentromere histone marks. We also show that two of the active marks are specifically enriched in one of the X chromosomes in females and in the X chromosome in males. Our data support recent findings that genetic imprinting mediates dosage compensation of sex chromosomes in S. latifolia.
Zobrazit více v PubMed
Genome. 1999 Apr;42(2):343-50 PubMed
Plant Cell. 2000 Nov;12(11):2087-100 PubMed
Chromosoma. 2001 May;110(2):83-92 PubMed
Genome. 2002 Apr;45(2):243-52 PubMed
Plant J. 2003 Mar;33(6):967-73 PubMed
Theor Appl Genet. 2004 May;108(7):1193-9 PubMed
Chromosoma. 2006 Oct;115(5):376-82 PubMed
Curr Opin Genet Dev. 2006 Dec;16(6):578-85 PubMed
Mol Genet Genomics. 2007 Dec;278(6):633-8 PubMed
Genetics. 2008 Feb;178(2):1085-92 PubMed
Curr Biol. 2008 Apr 8;18(7):545-9 PubMed
Genome. 2008 May;51(5):350-6 PubMed
Chromosome Res. 2008;16(7):961-76 PubMed
Genetics. 2009 Feb;181(2):811-7 PubMed
Trends Ecol Evol. 2009 Feb;24(2):94-102 PubMed
Heredity (Edinb). 2009 Jun;102(6):533-41 PubMed
Cell Cycle. 2009 Nov 15;8(22):3688-94 PubMed
Curr Opin Plant Biol. 2011 Apr;14(2):116-22 PubMed
Biochim Biophys Acta. 2011 Aug;1809(8):369-78 PubMed
Curr Biol. 2011 Sep 13;21(17):1475-9 PubMed
Curr Biol. 2011 Sep 13;21(17):1470-4 PubMed
Methods Enzymol. 2012;504:163-81 PubMed
Curr Opin Genet Dev. 2012 Apr;22(2):148-55 PubMed
Plant Cell Rep. 2012 Aug;31(8):1393-405 PubMed
PLoS Biol. 2012;10(4):e1001308 PubMed
Nat Rev Mol Cell Biol. 2012 Jun 22;13(7):436-47 PubMed
Planta. 2013 Jul;238(1):23-33 PubMed
Theor Appl Genet. 1977 May;50(3):121-4 PubMed
New Phytol. 2014 Apr;202(2):662-78 PubMed
Cytogenet Genome Res. 2014;143(1-3):87-95 PubMed
Cytogenet Genome Res. 2014;143(1-3):96-103 PubMed
Science. 2014 Oct 31;346(6209):646-50 PubMed
Curr Biol. 2015 May 4;25(9):1234-40 PubMed
Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):13021-6 PubMed
Front Plant Sci. 2016 Feb 15;7:28 PubMed
Curr Opin Plant Biol. 2016 Apr;30:82-7 PubMed
Plant Cell. 2016 Dec;28(12):2905-2915 PubMed
Chromosome Res. 2017 Jun;25(2):191-200 PubMed
Sci Rep. 2017 Mar 27;7:45388 PubMed
BMC Genomics. 2018 Feb 20;19(1):153 PubMed
Nat Plants. 2018 Sep;4(9):677-680 PubMed
Biol Chem. 1998 Oct;379(10):1235-41 PubMed
Chromosome Res. 1998 Sep;6(6):441-6 PubMed
Sexy ways: approaches to studying plant sex chromosomes
Dosage compensation evolution in plants: theories, controversies and mechanisms