Quadruplex-forming DNA sequences spread by retrotransposons may serve as genome regulators

. 2014 Jan 01 ; 4 (1) : e28084. [epub] 20140204

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24616836

Transposable elements (TEs) are ubiquitous genome inhabitants in eukaryotes. Increasing evidence shows that TEs are involved in regulatory networks of eukaryotic cells and contribute to genome evolution. Recently, we reported that many plant long-terminal repeat (LTR) retrotransposons contain DNA quadruplex-forming sequences at precise positions inside their LTRs and that quadruplexes are better preserved in evolutionary younger elements. As quadruplexes can modulate molecular processes, quadruplexes found at specific distances upstream and downstream from the endogenous TE promoter can affect transcription of the element. Moreover, quadruplexes found in solo LTRs, as well as in 3' ends of 5'-truncated copies of LINE-1 elements, can affect expression of neighboring genes. Here, we propose that this way retrotransposons can serve as vehicles for spread of DNA quadruplexes. Quadruplexes can thus fulfill a dual regulatory role-to influence both the retrotransposons carrying them and the neighboring host genes, e.g., by direct effect on transcription or by modifying the local chromatin state. Additionally, four-stranded DNA structures may serve as hotspots for recombination-based genome rearrangements.

Zobrazit více v PubMed

Lexa M, Kejnovsky E, Steflová P, Konvalinová H, Vorlícková M, Vyskot B. Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons. Nucleic Acids Res. 2014;42:968–78. doi: 10.1093/nar/gkt893. PubMed DOI PMC

Bochman ML, Paeschke K, Zakian VA. DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet. 2012;13:770–80. doi: 10.1038/nrg3296. PubMed DOI PMC

Tornaletti S, Park-Snyder S, Hanawalt PC. G4-forming sequences in the non-transcribed DNA strand pose blocks to T7 RNA polymerase and mammalian RNA polymerase II. J Biol Chem. 2008;283:12756–62. doi: 10.1074/jbc.M705003200. PubMed DOI PMC

Wu Y, Shin-ya K, Brosh RM., Jr. FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol. 2008;28:4116–28. doi: 10.1128/MCB.02210-07. PubMed DOI PMC

Schwab RA, Nieminuszczy J, Shin-ya K, Niedzwiedz W. FANCJ couples replication past natural fork barriers with maintenance of chromatin structure. J Cell Biol. 2013;201:33–48. doi: 10.1083/jcb.201208009. PubMed DOI PMC

Tarsounas M, Tijsterman M. Genomes and G-quadruplexes: for better or for worse. J Mol Biol. 2013;425:4782–9. doi: 10.1016/j.jmb.2013.09.026. PubMed DOI

Whitehouse I, Owen-Hughes T. ATRX: Put me on repeat. Cell. 2010;143:335–6. doi: 10.1016/j.cell.2010.10.021. PubMed DOI

Boyarchuk E, Montes de Oca R, Almouzni G. Cell cycle dynamics of histone variants at the centromere, a model for chromosomal landmarks. Curr Opin Cell Biol. 2011;23:266–76. doi: 10.1016/j.ceb.2011.03.006. PubMed DOI

Eustermann S, Yang J-Ch, Law MJ, Amos R, Chapman LM, Jelinska C, Garrick D, Clynes D, Gibbons RJ, Rhodes D, et al. Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat Struct Mol Biol. 2011;18:777–82. doi: 10.1038/nsmb.2070. PubMed DOI

Goldberg AD, Banaszynski LA, Noh K-M, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell. 2010;140:678–91. doi: 10.1016/j.cell.2010.01.003. PubMed DOI PMC

Belan E. LINEs of evidence: noncanonical DNA replication as an epigenetic determinant. Biol Direct. 2013;8:22. doi: 10.1186/1745-6150-8-22. PubMed DOI PMC

Lyon MF. LINE-1 elements and X chromosome inactivation: a function for “junk” DNA? Proc Natl Acad Sci U S A. 2000;97:6248–9. doi: 10.1073/pnas.97.12.6248. PubMed DOI PMC

Graham T, Boissinot S. The genomic distribution of L1 elements: the role of insertion bias and natural selection. J Biomed Biotechnol. 2006;2006:75327. doi: 10.1155/JBB/2006/75327. PubMed DOI PMC

Boán F, Gómez-Márquez J. In vitro recombination mediated by G-quadruplexes. Chembiochem. 2010;11:331–4. doi: 10.1002/cbic.200900612. PubMed DOI

Subramanian RP, Wildschutte JH, Russo C, Coffin JM. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology. 2011;8:90. doi: 10.1186/1742-4690-8-90. PubMed DOI PMC

Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M, et al. The UCSC Genome Browser database: 2014 update. Nucleic Acids Res. 2014;42:D764–70. doi: 10.1093/nar/gkt1168. PubMed DOI PMC

Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33:2908–16. doi: 10.1093/nar/gki609. PubMed DOI PMC

SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274:765–8. doi: 10.1126/science.274.5288.765. PubMed DOI

Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH. Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. Plant Cell. 1999;11:1769–84. PubMed PMC

Belshaw R, Dawson ALA, Woolven-Allen J, Redding J, Burt A, Tristem M. Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. J Virol. 2005;79:12507–14. doi: 10.1128/JVI.79.19.12507-12514.2005. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...