Guanine quadruplexes are formed by specific regions of human transposable elements

. 2014 Nov 27 ; 15 (1) : 1032. [epub] 20141127

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25431265

BACKGROUND: Transposable elements form a significant proportion of eukaryotic genomes. Recently, Lexa et al. (Nucleic Acids Res 42:968-978, 2014) reported that plant long terminal repeat (LTR) retrotransposons often contain potential quadruplex sequences (PQSs) in their LTRs and experimentally confirmed their ability to adopt four-stranded DNA conformations. RESULTS: Here, we searched for PQSs in human retrotransposons and found that PQSs are specifically localized in the 3'-UTR of LINE-1 elements, in LTRs of HERV elements and are strongly accumulated in specific regions of SVA elements. Circular dichroism spectroscopy confirmed that most PQSs had adopted monomolecular or bimolecular guanine quadruplex structures. Evolutionarily young SVA elements contained more PQSs than older elements and their propensity to form quadruplex DNA was higher. Full-length L1 elements contained more PQSs than truncated elements; the highest proportion of PQSs was found inside transpositionally active L1 elements (PA2 and HS families). CONCLUSIONS: Conservation of quadruplexes at specific positions of transposable elements implies their importance in their life cycle. The increasing quadruplex presence in evolutionarily young LINE-1 and SVA families makes these elements important contributors toward present genome-wide quadruplex distribution.

Zobrazit více v PubMed

Gotea V, Makalowski W. Do transposable elements really contribute to proteomes? Trends Genet. 2006;22:260–261. doi: 10.1016/j.tig.2006.03.006. PubMed DOI

Britten R. Transposable elements have contributed to thousands of human proteins. Proc Natl Acad Sci USA. 2006;103:1798–1803. doi: 10.1073/pnas.0510007103. PubMed DOI PMC

Kazazian JHH, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE. Haemophilia a resulting from de novo insertion of l1 sequences represents a novel mechanism for mutation in man. Nature. 1988;332:164–166. doi: 10.1038/332164a0. PubMed DOI

Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J, Kinzler KW, Vogelstein B, Nakamura Y. Disruption of the apc gene by a retrotransposal insertion of l1 sequence in colon cancer. Cancer Res. 1992;52:643–645. PubMed

Bailie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, Brennan PM, Rizzu P, Smith S, Fell M, Talbot RT, Gustincich S, Freeman TC, Mattick JS, Hume DA, Heutink P, Carninci P, Jeddeloh JA, Faulkner GJ. Somatic retrotransposition alters the genetic landscape of the human brain. Nature. 2011;479:534–537. doi: 10.1038/nature10531. PubMed DOI PMC

Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC, Lehmann HS, Parker JJ, Atabay KD, Gilmore EC, Poduri A, Park PJ, Walsh CA. Single-neuron sequencing analysis of l1 retrotransposition and somatic mutation in the human brain. Cell. 2012;151:483–496. doi: 10.1016/j.cell.2012.09.035. PubMed DOI PMC

Lee E, Iskow R, Yang L, Gokcumen O, Gokcumen O, Haseley P, Luquette L, Jr, Lohr JG, Harris CC, Ding L, Wilson RK, Wheeler DA, Gibbs RA, Kucherlapati R, Lee C, Kharchenko PV, Park PJ. Landscape of somatic retrotransposition in human cancers. Science. 2012;337:967–971. doi: 10.1126/science.1222077. PubMed DOI PMC

Babatz TD, Burns KH. Functional impact of the human mobilome. Curr Opin Genet Dev. 2013;23:264–270. doi: 10.1016/j.gde.2013.02.007. PubMed DOI PMC

Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009;10:691–703. doi: 10.1038/nrg2640. PubMed DOI PMC

Biemont C, Vieira C. Junk dna as an evolutionary force. Nature. 2006;443:521–524. doi: 10.1038/443521a. PubMed DOI

Mayer J, Meese E. Human endogenous retroviruses in the primate lineage and their influence on host genomes. Cytogenet Genome Res. 2005;110:448–456. doi: 10.1159/000084977. PubMed DOI

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi: 10.1038/35057062. PubMed DOI

Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, Batzer MA. Sva elements: a hominid-specific retroposon family. J Mol Biol. 2005;354:994–1007. doi: 10.1016/j.jmb.2005.09.085. PubMed DOI

Mills RE, Bennett EA, Iskow RC, Devine SE. Which transposable elements are active in the human genome? Trends Genet. 2007;23:183–191. doi: 10.1016/j.tig.2007.02.006. PubMed DOI

Bochman M. J, Paeschke K, Zakian VA. Dna secondary structures: stability and function of g-quadruplex structures. Nat Rev Genet. 2012;13:770–780. doi: 10.1038/nrg3296. PubMed DOI PMC

Sundquist WI, Heaphy S. Evidence for intrastrand quadruplex formation in the dimerization of human immunodeficiency virus 1 genomic rna. Proc Natl Scad Sci USA. 1993;90:3393–3397. doi: 10.1073/pnas.90.8.3393. PubMed DOI PMC

Howell R, Usdin K. The ability to form intrastrand tetraplexes is an evolutionary conserved feature of the 3’ end of l1 retrotransposons. Mol Biol Evol. 1997;14:144–155. doi: 10.1093/oxfordjournals.molbev.a025747. PubMed DOI

Nambiar M, Goldsmith G, Moorthy BT, Lieber MR, Joshi MV, Choudhary B, Hosur RV, Raghavan SC. Formation of a q-quadruplex at the bcl2 major breakpoint region of the t(14;18) translocation in follicular lymphoma. Nucleic Acids Res. 2011;39:936–948. doi: 10.1093/nar/gkq824. PubMed DOI PMC

Kapitonov VV, Jurka J. Rag1 core and v(d)j recombination signal sequences were derived from transib transposons. PLoS Biol. 2005;3:181. doi: 10.1371/journal.pbio.0030181. PubMed DOI PMC

Lexa M, Kejnovsky E, Steflova P, Konvalinova H, Vorlickova M, Vyskot B. Quadruplex-forming sequences occupy discrete regions inside plant ltr retrotransposons. Nucleic Acids Res. 2014;42:968–978. doi: 10.1093/nar/gkt893. PubMed DOI PMC

Kejnovsky E, Lexa M. Quadruplex-forming dna sequences spread by retrotransposons may serve as genome regulators. Mobile Genet Elements. 2014;4:101. doi: 10.4161/mge.28084. PubMed DOI PMC

Savage AL, Bubb VJ, Breen G, Quinn JP. Characterization of the potential function of sva retrotransposons to modulate gene expression patterns. BMC Evol Biol. 2013;13:101. doi: 10.1186/1471-2148-13-101. PubMed DOI PMC

Huppert JL, Balasubramanian S. Q-quadruplexes in promoters throughout the human genome. Nucl Acids Res. 2005;35:406–413. doi: 10.1093/nar/gkl1057. PubMed DOI PMC

Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucl Acids Res. 2007;33:2908–2916. doi: 10.1093/nar/gki609. PubMed DOI PMC

Lam EYN, Beraldi D, Tannahill D, Balasubramanian S. G-quadruplex structures are stable and detectable in human genomic dna. Nat Commun. 2013;4:1796. doi: 10.1038/ncomms2792. PubMed DOI PMC

Mills RE, Bennett EA, Iskow RC, Luttig CT, Tsui C, Pittard WS, Devine SE. Recently mobilised transposons in the human and chimpanzee genomes. Am J Hum Genet. 2006;78:671–679. doi: 10.1086/501028. PubMed DOI PMC

Bennett EA, Keller H, Mills RE, Schmidt S, Moran JV, Weichenrieder O, Devine SE. Active alu retrotransposons in the human genome. Genome Res. 2008;18:1875–1883. doi: 10.1101/gr.081737.108. PubMed DOI PMC

Vorlickova M, Kejnovska I, Sagi J, Renciuk D, Bednarova K, Motlova J, Kypr J. Circular dichroism and guanine quadruplexes. Methods. 2012;57:64–75. doi: 10.1016/j.ymeth.2012.03.011. PubMed DOI

Kypr J, Kejnovska I, Renciuk D, Vorlickova M. Circular dichroism and conformational polymorphism of dna. Nucl Acids Res. 2009;37:1713–1725. doi: 10.1093/nar/gkp026. PubMed DOI PMC

Todd AK, Johnstone M, Neidle S. Highly prevalent putative quadruplex sequence motifs in human dna. Nucl Acids Res. 2005;33:2901–2907. doi: 10.1093/nar/gki553. PubMed DOI PMC

Eyre-Walker A, Hurst LD. The evolution of isochores. Nat Rev Genetics. 2001;2:549–555. doi: 10.1038/35080577. PubMed DOI

McClintock B. The significance of response of the genome to challenge. Science. 1983;226:792–801. doi: 10.1126/science.15739260. PubMed DOI

Cayrou C, Coulombe P, Puy A, Rialle S, Kaplan N, Segal E, Mechali M. New insights into replication origin characteristics in metazoans. Cell Cycle. 2012;11:658–667. doi: 10.4161/cc.11.4.19097. PubMed DOI PMC

Gelfman S, Cohen N, Yearim A, Ast G. Dna-methylation effect on cotranscriptional splicing is dependent on gc architecture of the exon-intron structure. Genome Res. 2013;23:789–799. doi: 10.1101/gr.143503.112. PubMed DOI PMC

Wong HM, Huppert JL. Stable g-quadruplexes are found outside nucleosome-bound regions. Mol Biosyst. 2009;5:1713–1719. doi: 10.1039/b905848f. PubMed DOI

De S, Michor F. Dna secondary structures and epigenetic determinants of cancer genome evolution. Nat Struct Mol Biol. 2011;18:950–956. doi: 10.1038/nsmb.2089. PubMed DOI PMC

Gangadharan S, Mularoni L, Fain-Thornton J, Wheelan SJ, Craig NL. Dna transposon hermes inserts into dna in nucleosome-free regions in vivo. Proc Natl Acad Sci USA. 2010;107:21966–21972. doi: 10.1073/pnas.1016382107. PubMed DOI PMC

Whitehouse I, Owen-Hughes T. Atrx: put me on repeat. Cell. 2010;143:335–336. doi: 10.1016/j.cell.2010.10.021. PubMed DOI

Cui F, Sirotkin MV, Zhurkin VB. Impact of alu repeats on the evolution of human p53 binding sites. Biol Direct. 2011;6:2. doi: 10.1186/1745-6150-6-2. PubMed DOI PMC

Harris CR, DeWang A, Zupnick A, Normart R, Gabriel A, Prives C, Levine AJ, Hoh J. p53 responsive elements in human retrotransposons. Oncogene. 2009;28:3857–3865. doi: 10.1038/onc.2009.246. PubMed DOI PMC

Quante T, Otto B, Brazdova M, Kejnovska I, Deppert W, Tolstonog GV. Mutant p53 is a transcriptional co-factor that binds to g-rich regulatory regions of active genes and generates transcriptional plasticity. Cell Cycle. 2012;11:3290–3303. doi: 10.4161/cc.21646. PubMed DOI PMC

Dawns JA, Jackson SP. Involvement of dna end-binding protein ku in ty element retrotransposition. Mol Cell Biol. 1999;19:6260–6268. PubMed PMC

Paramasivan M, Membrino A, Cogoi S, Fukuda H, Nakagama H, Xodo LE. Protein hnrnp a1 and its derivate up1 unfold quadruplex dna in the human kras promoter: implications for transcription. Nucl Acids Res. 2009;37:2841–2853. doi: 10.1093/nar/gkp138. PubMed DOI PMC

Katz DJ, Beer MA, Levorse JM, Tilghman SM. Functional characterization of a novel ku70/80 pause site at the h19/igf2 imprinting control region. Mol Cell Biol. 2005;25:3855–3863. doi: 10.1128/MCB.25.10.3855-3863.2005. PubMed DOI PMC

Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ. The ucsc table browser data retrieval tool. Nucleic Acids Res. 2004;32(Database issue):493–496. doi: 10.1093/nar/gkh103. PubMed DOI PMC

Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M, Harte RA, Heitner S, Hinrichs AS, Learned K, Lee BT, Li CH, Raney BJ, Rhead B, Rosenbloom KR, Sloan CA, Speir ML, Zweig AS, Haussler D, Kuhn RM, Kent WJ. The ucsc genome browser database: 2014 update. Nucleic Acids Res. 2014;42:764–770. doi: 10.1093/nar/gkt1168. PubMed DOI PMC

Gray DM, Hung SH, Johnson KH. Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol. 1995;246:19–34. doi: 10.1016/0076-6879(95)46005-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...