Retand: a novel family of gypsy-like retrotransposons harboring an amplified tandem repeat

. 2006 Sep ; 276 (3) : 254-63. [epub] 20060707

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid16826419

In this paper we describe a pair of novel Ty3/gypsy retrotransposons isolated from the dioecious plant Silene latifolia, consisting of a non-autonomous element Retand-1 (3.7 kb) and its autonomous partner Retand-2 (11.1 kb). These two elements have highly similar long terminal repeat (LTR) sequences but differ in the presence of the typical retroelement coding regions (gag-pol genes), most of which are missing in Retand-1. Moreover, Retand-2 contains two additional open reading frames in antisense orientation localized between the pol gene and right LTR. Retand transcripts were detected in all organs tested (leaves, flower buds and roots) which, together with the high sequence similarity of LTRs in individual elements, indicates their recent transpositional activity. The autonomous elements are similarly abundant (2,700 copies) as non-autonomous ones (2,100 copies) in S. latifolia genome. Retand elements are also present in other Silene species, mostly in subtelomeric heterochromatin regions of all chromosomes. The only exception is the subtelomere of the short arm of the Y chromosome in S. latifolia which is known to lack the terminal heterochromatin. An interesting feature of the Retand elements is the presence of a tandem repeat sequence, which is more amplified in the non-autonomous Retand-1.

Zobrazit více v PubMed

Bioinformatics. 2004 Jan 22;20(2):279-81 PubMed

Genome. 2002 Aug;45(4):745-51 PubMed

Gene. 1991 Mar 1;99(1):63-8 PubMed

Genetics. 2003 Jun;164(2):665-72 PubMed

Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8 PubMed

Chromosome Res. 2001;9(5):387-93 PubMed

Genetics. 2005 Jul;170(3):1231-8 PubMed

Chromosome Res. 1996 Aug;4(5):357-64 PubMed

Genetica. 1997;100(1-3):15-28 PubMed

Trends Genet. 1996 Feb;12(2):48-52 PubMed

Plant Mol Biol. 2003 Oct;53(3):399-410 PubMed

Mol Genet Genomics. 2005 Mar;273(1):43-53 PubMed

Theor Appl Genet. 2004 May;108(7):1193-9 PubMed

Mol Gen Genet. 1996 Feb 25;250(3):305-15 PubMed

Nucleic Acids Res. 1997 Mar 1;25(5):955-64 PubMed

DNA Seq. 1993;3(6):379-81 PubMed

Nucleic Acids Res. 2003 Jan 1;31(1):383-7 PubMed

Plant Cell. 1999 Sep;11(9):1769-1784 PubMed

Genome. 2003 Oct;46(5):745-52 PubMed

Nat Rev Genet. 2002 May;3(5):329-41 PubMed

Genes Genet Syst. 1999 Jun;74(3):83-91 PubMed

Trends Genet. 2000 Apr;16(4):151-2 PubMed

Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8135-40 PubMed

Genetics. 2002 Jul;161(3):1293-305 PubMed

Plant J. 1998 Dec;16(6):721-8 PubMed

Chromosome Res. 1997 Feb;5(1):57-65 PubMed

DNA Res. 1995 Dec 31;2(6):255-61 PubMed

Genetics. 2004 Mar;166(3):1437-50 PubMed

Genetics. 1998 Aug;149(4):2025-37 PubMed

Plant Cell Physiol. 2001 Feb;42(2):189-96 PubMed

Genetics. 2003 Oct;165(2):935-8 PubMed

Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6603-7 PubMed

Arch Virol. 2001;146(11):2255-61 PubMed

Plant Physiol. 2002 Dec;130(4):1697-705 PubMed

Science. 1996 Nov 1;274(5288):765-8 PubMed

Plant Mol Biol. 1998 May;37(2):363-75 PubMed

Genetics. 2000 Feb;154(2):869-84 PubMed

Annu Rev Genet. 1999;33:479-532 PubMed

Mol Gen Genet. 2000 Jul;263(6):908-15 PubMed

Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed

Cell. 2000 Feb 4;100(3):367-76 PubMed

Plant J. 1998 Mar;13(5):699-705 PubMed

Nucleic Acids Res. 1993 Oct 11;21(20):4703-10 PubMed

Mol Cell Biol. 1994 Mar;14(3):1764-75 PubMed

Mol Biotechnol. 1996 Jun;5(3):233-41 PubMed

Chromosoma. 2003 Oct;112(3):152-8 PubMed

Genome Biol. 2004;5(6):225 PubMed

Trends Microbiol. 1996 Sep;4(9):347-53 PubMed

Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 PubMed

Nucleic Acids Res. 2003 Jul 1;31(13):3406-15 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification

. 2019 ; 10 () : 1. [epub] 20190103

Sex and the flower - developmental aspects of sex chromosome evolution

. 2018 Dec 31 ; 122 (7) : 1085-1101.

The slowdown of Y chromosome expansion in dioecious Silene latifolia due to DNA loss and male-specific silencing of retrotransposons

. 2018 Feb 20 ; 19 (1) : 153. [epub] 20180220

Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes

. 2017 Jan 01 ; 9 (1) : 197-212.

Horizontal transfer - imperative mission of acellular life forms, Acytota

. 2016 Mar-Apr ; 6 (2) : e1154636. [epub] 20160307

Impact of repetitive DNA on sex chromosome evolution in plants

. 2015 Sep ; 23 (3) : 561-70.

Genomic diversity in two related plant species with and without sex chromosomes--Silene latifolia and S. vulgaris

. 2012 ; 7 (2) : e31898. [epub] 20120229

A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons

. 2011 Dec ; 139 (11-12) : 1543-55. [epub] 20120429

Plant centromeric retrotransposons: a structural and cytogenetic perspective

. 2011 Mar 03 ; 2 (1) : 4. [epub] 20110303

Structure and evolution of Apetala3, a sex-linked gene in Silene latifolia

. 2010 Aug 18 ; 10 () : 180. [epub] 20100818

Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes

. 2008 ; 16 (7) : 961-76. [epub] 20081015

Zobrazit více v PubMed

GENBANK
DQ023669, DQ023670

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...