A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- DNA rostlinná * MeSH
- fylogeneze MeSH
- genetická vazba MeSH
- kapradiny klasifikace genetika MeSH
- koncové repetice * MeSH
- molekulární sekvence - údaje MeSH
- otevřené čtecí rámce * MeSH
- pořadí genů MeSH
- retroelementy * MeSH
- rostlinné viry genetika MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná * MeSH
- retroelementy * MeSH
Long terminal repeat (LTR) retrotransposons make up substantial parts of most higher plant genomes where they accumulate due to their replicative mode of transposition. Although the transposition is facilitated by proteins encoded within the gag-pol region which is common to all autonomous elements, some LTR retrotransposons were found to potentially carry an additional protein coding capacity represented by extra open reading frames located upstream or downstream of gag-pol. In this study, we performed a comprehensive in silico survey and comparative analysis of these extra open reading frames (ORFs) in the group of Ty3/gypsy LTR retrotransposons as the first step towards our understanding of their origin and function. We found that extra ORFs occur in all three major lineages of plant Ty3/gypsy elements, being the most frequent in the Tat lineage where most (77 %) of identified elements contained extra ORFs. This lineage was also characterized by the highest diversity of extra ORF arrangement (position and orientation) within the elements. On the other hand, all of these ORFs could be classified into only two broad groups based on their mutual similarities or the presence of short conserved motifs in their inferred protein sequences. In the Athila lineage, the extra ORFs were confined to the element 3' regions but they displayed much higher sequence diversity compared to those found in Tat. In the lineage of Chromoviruses the extra ORFs were relatively rare, occurring only in 5' regions of a group of elements present in a single plant family (Poaceae). In all three lineages, most extra ORFs lacked sequence similarities to characterized gene sequences or functional protein domains, except for two Athila-like elements with similarities to LOGL4 gene and part of the Chromoviruses extra ORFs that displayed partial similarity to histone H3 gene. Thus, in these cases the extra ORFs most likely originated by transduction or recombination of cellular gene sequences. In addition, the protein domain which is otherwise associated with DNA transposons have been detected in part of the Tat-like extra ORFs, pointing to their origin from an insertion event of a mobile element.
Zobrazit více v PubMed
Trends Genet. 2000 Apr;16(4):151-2 PubMed
Mob DNA. 2011 Mar 03;2(1):4 PubMed
BMC Evol Biol. 2007 Aug 29;7:152 PubMed
Mol Gen Genet. 1999 Jan;260(6):593-602 PubMed
Nature. 2008 Apr 24;452(7190):991-6 PubMed
Plant J. 2010 Aug;63(4):584-98 PubMed
Plant Cell. 1994 Aug;6(8):1177-86 PubMed
Genome Res. 2001 Dec;11(12):2041-9 PubMed
Genome Biol. 2004;5(10):R79 PubMed
Genome Res. 2002 Jan;12(1):122-31 PubMed
Gene. 2007 Apr 1;390(1-2):108-16 PubMed
J Mol Biol. 2001 Jan 19;305(3):567-80 PubMed
Annu Rev Genet. 1999;33:479-532 PubMed
Nucleic Acids Res. 2006;34(22):6505-20 PubMed
PLoS One. 2011;6(11):e27335 PubMed
Genome Res. 2007 Jul;17(7):1072-81 PubMed
Nature. 2007 Sep 27;449(7161):463-7 PubMed
Genetics. 2006 Jun;173(2):1047-56 PubMed
RNA. 2003 Dec;9(12):1422-30 PubMed
Genomics. 1997 Nov 15;46(1):24-36 PubMed
Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22 PubMed
Science. 2009 Nov 20;326(5956):1112-5 PubMed
Nature. 2010 Jan 14;463(7278):178-83 PubMed
Nucleic Acids Res. 2007 Jan;35(Database issue):D883-7 PubMed
J Biol Chem. 2001 Nov 9;276(45):41963-8 PubMed
Gene. 2009 Dec 15;448(2):198-206 PubMed
Mol Biol Evol. 2000 Jul;17(7):1040-9 PubMed
Nature. 2009 Jan 29;457(7229):551-6 PubMed
Mol Genet Genomics. 2005 Mar;273(1):43-53 PubMed
Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9 PubMed
Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8 PubMed
BMC Evol Biol. 2005 May 05;5:30 PubMed
Bioinformatics. 2001 Mar;17(3):282-3 PubMed
Nature. 2010 Feb 11;463(7282):763-8 PubMed
Nucleic Acids Res. 2008 Jan;36(Database issue):D38-46 PubMed
BMC Mol Biol. 2007 Oct 25;8:94 PubMed
Nat Genet. 2011 May;43(5):476-81 PubMed
Plant Mol Biol. 2003 Oct;53(3):399-410 PubMed
Bioinformatics. 2002 Jan;18(1):77-82 PubMed
Genome Biol. 2002 Sep 13;3(10):RESEARCH0053 PubMed
Viruses. 2011 May;3(5):456-68 PubMed
Nucleic Acids Res. 1999 Jan 15;27(2):573-80 PubMed
Genetica. 1997;100(1-3):15-28 PubMed
BMC Bioinformatics. 2010 Jul 15;11:378 PubMed
Mol Genet Genomics. 2006 Sep;276(3):254-63 PubMed
Plant Cell. 2009 Oct;21(10):3152-69 PubMed
Genes Genet Syst. 1999 Jun;74(3):83-91 PubMed
Genome Biol. 2004;5(6):225 PubMed
Science. 2006 Sep 15;313(5793):1596-604 PubMed
Trends Plant Sci. 2004 Feb;9(2):84-90 PubMed
Mol Genet Genomics. 2008 Nov;280(5):427-36 PubMed
Mol Biol Evol. 2004 May;21(5):781-98 PubMed
Plant J. 2009 Dec;60(5):820-31 PubMed
Gene. 2009 Dec 15;448(2):168-73 PubMed
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8 PubMed
Transposable elements and G-quadruplexes
Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons