Transposable elements and G-quadruplexes
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
26403244
DOI
10.1007/s10577-015-9491-7
PII: 10.1007/s10577-015-9491-7
Knihovny.cz E-zdroje
- Klíčová slova
- DNA and RNA quadruplexes, G-quadruplexes, LTR retrotransposons, recombination, replication, transcription, transposable elements,
- MeSH
- DNA vazebné proteiny metabolismus MeSH
- G-kvadruplexy * MeSH
- genomika MeSH
- lidé MeSH
- otevřené čtecí rámce MeSH
- regulace genové exprese MeSH
- regulační oblasti nukleových kyselin MeSH
- repetitivní sekvence nukleových kyselin MeSH
- replikace DNA MeSH
- retroelementy genetika MeSH
- RNA chemie genetika MeSH
- rostliny genetika MeSH
- transpozibilní elementy DNA genetika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- retroelementy MeSH
- RNA MeSH
- transpozibilní elementy DNA MeSH
A significant part of eukaryotic genomes is formed by transposable elements (TEs) containing not only genes but also regulatory sequences. Some of the regulatory sequences located within TEs can form secondary structures like hairpins or three-stranded (triplex DNA) and four-stranded (quadruplex DNA) conformations. This review focuses on recent evidence showing that G-quadruplex-forming sequences in particular are often present in specific parts of TEs in plants and humans. We discuss the potential role of these structures in the TE life cycle as well as the impact of G-quadruplexes on replication, transcription, translation, chromatin status, and recombination. The aim of this review is to emphasize that TEs may serve as vehicles for the genomic spread of G-quadruplexes. These non-canonical DNA structures and their conformational switches may constitute another regulatory system that, together with small and long non-coding RNA molecules and proteins, contribute to the complex cellular network resulting in the large diversity of eukaryotes.
Zobrazit více v PubMed
Nucleic Acids Res. 2013 Jun;41(11):5898-911 PubMed
Curr Opin Struct Biol. 1998 Jun;8(3):321-30 PubMed
FEBS Lett. 1999 Jun 18;453(1-2):59-62 PubMed
J Virol. 1989 Sep;63(9):4085-7 PubMed
Nat Rev Genet. 2012 Nov;13(11):770-80 PubMed
BMC Genomics. 2014 Nov 27;15:1032 PubMed
RNA. 2008 May;14(5):814-21 PubMed
Wiley Interdiscip Rev RNA. 2012 Jul-Aug;3(4):495-507 PubMed
Nucleic Acids Res. 2011 Feb;39(3):936-48 PubMed
Heredity (Edinb). 2006 Dec;97(6):381-8 PubMed
Mob DNA. 2010 May 12;1(1):15 PubMed
Biol Direct. 2011 Jan 06;6:2 PubMed
Nat Rev Genet. 2007 Dec;8(12):973-82 PubMed
Genetica. 2011 Dec;139(11-12):1543-55 PubMed
Nat Struct Mol Biol. 2014 Jul;21(7):633-40 PubMed
Cell Cycle. 2012 Sep 1;11(17):3290-303 PubMed
Cell. 2010 Oct 29;143(3):335-6 PubMed
Genome Biol. 2002 Sep 19;3(10):research0052 PubMed
BMC Evol Biol. 2013 May 21;13:101 PubMed
PLoS Biol. 2005 Jun;3(6):e181 PubMed
Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6470-5 PubMed
Gene. 1993 Dec 15;135(1-2):99-109 PubMed
Plant Cell. 1999 Sep;11(9):1769-1784 PubMed
Biochemistry. 2014 Apr 29;53(16):2581-93 PubMed
Sci Rep. 2015 Mar 16;5:9165 PubMed
PLoS Genet. 2009 Nov;5(11):e1000733 PubMed
J Am Chem Soc. 2010 Dec 22;132(50):17831-9 PubMed
Plant Cell. 1992 Oct;4(10):1283-94 PubMed
PLoS One. 2011;6(11):e27513 PubMed
Nucleic Acids Res. 2009 May;37(9):2841-53 PubMed
Mol Biol Evol. 1997 Feb;14(2):144-55 PubMed
Cell Mol Life Sci. 2012 Nov;69(21):3613-34 PubMed
Angew Chem Int Ed Engl. 2014 Apr 14;53(16):4107-12 PubMed
PLoS Genet. 2013 Apr;9(4):e1003470 PubMed
Nature. 2003 Jan 23;421(6921):397-8; discussion 396 PubMed
Nucleic Acids Res. 2007;35(15):4927-40 PubMed
Chembiochem. 2010 Feb 15;11(3):331-4 PubMed
Biochemistry. 2011 May 17;50(19):4162-72 PubMed
Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3393-7 PubMed
RNA Biol. 2013 Aug;10(8):1379-95 PubMed
Trends Biochem Sci. 2008 Dec;33(12 ):609-20 PubMed
PLoS Genet. 2013 Jun;9(6):e1003569 PubMed
Nucleic Acids Res. 2014 Jan;42(2):968-78 PubMed
BMC Genomics. 2010 Feb 04;11:89 PubMed
Epigenetics. 2012 Jul;7(7):758-71 PubMed
RNA Biol. 2012 Jan;9(1):81-6 PubMed
Mol Cell Biol. 1999 Sep;19(9):6260-8 PubMed
Nucleic Acids Res. 2014 Dec 1;42(21):13393-404 PubMed
Mob Genet Elements. 2014 Jan 1;4(1):e28084 PubMed
Nature. 2006 Oct 5;443(7111):521-4 PubMed
Gene. 2011 Apr 1;475(1):39-48 PubMed
Genes Dev. 2014 Jul 1;28(13):1410-28 PubMed
PLoS One. 2014 Jun 17;9(6):e100194 PubMed
Nucleic Acids Res. 2007;35(2):406-13 PubMed
J Mol Biol. 2003 Feb 14;326(2):529-42 PubMed
Mol Biosyst. 2009 Dec;5(12):1713-9 PubMed
Biochemistry. 2013 Oct 15;52(41):7207-16 PubMed
Mol Cell Biol. 2008 Jun;28(12):4116-28 PubMed
PLoS One. 2012;7(11):e47924 PubMed
Biochem J. 2010 Aug 15;430(1):119-28 PubMed
Biochim Biophys Acta. 2001 Jul 2;1527(1-2):73-80 PubMed
Gene. 2009 Dec 15;448(2):198-206 PubMed
PLoS One. 2013;8(1):e45519 PubMed
Int J Mol Sci. 2014 Sep 29;15(10):17493-517 PubMed
Bioessays. 2006 Sep;28(9):913-22 PubMed
Non-canonical DNA in human and other ape telomere-to-telomere genomes