A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons

. 2011 Dec ; 139 (11-12) : 1543-55. [epub] 20120429

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22544262

Long terminal repeat (LTR) retrotransposons make up substantial parts of most higher plant genomes where they accumulate due to their replicative mode of transposition. Although the transposition is facilitated by proteins encoded within the gag-pol region which is common to all autonomous elements, some LTR retrotransposons were found to potentially carry an additional protein coding capacity represented by extra open reading frames located upstream or downstream of gag-pol. In this study, we performed a comprehensive in silico survey and comparative analysis of these extra open reading frames (ORFs) in the group of Ty3/gypsy LTR retrotransposons as the first step towards our understanding of their origin and function. We found that extra ORFs occur in all three major lineages of plant Ty3/gypsy elements, being the most frequent in the Tat lineage where most (77 %) of identified elements contained extra ORFs. This lineage was also characterized by the highest diversity of extra ORF arrangement (position and orientation) within the elements. On the other hand, all of these ORFs could be classified into only two broad groups based on their mutual similarities or the presence of short conserved motifs in their inferred protein sequences. In the Athila lineage, the extra ORFs were confined to the element 3' regions but they displayed much higher sequence diversity compared to those found in Tat. In the lineage of Chromoviruses the extra ORFs were relatively rare, occurring only in 5' regions of a group of elements present in a single plant family (Poaceae). In all three lineages, most extra ORFs lacked sequence similarities to characterized gene sequences or functional protein domains, except for two Athila-like elements with similarities to LOGL4 gene and part of the Chromoviruses extra ORFs that displayed partial similarity to histone H3 gene. Thus, in these cases the extra ORFs most likely originated by transduction or recombination of cellular gene sequences. In addition, the protein domain which is otherwise associated with DNA transposons have been detected in part of the Tat-like extra ORFs, pointing to their origin from an insertion event of a mobile element.

Zobrazit více v PubMed

Trends Genet. 2000 Apr;16(4):151-2 PubMed

Mob DNA. 2011 Mar 03;2(1):4 PubMed

BMC Evol Biol. 2007 Aug 29;7:152 PubMed

Mol Gen Genet. 1999 Jan;260(6):593-602 PubMed

Nature. 2008 Apr 24;452(7190):991-6 PubMed

Plant J. 2010 Aug;63(4):584-98 PubMed

Plant Cell. 1994 Aug;6(8):1177-86 PubMed

Genome Res. 2001 Dec;11(12):2041-9 PubMed

Genome Biol. 2004;5(10):R79 PubMed

Genome Res. 2002 Jan;12(1):122-31 PubMed

Gene. 2007 Apr 1;390(1-2):108-16 PubMed

J Mol Biol. 2001 Jan 19;305(3):567-80 PubMed

Annu Rev Genet. 1999;33:479-532 PubMed

Nucleic Acids Res. 2006;34(22):6505-20 PubMed

PLoS One. 2011;6(11):e27335 PubMed

Genome Res. 2007 Jul;17(7):1072-81 PubMed

Nature. 2007 Sep 27;449(7161):463-7 PubMed

Genetics. 2006 Jun;173(2):1047-56 PubMed

RNA. 2003 Dec;9(12):1422-30 PubMed

Genomics. 1997 Nov 15;46(1):24-36 PubMed

Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22 PubMed

Science. 2009 Nov 20;326(5956):1112-5 PubMed

Nature. 2010 Jan 14;463(7278):178-83 PubMed

Nucleic Acids Res. 2007 Jan;35(Database issue):D883-7 PubMed

J Biol Chem. 2001 Nov 9;276(45):41963-8 PubMed

Gene. 2009 Dec 15;448(2):198-206 PubMed

Mol Biol Evol. 2000 Jul;17(7):1040-9 PubMed

Nature. 2009 Jan 29;457(7229):551-6 PubMed

Mol Genet Genomics. 2005 Mar;273(1):43-53 PubMed

Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9 PubMed

Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8 PubMed

BMC Evol Biol. 2005 May 05;5:30 PubMed

Bioinformatics. 2001 Mar;17(3):282-3 PubMed

Nature. 2010 Feb 11;463(7282):763-8 PubMed

Nucleic Acids Res. 2008 Jan;36(Database issue):D38-46 PubMed

BMC Mol Biol. 2007 Oct 25;8:94 PubMed

Nat Genet. 2011 May;43(5):476-81 PubMed

Plant Mol Biol. 2003 Oct;53(3):399-410 PubMed

Bioinformatics. 2002 Jan;18(1):77-82 PubMed

Genome Biol. 2002 Sep 13;3(10):RESEARCH0053 PubMed

Viruses. 2011 May;3(5):456-68 PubMed

Nucleic Acids Res. 1999 Jan 15;27(2):573-80 PubMed

Genetica. 1997;100(1-3):15-28 PubMed

BMC Bioinformatics. 2010 Jul 15;11:378 PubMed

Mol Genet Genomics. 2006 Sep;276(3):254-63 PubMed

Plant Cell. 2009 Oct;21(10):3152-69 PubMed

Genes Genet Syst. 1999 Jun;74(3):83-91 PubMed

Genome Biol. 2004;5(6):225 PubMed

Science. 2006 Sep 15;313(5793):1596-604 PubMed

Trends Plant Sci. 2004 Feb;9(2):84-90 PubMed

Mol Genet Genomics. 2008 Nov;280(5):427-36 PubMed

Mol Biol Evol. 2004 May;21(5):781-98 PubMed

Plant J. 2009 Dec;60(5):820-31 PubMed

Gene. 2009 Dec 15;448(2):168-73 PubMed

Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...