Impact of repetitive DNA on sex chromosome evolution in plants
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26474787
DOI
10.1007/s10577-015-9496-2
PII: 10.1007/s10577-015-9496-2
Knihovny.cz E-zdroje
- Klíčová slova
- microsatellites, recombination, repetitive sequences, sex chromosomes, tandem repeats (satellites), transposable elements,
- MeSH
- chromozomy rostlin * MeSH
- DNA rostlinná * MeSH
- molekulární evoluce * MeSH
- pohlavní chromozomy genetika MeSH
- regulace genové exprese u rostlin MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- rostliny genetika MeSH
- transpozibilní elementy DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná * MeSH
- transpozibilní elementy DNA MeSH
Structurally and functionally diverged sex chromosomes have evolved in many animals as well as in some plants. Sex chromosomes represent a specific genomic region(s) with locally suppressed recombination. As a consequence, repetitive sequences involving transposable elements, tandem repeats (satellites and microsatellites), and organellar DNA accumulate on the Y (W) chromosomes. In this paper, we review the main types of repetitive elements, their gathering on the Y chromosome, and discuss new findings showing that not only accumulation of various repeats in non-recombining regions but also opposite processes form Y chromosome. The aim of this review is also to discuss the mechanisms of repetitive DNA spread involving (retro) transposition, DNA polymerase slippage or unequal crossing-over, as well as modes of repeat removal by ectopic recombination. The intensity of these processes differs in non-recombining region(s) of sex chromosomes when compared to the recombining parts of genome. We also speculate about the relationship between heterochromatinization and the formation of heteromorphic sex chromosomes.
Zobrazit více v PubMed
PLoS Biol. 2013;11(8):e1001643 PubMed
Chromosoma. 1999 Aug;108(4):266-70 PubMed
EMBO Rep. 2013 Sep;14(9):823-8 PubMed
Chromosoma. 2006 Oct;115(5):376-82 PubMed
New Phytol. 2014 Apr;202(2):662-78 PubMed
Mol Cytogenet. 2012 Jun 01;5(1):28 PubMed
Genome Res. 2011 Dec;21(12):2038-48 PubMed
Mol Genet Genomics. 2007 Dec;278(6):633-8 PubMed
Genome Biol Evol. 2013;5(4):769-82 PubMed
Genome Res. 2009 Aug;19(8):1419-28 PubMed
Curr Opin Struct Biol. 2011 Apr;21(2):249-56 PubMed
Mol Genet Genomics. 2013 Jun;288(5-6):277-84 PubMed
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13716-21 PubMed
J Mol Evol. 2005 Mar;60(3):391-9 PubMed
PLoS One. 2012;7(2):e31898 PubMed
Nature. 2009 Oct 22;461(7267):1130-4 PubMed
BMC Genomics. 2015 Jul 25;16:546 PubMed
Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9233-7 PubMed
Nat Rev Genet. 2007 Dec;8(12):973-82 PubMed
Heredity (Edinb). 2009 Jun;102(6):533-41 PubMed
Nature. 2014 Apr 17;508(7496):411-5 PubMed
Genetica. 2009 Jan;135(1):87-93 PubMed
Mob DNA. 2010 Mar 08;1(1):11 PubMed
Science. 2009 Jun 12;324(5933):1451-4 PubMed
New Phytol. 2013 Jan;197(2):409-15 PubMed
Science. 2009 Jun 12;324(5933):1447-51 PubMed
BMC Genet. 2011 Oct 20;12:90 PubMed
Trends Plant Sci. 2010 Aug;15(8):471-8 PubMed
Chromosome Res. 2000;8(3):229-36 PubMed
Mob DNA. 2011 Mar 03;2(1):4 PubMed
Plant Mol Biol. 2000 Dec;44(6):723-32 PubMed
Plant Cell. 2003 Aug;15(8):1771-80 PubMed
J Virol. 1997 Jan;71(1):458-64 PubMed
Nat Rev Genet. 2007 Apr;8(4):272-85 PubMed
Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6472-7 PubMed
Nat Rev Microbiol. 2005 Nov;3(11):848-58 PubMed
Genome Res. 2008 Mar;18(3):359-69 PubMed
Gene. 2007 Apr 1;390(1-2):92-7 PubMed
Heredity (Edinb). 2013 Oct;111(4):314-20 PubMed
Mol Genet Genomics. 2006 Sep;276(3):254-63 PubMed
Nature. 2004 Jan 22;427(6972):348-52 PubMed
Genet Res. 1988 Dec;52(3):223-35 PubMed
PLoS Biol. 2014 Jul 01;12(7):e1001899 PubMed
Annu Rev Plant Biol. 2011;62:485-514 PubMed
Gene. 2008 Feb 15;409(1-2):72-82 PubMed
Plant Cell. 2005 Mar;17(3):665-75 PubMed
Nature. 1994 Sep 15;371(6494):215-20 PubMed
Cell. 2009 Feb 6;136(3):461-72 PubMed
Cytogenet Genome Res. 2014;143(1-3):87-95 PubMed
Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2322-7 PubMed
Curr Biol. 2011 Sep 27;21(18):R685-8 PubMed
Cytogenet Genome Res. 2014;142(1):59-65 PubMed
Mol Biol Evol. 2010 Apr;27(4):896-904 PubMed
Mol Genet Genomics. 2009 Mar;281(3):249-59 PubMed
Genome Res. 2008 Dec;18(12):1938-43 PubMed
BMC Genomics. 2014 May 04;15:335 PubMed
Chromosome Res. 2008;16(7):961-76 PubMed
Heredity (Edinb). 2005 Aug;95(2):118-28 PubMed
Plant Sci. 2015 Jul;236:126-35 PubMed
Nat Rev Genet. 2004 Jun;5(6):435-45 PubMed
Curr Biol. 2015 May 4;25(9):1234-40 PubMed
Science. 2015 May 1;348(6234):585-8 PubMed
PLoS Biol. 2010 Sep 28;8(9):null PubMed
Genetica. 2006 Sep-Nov;128(1-3):167-75 PubMed
Science. 2012 Sep 14;337(6100):1360-1364 PubMed
PLoS One. 2013;8(1):e45519 PubMed
PLoS Pathog. 2006 Jun;2(6):e60 PubMed
Cell. 2012 Sep 28;151(1):194-205 PubMed
Sexy ways: approaches to studying plant sex chromosomes
The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths
Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa
Evolutionary Variability of W-Linked Repetitive Content in Lacertid Lizards
Sex and the flower - developmental aspects of sex chromosome evolution
DNA methylation and genetic degeneration of the Y chromosome in the dioecious plant Silene latifolia