The Sister Chromatid Division of the Heteromorphic Sex Chromosomes in Silene Species and Their Transmissibility towards the Mitosis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-15609S
Czech Science Foundation
PubMed
35269563
PubMed Central
PMC8910698
DOI
10.3390/ijms23052422
PII: ijms23052422
Knihovny.cz E-zdroje
- Klíčová slova
- Silene, central interpolar axis, chromosome velocity, sex chromosomes, sister chromatid division,
- MeSH
- chromatidy fyziologie MeSH
- chromozomy rostlin fyziologie MeSH
- hybridizace in situ fluorescenční MeSH
- hydroxymočovina farmakologie MeSH
- konfokální mikroskopie MeSH
- mitóza MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy fyziologie MeSH
- Silene genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hydroxymočovina MeSH
Young sex chromosomes possess unique and ongoing dynamics that allow us to understand processes that have an impact on their evolution and divergence. The genus Silene includes species with evolutionarily young sex chromosomes, and two species of section Melandrium, namely Silene latifolia (24, XY) and Silene dioica (24, XY), are well-established models of sex chromosome evolution, Y chromosome degeneration, and sex determination. In both species, the X and Y chromosomes are strongly heteromorphic and differ in the genomic composition compared to the autosomes. It is generally accepted that for proper cell division, the longest chromosomal arm must not exceed half of the average length of the spindle axis at telophase. Yet, it is not clear what are the dynamics between males and females during mitosis and how the cell compensates for the presence of the large Y chromosome in one sex. Using hydroxyurea cell synchronization and 2D/3D microscopy, we determined the position of the sex chromosomes during the mitotic cell cycle and determined the upper limit for the expansion of sex chromosome non-recombining region. Using 3D specimen preparations, we found that the velocity of the large chromosomes is compensated by the distant positioning from the central interpolar axis, confirming previous mathematical modulations.
Zobrazit více v PubMed
Bachtrog D. Y-chromosome evolution: Emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 2013;14:113–124. doi: 10.1038/nrg3366. PubMed DOI PMC
Charlesworth D. Young sex chromosomes in plants and animals. New Phytol. 2019;224:1095–1107. doi: 10.1111/nph.16002. PubMed DOI
Graves J.A.M. Sex chromosome specialization and degeneration in mammals. Cell. 2006;124:901–914. doi: 10.1016/j.cell.2006.02.024. PubMed DOI
Bachtrog D., Mank J.E., Peichel C.L., Kirkpatrick M., Otto S.P., Ashman T.-L., Hahn M.W., Kitano J., Mayrose I., Ming R., et al. Sex determination: Why so many ways of doing it? PLoS Biol. 2014;12:e1001899. doi: 10.1371/journal.pbio.1001899. PubMed DOI PMC
Ponnikas S., Sigeman H., Abbott J.K., Hansson B. Why do sex chromosomes stop recombining? Trends Genet. 2018;34:492–503. doi: 10.1016/j.tig.2018.04.001. PubMed DOI
Jacobson D.J. Blocked recombination along the mating-type chromosomes of Neurospora tetrasperma involves both structural heterozygosity and autosomal genes. Genetics. 2005;171:839–843. doi: 10.1534/genetics.105.044040. PubMed DOI PMC
Na J.-K., Wang J., Murray J.E., Gschwend A.R., Zhang W., Yu Q., Pérez R., Feltus F., Chen C., Kubat Z., et al. Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genom. 2012;13:176. doi: 10.1186/1471-2164-13-176. PubMed DOI PMC
Iovene M., Yu Q., Ming R., Jiang J. Evidence for emergence of sex-determining gene(s) in a centromeric region in Vasconcellea parviflora. Genetics. 2015;199:413–421. doi: 10.1534/genetics.114.173021. PubMed DOI PMC
Bachtrog D., Kirkpatrick M., Mank J.E., McDaniel S.F., Pires J.C., Rice W., Valenzuela N. Are all sex chromosomes created equal? Trends Genet. 2011;27:350–357. doi: 10.1016/j.tig.2011.05.005. PubMed DOI
Charlesworth D. Plant sex chromosomes. Annu. Rev. Plant Biol. 2016;67:397–420. doi: 10.1146/annurev-arplant-043015-111911. PubMed DOI
Palacios-Gimenez O., Dias G., Lima L., Kuhn G., Ramos É., Martins C., Cabral-de-Mello D. High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Sci. Rep. 2017;7:6422. doi: 10.1038/s41598-017-06822-8. PubMed DOI PMC
Jesionek W., Bodláková M., Kubát Z., Čegan R., Vyskot B., Vrána J., Šafář J., Puterova J., Hobza R. Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa. Ann. Bot. 2021;127:33–47. doi: 10.1093/aob/mcaa160. PubMed DOI PMC
Hobza R., Kubat Z., Cegan R., Jesionek W., Vyskot B., Kejnovsky E. Impact of repetitive DNA on sex chromosome evolution in plants. Chromosom. Res. 2015;23:561–570. doi: 10.1007/s10577-015-9496-2. PubMed DOI
Sousa A., Fuchs J., Renner S.S. Cytogenetic comparison of heteromorphic and homomorphic sex chromosomes in Coccinia (Cucurbitaceae) points to sex chromosome turnover. Chromosom. Res. 2017;25:191–200. doi: 10.1007/s10577-017-9555-y. PubMed DOI
Bačovský V., Čegan R., Šimoníková D., Hřibová E., Hobza R. The formation of sex chromosomes in Silene latifolia and S. dioica was accompanied by multiple chromosomal rearrangements. Front. Plant Sci. 2020;11:205. PubMed PMC
Wright A.E., Dean R., Zimmer F., Mank J.E. How to make a sex chromosome. Nat. Commun. 2016;7:12087. doi: 10.1038/ncomms12087. PubMed DOI PMC
Filatov D.A., Charlesworth D. Substitution rates in the X- and Y-linked genes of the plants, Silene latifolia and S. dioica. Mol. Biol. Evol. 2002;19:898–907. doi: 10.1093/oxfordjournals.molbev.a004147. PubMed DOI
Krasovec M., Chester M., Ridout K., Filatov D.A. The mutation rate and the age of the sex chromosomes in Silene latifolia. Curr. Biol. 2018;28:1832–1838.e4. doi: 10.1016/j.cub.2018.04.069. PubMed DOI
Kubat Z., Hobza R., Vyskot B., Kejnovsky E. Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome. 2008;51:350–356. doi: 10.1139/G08-024. PubMed DOI
Puterova J., Kubat Z., Kejnovsky E., Jesionek W., Cizkova J., Vyskot B., Hobza R. The slowdown of Y chromosome expansion in dioecious Silene latifolia due to DNA loss and male-specific silencing of retrotransposons. BMC Genom. 2018;19:153. doi: 10.1186/s12864-018-4547-7. PubMed DOI PMC
Filatov D.A., Howell E.C., Groutides C., Armstrong S.J. Recent spread of a retrotransposon in the Silene latifolia genome, apart from the Y chromosome. Genetics. 2009;181:811–817. doi: 10.1534/genetics.108.099267. PubMed DOI PMC
Bergero R., Qiu S., Charlesworth D. Gene loss from a plant sex chromosome system. Curr. Biol. 2015;25:1234–1240. doi: 10.1016/j.cub.2015.03.015. PubMed DOI
Papadopulos A.S.T., Chester M., Ridout K., Filatov D.A. Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc. Natl. Acad. Sci. USA. 2015;112:13021–13026. doi: 10.1073/pnas.1508454112. PubMed DOI PMC
Muyle A., Zemp N., Fruchard C., Cegan R., Vrana J., Deschamps C., Tavares R., Hobza R., Picard F., Widmer A., et al. Genomic imprinting mediates dosage compensation in a young plant XY system. Nat. Plants. 2018;4:677–680. doi: 10.1038/s41477-018-0221-y. PubMed DOI
Bačovský V., Houben A., Kumke K., Hobza R. The distribution of epigenetic histone marks differs between the X and Y chromosomes in Silene latifolia. Planta. 2019;250:487–494. doi: 10.1007/s00425-019-03182-7. PubMed DOI
Luis Rodríguez Lorenzo J., Hubinský M., Vyskot B., Hobza R. Histone post-translational modifications in Silene latifolia X and Y chromosomes suggest a mammal-like dosage compensation system. Plant Sci. 2020;299:110528. doi: 10.1016/j.plantsci.2020.110528. PubMed DOI
Schubert I., Oud J.L. There is an upper limit of chromosome size for normal development of an organism. Cell. 1997;88:515–520. doi: 10.1016/S0092-8674(00)81891-7. PubMed DOI
Hudakova S., Künzel G., Endo T.R., Schubert I. Barley chromosome arms longer than half of the spindle axis interfere with nuclear divisions. Cytogenet. Genome Res. 2002;98:101–107. doi: 10.1159/000068530. PubMed DOI
Schubert I. Alteration of chromosome numbers by generation of minichromosomes–Is there a lower limit of chromosome size for stable segregation? Cytogenet. Genome Res. 2001;93:175–181. doi: 10.1159/000056981. PubMed DOI
Schubert I. Chromosome evolution. Curr. Opin. Plant Biol. 2007;10:109–115. doi: 10.1016/j.pbi.2007.01.001. PubMed DOI
Li X., Zhu C., Lin Z., Wu Y., Zhang D., Bai G., Song W., Ma J., Muehlbauer G.J., Scanlon M.J., et al. Chromosome size in diploid eukaryotic species centers on the average length with a conserved boundary. Mol. Biol. Evol. 2011;28:1901–1911. doi: 10.1093/molbev/msr011. PubMed DOI PMC
Kuznetsova M.A., Chaban I.A., Sheval E. V Visualization of chromosome condensation in plants with large chromosomes. BMC Plant Biol. 2017;17:153. doi: 10.1186/s12870-017-1102-7. PubMed DOI PMC
Barrington C., Pezic D., Hadjur S. Chromosome structure dynamics during the cell cycle: A structure to fit every phase. EMBO J. 2017;36:2661–2663. doi: 10.15252/embj.201798014. PubMed DOI PMC
Raj A., Peskin C.S. The influence of chromosome flexibility on chromosome transport during anaphase A. Proc. Natl. Acad. Sci. USA. 2006;103:5349–5354. doi: 10.1073/pnas.0601215103. PubMed DOI PMC
Nicklas R.B. Chromosome velocity during mitosis as a function of chromosome size and position. J. Cell Biol. 1965;25:119–135. doi: 10.1083/jcb.25.1.119. PubMed DOI PMC
Lengerova M., Vyskot B. Sex chromatin and nucleolar analyses in Rumex acetosa L. Protoplasma. 2001;217:147–153. doi: 10.1007/BF01283395. PubMed DOI
Cermak T., Kubat Z., Hobza R., Koblizkova A., Widmer A., Macas J., Vyskot B., Kejnovsky E. Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosom. Res. 2008;16:961–976. doi: 10.1007/s10577-008-1254-2. PubMed DOI
McKee B.D. Homologous pairing and chromosome dynamics in meiosis and mitosis. Biochim. Biophys. Acta-Gene Struct. Expr. 2004;1677:165–180. doi: 10.1016/j.bbaexp.2003.11.017. PubMed DOI
Cadart C., Zlotek-Zlotkiewicz E., Le Berre M., Piel M., Matthews H.K. Exploring the function of cell shape and size during mitosis. Dev. Cell. 2014;29:159–169. doi: 10.1016/j.devcel.2014.04.009. PubMed DOI
Ladouceur A.-M., Dorn J.F., Maddox P.S. Mitotic chromosome length scales in response to both cell and nuclear size. J. Cell Biol. 2015;209:645–652. doi: 10.1083/jcb.201502092. PubMed DOI PMC
Nestor-Bergmann A., Goddard G., Woolner S. Force and the spindle: Mechanical cues in mitotic spindle orientation. Semin. Cell Dev. Biol. 2014;34:133–139. doi: 10.1016/j.semcdb.2014.07.008. PubMed DOI PMC
Bhowmick B.K., Yamamoto M., Jha S. Chromosomal localization of 45S rDNA, sex-specific C values, and heterochromatin distribution in Coccinia grandis (L.) Voigt. Protoplasma. 2016;253:201–209. doi: 10.1007/s00709-015-0797-2. PubMed DOI
Mandáková T., Lysak M.A. Current Protocols in Plant Biology. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2016. Chromosome preparation for cytogenetic analyses in Arabidopsis. PubMed
Baudoin N.C., Cimini D. A guide to classifying mitotic stages and mitotic defects in fixed cells. Chromosoma. 2018;127:215–227. doi: 10.1007/s00412-018-0660-2. PubMed DOI
Neumann P., Navrátilová A., Koblízková A., Kejnovsky E., Hribova E., Hobza R., Widmer A., Dolezel J., Macas J. Plant centromeric retrotransposons: A structural and cytogenetic perspective. Mob. DNA. 2011;2:4. doi: 10.1186/1759-8753-2-4. PubMed DOI PMC
Hurel A., Phillips D., Vrielynck N., Mézard C., Grelon M., Christophorou N. A cytological approach to studying meiotic recombination and chromosome dynamics in Arabidopsis thaliana male meiocytes in three dimensions. Plant J. 2018;95:385–396. doi: 10.1111/tpj.13942. PubMed DOI
Sexy ways: approaches to studying plant sex chromosomes