Telomeric retrotransposons show propensity to form G-quadruplexes in various eukaryotic species
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
37038191
PubMed Central
PMC10088271
DOI
10.1186/s13100-023-00291-9
PII: 10.1186/s13100-023-00291-9
Knihovny.cz E-zdroje
- Klíčová slova
- Drosophila, G-quadruplex, Het-A, Retrotransposon, TAHRE, TART, Telomere,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Canonical telomeres (telomerase-synthetised) are readily forming G-quadruplexes (G4) on the G-rich strand. However, there are examples of non-canonical telomeres among eukaryotes where telomeric tandem repeats are invaded by specific retrotransposons. Drosophila melanogaster represents an extreme example with telomeres composed solely by three retrotransposons-Het-A, TAHRE and TART (HTT). Even though non-canonical telomeres often show strand biased G-distribution, the evidence for the G4-forming potential is limited. RESULTS: Using circular dichroism spectroscopy and UV absorption melting assay we have verified in vitro G4-formation in the HTT elements of D. melanogaster. Namely 3 in Het-A, 8 in TART and 2 in TAHRE. All the G4s are asymmetrically distributed as in canonical telomeres. Bioinformatic analysis showed that asymmetric distribution of potential quadruplex sequences (PQS) is common in telomeric retrotransposons in other Drosophila species. Most of the PQS are located in the gag gene where PQS density correlates with higher DNA sequence conservation and codon selection favoring G4-forming potential. The importance of G4s in non-canonical telomeres is further supported by analysis of telomere-associated retrotransposons from various eukaryotic species including green algae, Diplomonadida, fungi, insects and vertebrates. Virtually all analyzed telomere-associated retrotransposons contained PQS, frequently with asymmetric strand distribution. Comparison with non-telomeric elements showed independent selection of PQS-rich elements from four distinct LINE clades. CONCLUSION: Our findings of strand-biased G4-forming motifs in telomere-associated retrotransposons from various eukaryotic species support the G4-formation as one of the prerequisites for the recruitment of specific retrotransposons to chromosome ends and call for further experimental studies.
Zobrazit více v PubMed
Kubo Y, Okazaki S, Anzai T, Fujiwara H. Structural and phylogenetic analysis of TRAS, telomeric repeat-specific non-LTR retrotransposon families in Lepidopteran insects. Mol Biol Evol. 2001;18:848–857. doi: 10.1093/oxfordjournals.molbev.a003866. PubMed DOI
Osanai-Futahashi M, Fujiwara H. Coevolution of telomeric repeats and telomeric repeat-specific non-LTR retrotransposons in insects. Mol Biol Evol. 2011;28:2983–2986. doi: 10.1093/molbev/msr135. PubMed DOI
Takahashi H, Okazaki S, Fujiwara H. A new family of site-specific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm. Bombyx mori Nucleic Acids Res. 1997;25:1578–1584. doi: 10.1093/nar/25.8.1578. PubMed DOI PMC
Arkhipova IR, Morrison HG. Three retrotransposon families in the genome of Giardia lamblia: two telomeric, one dead. Proc Natl Acad Sci USA. 2001;98:14497–14502. doi: 10.1073/pnas.231494798. PubMed DOI PMC
Higashiyama T, Noutoshi Y, Fujie M, Yamada T. Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. EMBO J. 1997;16:3715–3723. doi: 10.1093/emboj/16.12.3715. PubMed DOI PMC
Starnes JH, Thornbury DW, Novikova OS, Rehmeyer CJ, Farman ML. Telomere-targeted retrotransposons in the rice blast fungus Magnaporthe oryzae: agents of telomere instability. Genetics. 2012;191:389–406. doi: 10.1534/genetics.111.137950. PubMed DOI PMC
Kojima KK, Jurka J. Telomere-specific Tx1 non-LTR retrotransposons from green anole. Repbase Rep. 2013;13:843.
Mason JM, Frydrychova RC, Biessmann H. Drosophila telomeres: an exception providing new insights. BioEssays. 2008;30:25–37. doi: 10.1002/bies.20688. PubMed DOI PMC
Villasante A, de Pablos B, M’endez-Lago M, Abad JP. Telomere maintenance in Drosophila: rapid transposon evolution at chromosome ends. Cell Cycle. 2008;7:2134–2138. doi: 10.4161/cc.7.14.6275. PubMed DOI
Saint-Leandre B, Nguyen SC, Levine MT. Diversification and collapse of a telomere elongation mechanism. Genome Res. 2019;29:920–931. doi: 10.1101/gr.245001.118. PubMed DOI PMC
Löpez CC, Nielsen L, Edström JE. Terminal long tandem repeats in chromosomes form Chironomus pallidivittatus. Mol Cell Biol. 1996;16:3285–3290. doi: 10.1128/MCB.16.7.3285. PubMed DOI PMC
Tran PLT, Mergny JL, Alberti P. Stability of telomeric G-quadruplexes. Nucleic Acids Res. 2011;39:3282. doi: 10.1093/nar/gkq1292. PubMed DOI PMC
Bryan TM. G-Quadruplexes at Telomeres: Friend or Foe? Molecules. 2020;25(16):3686. doi: 10.3390/molecules25163686. PubMed DOI PMC
Danilevskaya ON, Lowenhaupt K, Pardue ML. Conserved subfamilies of the Drosophila HeT-A telomere-specific retrotransposon. Genetics. 1998;148:233–242. doi: 10.1093/genetics/148.1.233. PubMed DOI PMC
Abad JP, Villasante A. The 3 non-coding region of the Drosophila melanogaster HeT-A telomeric retrotransposon contains sequences with propensity to form G-quadruplex DNA. FEBS Lett. 1999;453:59–62. doi: 10.1016/S0014-5793(99)00695-X. PubMed DOI
Kejnovsky E, Lexa M. Quadruplex-forming DNA sequences spread by retrotransposons may serve as genome regulators. Mobile Genet Elem. 2014;4:e28084. doi: 10.4161/mge.28084. PubMed DOI PMC
Hon J, Martínek T, Zendulka J, Lexa M. pqsfinder: an exhaustive and imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioinformatics. 2017;33:3373–3379. doi: 10.1093/bioinformatics/btx413. PubMed DOI
Labudová D, Hon J, Lexa M. pqsfinder web: G-quadruplex prediction using optimized pqsfinder algorithm. Bioinformatics. 2020;36:2584–2586. doi: 10.1093/bioinformatics/btz928. PubMed DOI
McGurk MP, Dion-Côté AM, Barbash DA. Rapid evolution at the Drosophila telomere: transposable element dynamics at an intrinsically unstable locus. Genetics. 2021;217:iyaa027. doi: 10.1093/genetics/iyaa027. PubMed DOI PMC
Kypr J, Kejnovská I, Renciuk D, Vorlícková M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009;37:1713–1725. doi: 10.1093/nar/gkp026. PubMed DOI PMC
Mergny JL, Phan AT, Lacroix L. Following G-quartet formation by UV-spectroscopy. FEBS Lett. 1998;435:74–78. doi: 10.1016/S0014-5793(98)01043-6. PubMed DOI
Villasante A, Abad JP, Planelló R, Méndez-Lago M, Celniker SE, de Pablos B. Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase. Genome Res. 2007;17:1909–1918. doi: 10.1101/gr.6365107. PubMed DOI PMC
Biessmann H, Zurovcova M, Yao JG, Lozovskaya E, Walter MF. A telomeric satellite in Drosophila virilis and its sibling species. Chromosoma. 2000;109:372–380. doi: 10.1007/s004120000094. PubMed DOI
Seetharam AS, Stuart GW. Whole genome phylogeny for 21 Drosophila species using predicted 2b-RAD fragments. PeerJ. 2013;1:e226. doi: 10.7717/peerj.226. PubMed DOI PMC
Casacuberta E, Pardue ML. HeT-A and TART, two Drosophila retrotransposons with a bona fide role in chromosome structure for more than 60 million years. Cytogenet Genome Res. 2005;110:152–159. doi: 10.1159/000084947. PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Monti V, Serafini C, Manicardi GC, Mandrioli M. Characterization of Non-LTR Retrotransposable TRAS Elements in the Aphids Acyrthosiphon pisum and Myzus persicae (Aphididae, Hemiptera) J Hered. 2013;104:547–553. doi: 10.1093/jhered/est017. PubMed DOI
Gladyshev EA, Arkhipova IR. Telomere-associated endonuclease-deficient Penelope-like retroelements in diverse eukaryotes. Proc Natl Acad Sci. 2007;104(22):9352–9357. doi: 10.1073/pnas.0702741104. PubMed DOI PMC
Fujiwara H, Osanai M, Matsumoto T, Kojima KK. Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm. Bombyx mori Chromosome Res. 2005;13:455–467. doi: 10.1007/s10577-005-0990-9. PubMed DOI
Fujiwara H. Site-specific non-LTR retrotransposons. Microbiol Spectr. 2015;3:A3–3. doi: 10.1128/microbiolspec.MDNA3-0001-2014. PubMed DOI
Hoffmann RF, Moshkin YM, Mouton S, Grzeschik NA, Kalicharan RD, Kuipers J, et al. Guanine quadruplex structures localize to heterochromatin. Nucleic Acids Res. 2016;44:152–163. doi: 10.1093/nar/gkv900. PubMed DOI PMC
Hoffmann RF, Moshkin YM, Mouton S, Grzeschik NA, Kalicharan RD, et al. Guanine quadruplex structures localize to heterochromatin. Nucleic Acids Res. 2017;45:6253. doi: 10.1093/nar/gkx301. PubMed DOI PMC
Morrish TA, Garcia-Perez JL, Stamato TD, Taccioli GE, Sekiguchi J, Moran JV. Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. Nature. 2007;446:208–212. doi: 10.1038/nature05560. PubMed DOI
Lexa M, Steflova P, Martinek T, Vorlickova M, Vyskot B, Kejnovsky E. Guanine quadruplexes are formed by specific regions of human transposable elements. BMC Genomics. 2014;15:1032. doi: 10.1186/1471-2164-15-1032. PubMed DOI PMC
Sahakyan AB, Murat P, Mayer C, Balasubramanian S. G-quadruplex structures within the 3 UTR of LINE-1 elements stimulate retrotransposition. Nat Struct Mol Biol. 2017;24:243–247. doi: 10.1038/nsmb.3367. PubMed DOI
Tokan V, Lorenzo Rodriguez JL, Jedlicka P, Kejnovska I, Hobza R, Kejnovsky E. Quadruplex-Forming Motif Inserted into 3’UTR of Ty1his3-AI Retrotransposon Inhibits Retrotransposition in Yeast. Biology. 2021;10:347. doi: 10.3390/biology10040347. PubMed DOI PMC
Osanai M, Takahashi H, Kojima KK, Hamada M, Fujiwara H. Essential motifs in the 3’ untranslated region required for retrotransposition and the precise start of reverse transcription in non-long-terminal-repeat retrotransposon SART1. Mol Cell Biol. 2004;24:7902–7913. doi: 10.1128/MCB.24.18.7902-7913.2004. PubMed DOI PMC
Rong YS. Telomere capping in Drosophila: dealing with chromosome ends that most resemble DNA breaks. Chromosoma. 2008;117:235–242. doi: 10.1007/s00412-007-0144-2. PubMed DOI
Zhang L, Beaucher M, Cheng Y, Rong YS. Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in Drosophila. EMBO J. 2014;33:1148–1158. doi: 10.1002/embj.201386940. PubMed DOI PMC
Di Antonio M, Ponjavic A, Radzevičius A, Ranasinghe RT, Catalano M, Zhang X, et al. Single-molecule visualization of DNA G-quadruplex formation in live cells. Nat Chem. 2020;12:832–837. doi: 10.1038/s41557-020-0506-4. PubMed DOI PMC
Biffi G, Tannahill D, McCafferty J, Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem. 2013;5:182–186. doi: 10.1038/nchem.1548. PubMed DOI PMC
Huppert JL, Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007;35:406–413. doi: 10.1093/nar/gkl1057. PubMed DOI PMC
Lago S, Nadai M, Cernilogar FM, Kazerani M, Domíniguez MH, Schotta G, Richter SN. Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat Commun. 2021;12:3885. doi: 10.1038/s41467-021-24198-2. PubMed DOI PMC
Radion E, Ryazansky S, Akulenko N, Rozovsky Y, Kwon D, Morgunova V, et al. Telomeric Retrotransposon HeT-A Contains a Bidirectional Promoter that Initiates Divergent Transcription of piRNA Precursors in Drosophila Germline. J Mol Biol. 2017;429:3280–3289. doi: 10.1016/j.jmb.2016.12.002. PubMed DOI
Danilevskaya ON, Traverse KL, Hogan NC, DeBaryshe PG, Pardue ML. The two Drosophila telomeric transposable elements have very different patterns of transcription. Mol Cell Biol. 1999;19:873–881. doi: 10.1128/MCB.19.1.873. PubMed DOI PMC
Shpiz S, Kwon D, Rozovsky Y, Kalmykova A. rasiRNA pathway controls antisense expression of Drosophila telomeric retrotransposons in the nucleus. Nucleic Acids Res. 2009;37:268–278. doi: 10.1093/nar/gkn960. PubMed DOI PMC
Piñeyro D, López-Panadès E, Lucena-Pérez M, Casacuberta E. Transcriptional analysis of the HeT-A retrotransposon in mutant and wild type stocks reveals high sequence variability at Drosophila telomeres and other unusual features. BMC Genomics. 2011;12:573. doi: 10.1186/1471-2164-12-573. PubMed DOI PMC
Cacchione S, Cenci G, Raffa GD. Silence at the End: How Drosophila Regulates Expression and Transposition of Telomeric Retroelements. J Mol Biol. 2020;432:4305–4321. doi: 10.1016/j.jmb.2020.06.004. PubMed DOI
Vourekas A, Zheng K, Fu Q, Maragkakis M, Alexiou P, Ma J, Pillai RS, Mourelatos Z, Wang PJ. The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing. Genes Dev. 2015;29:617–629. doi: 10.1101/gad.254631.114. PubMed DOI PMC
Zhang X, Yu L, Ye S, Xie J, Huang X, Zheng K, Sun B. MOV10L1 Binds RNA G-Quadruplex in a Structure-Specific Manner and Resolves It More Efficiently Than MOV10. iScience. 2019;17:36–48. doi: 10.1016/j.isci.2019.06.016. PubMed DOI PMC
Balaratnam S, Hettiarachchilage M, West N, Piontkivska H, Basu S. A secondary structure within a human piRNA modulates its functionality. Biochimie. 2019;157:72–80. doi: 10.1016/j.biochi.2018.11.002. PubMed DOI
Mei Y, Deng Z, Vladimirova O, Gulve N, Johnson FB, Drosopoulos WC, et al. TERRA G-quadruplex RNA interaction with TRF2 GAR domain is required for telomere integrity. Sci Rep. 2021;11:3509. doi: 10.1038/s41598-021-82406-x. PubMed DOI PMC
Roach RJ, Garavís M, González C, Jameson GB, Filichev VV, Hale TK. Heterochromatin protein 1 interacts with parallel RNA and DNA G-quadruplexes. Nucleic Acids Res. 2020;48:682–693. doi: 10.1093/nar/gkz1138. PubMed DOI PMC
Zenk F, Zhan Y, Kos P, Löser E, Atinbayeva N, Schächtle M, et al. HP1 drives de novo 3D genome reorganization in early Drosophila embryos. Nature. 2021;593:289–293. doi: 10.1038/s41586-021-03460-z. PubMed DOI PMC
Savitsky M, Kravchuk O, Melnikova L, Georgiev P. Heterochromatin protein 1 is involved in control of telomere elongation in Drosophila melanogaster. Mol Cell Biol. 2002;22:3204–3218. doi: 10.1128/MCB.22.9.3204-3218.2002. PubMed DOI PMC
Perrini B, Piacentini L, Fanti L, Altieri F, Chichiarelli S, Berloco M, et al. HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. Mol Cell. 2004;15:467–476. doi: 10.1016/j.molcel.2004.06.036. PubMed DOI
Wang SH, Elgin SC. Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. Proc Natl Acad Sci USA. 2011;108:21164–21169. doi: 10.1073/pnas.1107892109. PubMed DOI PMC
Teo RYW, Anand A, Sridhar V, Okamura K, Kai T. Heterochromatin protein 1a functions for piRNA biogenesis predominantly from pericentric and telomeric regions in Drosophila. Nat Commun. 2018;9:1–12. doi: 10.1038/s41467-018-03908-3. PubMed DOI PMC
Starosta AL, Lassak J, Peil L, Atkinson GC, Virumäe K, Tenson T, Remme J, Jung K, Wilson DN. Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site. Nucleic Acids Res. 2014;42:10711–10719. doi: 10.1093/nar/gku768. PubMed DOI PMC
Yang SY, Chang EYC, Lim J, Kwan HH, Monchaud D, et al. G-quadruplexes mark alternative lengthening of telomeres. NAR Cancer. 2021;3:zcab031. doi: 10.1093/narcan/zcab031. PubMed DOI PMC
Compton A, Liang J, Chen C, Lukyanchikova V, Qi Y, Potters M, et al. The Beginning of the End: A Chromosomal Assembly of the New World Malaria Mosquito Ends with a Novel Telomere. G3 (Bethesda). 2020;10:3811–3819. doi: 10.1534/g3.120.401654. PubMed DOI PMC
McGurk MP, Barbash DA. Double insertion of transposable elements provides a substrate for the evolution of satellite DNA. Genome Res. 2018;28:714–725. doi: 10.1101/gr.231472.117. PubMed DOI PMC
Lexa M, Kejnovský E, Steflová P, Konvalinová H, Vorlícková M, Vyskot B. Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons. Nucleic Acids Res. 2014;42:968–978. doi: 10.1093/nar/gkt893. PubMed DOI PMC
Quinlan AR, Hall IM. BEDTools: a flexible suit of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Zulkower V, Rosser S. DNA Features Viewer: a sequence annotation formatting and plotting library for Python. Bioinformatics. 2020;36:4350–4352. doi: 10.1093/bioinformatics/btaa213. PubMed DOI
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–224. doi: 10.1093/molbev/msp259. PubMed DOI
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC
Hubley R, Finn RD, Clements J, Eddy SR, Jones TA, Bao WD, et al. The Dfam database of repetitive DNA families. Nucleic Acids Res. 2016;44:D81–D89. doi: 10.1093/nar/gkv1272. PubMed DOI PMC
Bao WD, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6:1–6. doi: 10.1186/s13100-015-0041-9. PubMed DOI PMC
Korber B. HIV Signature and Sequence Variation Analysis. In: Rodrigo AG, Learn GH, editors. Computational Analysis of HIV Molecular Sequences Chapter 4. Dordrecht: Kluwer Academic Publishers; 2000. pp. 55–72.
Bromberg Y, Rost B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res. 2007;35:3823–3835. doi: 10.1093/nar/gkm238. PubMed DOI PMC
Li J, Zhou J, Wu Y, Yang S, Tian D. GC-Content of Synonymous Codons Profoundly Influences Amino Acid Usage. G3 (Bethesda). 2015;5:2027–36. doi: 10.1534/g3.115.019877. PubMed DOI PMC