Non-canonical DNA in human and other ape telomere-to-telomere genomes

. 2025 Mar 08 ; () : . [epub] 20250308

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, preprinty

Perzistentní odkaz   https://www.medvik.cz/link/pmid39713403

Grantová podpora
R35 GM151945 NIGMS NIH HHS - United States

Non-canonical (non-B) DNA structures-e.g., bent DNA, hairpins, G-quadruplexes (G4s), Z-DNA, etc.-which form at certain sequence motifs (e.g., A-phased repeats, inverted repeats, etc.), have emerged as important regulators of cellular processes and drivers of genome evolution. Yet, they have been understudied due to their repetitive nature and potentially inaccurate sequences generated with short-read technologies. Here we comprehensively characterize such motifs in the long-read telomere-to-telomere (T2T) genomes of human, bonobo, chimpanzee, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. Non-B DNA motifs are enriched at the genomic regions added to T2T assemblies, and occupy 9-15%, 9-11%, and 12-38% of autosomes, and chromosomes X and Y, respectively. G4s and Z-DNA are enriched at promoters and enhancers, as well as at origins of replication. Repetitive sequences harbor more non-B DNA motifs than non-repetitive sequences, especially in the short arms of acrocentric chromosomes. Most centromeres and/or their flanking regions are enriched in at least one non-B DNA motif type, consistent with a potential role of non-B structures in determining centromeres. Our results highlight the uneven distribution of predicted non-B DNA structures across ape genomes and suggest their novel functions in previously inaccessible genomic regions.

Aktualizováno

PubMed

Zobrazit více v PubMed

Watson J.D. and Crick F.H.C. (1953) Genetical Implications of the Structure of Deoxyribonucleic Acid. Nature, 171, 964–967. PubMed

Guiblet W.M., Cremona M.A., Cechova M., Harris R.S., Kejnovská I., Kejnovsky E., Eckert K., Chiaromonte F. and Makova K.D. (2018) Long-read sequencing technology indicates genome-wide effects of non-B DNA on polymerization speed and error rate. Genome Res., 28, 1767–1778. PubMed PMC

Fleming A.M. and Burrows C.J. (2020) Interplay of Guanine Oxidation and G-Quadruplex Folding in Gene Promoters. J. Am. Chem. Soc., 142, 1115–1136. PubMed PMC

Roychoudhury S., Pramanik S., Harris H.L., Tarpley M., Sarkar A., Spagnol G., Sorgen P.L., Chowdhury D., Band V., Klinkebiel D., et al. (2020) Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome. Proc. Natl. Acad. Sci. U. S. A., 117, 11409–11420. PubMed PMC

Zyner K.G., Simeone A., Flynn S.M., Doyle C., Marsico G., Adhikari S., Portella G., Tannahill D. and Balasubramanian S. (2022) G-quadruplex DNA structures in human stem cells and differentiation. Nat. Commun., 13, 142. PubMed PMC

Matos-Rodrigues G., van Wietmarschen N., Wu W., Tripathi V., Koussa N.C., Pavani R., Nathan W.J., Callen E., Belinky F., Mohammed A., et al. (2022) S1-END-seq reveals DNA secondary structures in human cells. Mol. Cell, 10.1016/j.molcel.2022.08.007. PubMed DOI PMC

Cer R.Z., Bruce K.H., Mudunuri U.S., Yi M., Volfovsky N., Luke B.T., Bacolla A., Collins J.R. and Stephens R.M. (2011) Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes. Nucleic Acids Res, 39, D383–91. PubMed PMC

Prorok P., Artufel M., Aze A., Coulombe P., Peiffer I., Lacroix L., Guédin A., Mergny J.-L., Damaschke J., Schepers A., et al. (2019) Involvement of G-quadruplex regions in mammalian replication origin activity. Nat. Commun., 10, 3274. PubMed PMC

Akerman I., Kasaai B., Bazarova A., Sang P.B., Peiffer I., Artufel M., Derelle R., Smith G., Rodriguez-Martinez M., Romano M., et al. (2020) A predictable conserved DNA base composition signature defines human core DNA replication origins. Nat. Commun., 11, 4826. PubMed PMC

Sahakyan A.B., Murat P., Mayer C. and Balasubramanian S. (2017) G-quadruplex structures within the 3’ UTR of LINE-1 elements stimulate retrotransposition. Nat. Struct. Mol. Biol., 24, 243–247. PubMed

Moye A.L., Porter K.C., Cohen S.B., Phan T., Zyner K.G., Sasaki N., Lovrecz G.O., Beck J.L. and Bryan T.M. (2015) Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat. Commun., 6, 7643. PubMed PMC

Haran T.E. and Mohanty U. (2009) The unique structure of A-tracts and intrinsic DNA bending. Quarterly Reviews of Biophysics, 42, 41–81. PubMed

Spiegel J., Cuesta S.M., Adhikari S., Hänsel-Hertsch R., Tannahill D. and Balasubramanian S. (2021) G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol., 22, 117. PubMed PMC

Gong J.-Y., Wen C.-J., Tang M.-L., Duan R.-F., Chen J.-N., Zhang J.-Y., Zheng K.-W., He Y., Hao Y.-H., Yu Q., et al. (2021) G-quadruplex structural variations in human genome associated with single-nucleotide variations and their impact on gene activity. Proc. Natl. Acad. Sci. U. S. A., 118. PubMed PMC

Gazanion E., Lacroix L., Alberti P., Gurung P., Wein S., Cheng M., Mergny J.-L., Gomes A.R. and Lopez-Rubio J.-J. (2020) Genome wide distribution of G-quadruplexes and their impact on gene expression in malaria parasites. PLoS Genet., 16, e1008917. PubMed PMC

Saranathan N. and Vivekanandan P. (2019) G-Quadruplexes: More Than Just a Kink in Microbial Genomes. Trends Microbiol., 27, 148–163. PubMed PMC

Biswas B., Kandpal M. and Vivekanandan P. (2017) A G-quadruplex motif in an envelope gene promoter regulates transcription and virion secretion in HBV genotype B. Nucleic Acids Research, 45, 11268–11280. PubMed PMC

Shin S.-I., Ham S., Park J., Seo S.H., Lim C.H., Jeon H., Huh J. and Roh T.-Y. (2016) Z-DNA-forming sites identified by ChIP-Seq are associated with actively transcribed regions in the human genome. DNA Res., 23, 477–486. PubMed PMC

Sulovari A., Li R., Audano P.A., Porubsky D., Vollger M.R., Logsdon G.A., Human Genome Structural Variation Consortium, Warren W.C., Pollen A.A., Chaisson M.J.P., et al. (2019) Human-specific tandem repeat expansion and differential gene expression during primate evolution. Proc. Natl. Acad. Sci. U. S. A., 116, 23243–23253. PubMed PMC

Roberts J.W. (2019) Mechanisms of Bacterial Transcription Termination. Journal of Molecular Biology, 431, 4030–4039. PubMed

Yamamoto Y., Miura O. and Ohyama T. (2021) Cruciform Formable Sequences within Pou5f1 Enhancer Are Indispensable for Mouse ES Cell Integrity. International Journal of Molecular Sciences, 22, 3399. PubMed PMC

Del Mundo I.M.A., Zewail-Foote M., Kerwin S.M. and Vasquez K.M. (2017) Alternative DNA structure formation in the mutagenic human c-MYC promoter. Nucleic Acids Res., 45, 4929–4943. PubMed PMC

Georgakopoulos-Soares I., Victorino J., Parada G.E., Agarwal V., Zhao J., Wong H.Y., Umar M.I., Elor O., Muhwezi A., An J.-Y., et al. (2022) High-throughput characterization of the role of non-B DNA motifs on promoter function. Cell Genomics, 2, 100111. PubMed PMC

Roy S.S., Bagri S., Vinayagamurthy S., Sengupta A., Then C.R., Kumar R., Sridharan S. and Chowdhury S. (2024) Artificially inserted strong promoter containing multiple G-quadruplexes induces long-range chromatin modification. Elife, 13. PubMed PMC

Hänsel-Hertsch R., Beraldi D., Lensing S.V., Marsico G., Zyner K., Parry A., Di Antonio M., Pike J., Kimura H., Narita M., et al. (2016) G-quadruplex structures mark human regulatory chromatin. Nat. Genet., 48, 1267–1272. PubMed

Lago S., Nadai M., Cernilogar F.M., Kazerani M., Domíniguez Moreno H., Schotta G. and Richter S.N. (2021) Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat. Commun., 12, 3885. PubMed PMC

Miura O., Ogake T., Yoneyama H., Kikuchi Y. and Ohyama T. (2019) A strong structural correlation between short inverted repeat sequences and the polyadenylation signal in yeast and nucleosome exclusion by these inverted repeats. Current Genetics, 65, 575–590. PubMed PMC

Hou Y., Li F., Zhang R., Li S., Liu H., Qin Z.S. and Sun X. (2019) Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure. Epigenetics, 14, 894–911. PubMed PMC

Robinson J., Raguseo F., Nuccio S.P., Liano D. and Di Antonio M. (2021) DNA G-quadruplex structures: more than simple roadblocks to transcription? Nucleic Acids Res., 49, 8419–8431. PubMed PMC

Poggi L. and Richard G.-F. (2021) Alternative DNA Structures In Vivo : Molecular Evidence and Remaining Questions. Microbiology and Molecular Biology Reviews, 85. PubMed PMC

Georgakopoulos-Soares I., Parada G.E., Wong H.Y., Medhi R., Furlan G., Munita R., Miska E.A., Kwok C.K. and Hemberg M. (2022) Alternative splicing modulation by G-quadruplexes. Nat. Commun., 13, 2404. PubMed PMC

Bochman M.L., Paeschke K. and Zakian V.A. (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet., 13, 770–780. PubMed PMC

Bugaut A. and Balasubramanian S. (2012) 5’-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res., 40, 4727–4741. PubMed PMC

Lyu K., Chow E.Y.-C., Mou X., Chan T.-F. and Kwok C.K. (2021) RNA G-quadruplexes (rG4s): genomics and biological functions. Nucleic Acids Res., 10.1093/nar/gkab187. PubMed DOI PMC

Kasinathan S. and Henikoff S. (2018) Non-B-Form DNA Is Enriched at Centromeres. Mol. Biol. Evol., 35, 949–962. PubMed PMC

Kipling D. and Warburton P.E. (1997) Centromeres, CENP-B and Tigger too. Trends Genet, 13, 141–145. PubMed

Goldberg I.G., Sawhney H., Pluta A.F., Warburton P.E. and Earnshaw W.C. (1996) Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: implications for CENP-B function at centromeres. Mol Cell Biol, 16, 5156–5168. PubMed PMC

Patchigolla V.S.P. and Mellone B.G. (2022) Enrichment of Non-B-Form DNA at D. melanogaster Centromeres. Genome Biol Evol, 14. PubMed PMC

Liu Q., Yi C., Zhang Z., Su H., Liu C., Huang Y., Li W., Hu X., Liu C., Birchler J.A., et al. (2023) Non-B-form DNA tends to form in centromeric regions and has undergone changes in polyploid oat subgenomes. Proc Natl Acad Sci U S A, 120, e2211683120. PubMed PMC

Yi C., Liu Q., Huang Y., Liu C., Guo X., Fan C., Zhang K., Liu Y. and Han F. (2024) Non-B-form DNA is associated with centromere stability in newly-formed polyploid wheat. Sci China Life Sci, 67, 1479–1488. PubMed

Mirkin E.V. and Mirkin S.M. (2007) Replication fork stalling at natural impediments. Microbiol. Mol. Biol. Rev., 71, 13–35. PubMed PMC

Wang G. and Vasquez K.M. (2014) Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair, 19, 143–151. PubMed PMC

Kaushal S. and Freudenreich C.H. (2019) The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer, 58, 270–283. PubMed PMC

Sauer M. and Paeschke K. (2017) G-quadruplex unwinding helicases and their function. Biochem. Soc. Trans., 45, 1173–1182. PubMed

Twayana S., Bacolla A., Barreto-Galvez A., De-Paula R.B., Drosopoulos W.C., Kosiyatrakul S.T., Bouhassira E.E., Tainer J.A., Madireddy A. and Schildkraut C.L. (2021) Translesion polymerase eta both facilitates DNA replication and promotes increased human genetic variation at common fragile sites. Proc. Natl. Acad. Sci. U. S. A., 118. PubMed PMC

Bournique E., Dall’Osto M., Hoffmann J.-S. and Bergoglio V. (2018) Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 808, 62–73. PubMed

Tsao W.-C. and Eckert K.A. (2018) Detours to Replication: Functions of Specialized DNA Polymerases during Oncogene-induced Replication Stress. Int. J. Mol. Sci., 19. PubMed PMC

Boyer A.-S., Grgurevic S., Cazaux C. and Hoffmann J.-S. (2013) The human specialized DNA polymerases and non-B DNA: vital relationships to preserve genome integrity. J. Mol. Biol., 425, 4767–4781. PubMed

McKinney J.A., Wang G. and Vasquez K.M. (2020) Distinct mechanisms of mutagenic processing of alternative DNA structures by repair proteins. Mol Cell Oncol, 7, 1743807. PubMed PMC

McGinty R.J. and Sunyaev S.R. Mutagenesis at non-B DNA motifs in the human genome: a course correction. 10.1101/2022.02.08.479604. PubMed DOI PMC

Makova K.D. and Weissensteiner M.H. (2023) Noncanonical DNA structures are drivers of genome evolution. Trends Genet., 39, 109–124. PubMed PMC

Haeusler A.R., Donnelly C.J., Periz G., Simko E.A.J., Shaw P.G., Kim M.-S., Maragakis N.J., Troncoso J.C., Pandey A., Sattler R., et al. (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature, 507, 195–200. PubMed PMC

Tateishi-Karimata H. and Sugimoto N. (2021) Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Res., 49, 7839–7855. PubMed PMC

Cheloshkina K. and Poptsova M. (2021) Comprehensive analysis of cancer breakpoints reveals signatures of genetic and epigenetic contribution to cancer genome rearrangements. PLoS Comput. Biol., 17, e1008749. PubMed PMC

Maizels N. (2015) G4-associated human diseases. EMBO Rep., 16, 910–922. PubMed PMC

Weissensteiner M.H., Cremona M.A., Guiblet W.M., Stoler N., Harris R.S., Cechova M., Eckert K.A., Chiaromonte F., Huang Y.-F. and Makova K.D. (2023) Accurate sequencing of DNA motifs able to form alternative (non-B) structures. Genome Res., 33, 907–922. PubMed PMC

McGinty R.J. and Sunyaev S.R. (2023) Revisiting mutagenesis at non-B DNA motifs in the human genome. Nat. Struct. Mol. Biol., 30, 417–424. PubMed PMC

Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A.V., Mikheenko A., Vollger M.R., Altemose N., Uralsky L., Gershman A., et al. (2022) The complete sequence of a human genome. Science, 376, 44–53. PubMed PMC

Rhie A., Nurk S., Cechova M., Hoyt S.J., Taylor D.J., Altemose N., Hook P.W., Koren S., Rautiainen M., Alexandrov I.A., et al. (2023) The complete sequence of a human Y chromosome. Nature, 621, 344–354. PubMed PMC

Makova K.D., Pickett B.D., Harris R.S., Hartley G.A., Cechova M., Pal K., Nurk S., Yoo D., Li Q., Hebbar P., et al. (2024) The complete sequence and comparative analysis of ape sex chromosomes. Nature, 630, 401–411. PubMed PMC

Yoo D., Rhie A., Hebbar P., Antonacci F., Logsdon G.A., Solar S.J., Antipov D., Pickett B.D., Safonova Y., Montinaro F., et al. (2024) Complete sequencing of ape genomes. bioRxiv, 10.1101/2024.07.31.605654. PubMed DOI

Sahakyan A.B., Chambers V.S., Marsico G., Santner T., Di Antonio M. and Balasubramanian S. (2017) Machine learning model for sequence-driven DNA G-quadruplex formation. Sci. Rep., 7, 14535. PubMed PMC

Quinlan A.R. and Hall I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841–842. PubMed PMC

Yu H., Li F., Yang B., Qi Y., Guneri D., Chen W., Waller Z.A.E., Li K. and Ding Y. (2024) iM-Seeker: a webserver for DNA i-motifs prediction and scoring via automated machine learning. Nucleic Acids Res, 52, W19–W28. PubMed PMC

Jain C., Rhie A., Zhang H., Chu C., Walenz B.P., Koren S. and Phillippy A.M. (2020) Weighted minimizer sampling improves long read mapping. Bioinformatics, 36, i111–i118. PubMed PMC

Rhie A., Walenz B.P., Koren S. and Phillippy A.M. (2020) Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol., 21, 245. PubMed PMC

Mohanty S.K., Chiaromonte F. and Makova K.D. (2024) Evolutionary Dynamics of G-Quadruplexes in Human and Other Great Ape Telomere-to-Telomere Genomes. bioRxiv, 10.1101/2024.11.05.621973. DOI

Guiblet W.M., DeGiorgio M., Cheng X., Chiaromonte F., Eckert K.A., Huang Y.-F. and Makova K.D. (2021) Selection and thermostability suggest G-quadruplexes are novel functional elements of the human genome. Genome Res., 31, 1136–1149. PubMed PMC

Hoyt S.J., Storer J.M., Hartley G.A., Grady P.G.S., Gershman A., de Lima L.G., Limouse C., Halabian R., Wojenski L., Rodriguez M., et al. (2022) From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science, 376, eabk3112. PubMed PMC

Gershman A., Sauria M.E.G., Guitart X., Vollger M.R., Hook P.W., Hoyt S.J., Jain M., Shumate A., Razaghi R., Koren S., et al. (2022) Epigenetic patterns in a complete human genome. Science, 376, eabj5089. PubMed PMC

Hui W.W.I., Simeone A., Zyner K.G., Tannahill D. and Balasubramanian S. (2021) Single-cell mapping of DNA G-quadruplex structures in human cancer cells. Sci Rep, 11, 23641. PubMed PMC

Hinrichs A.S., Karolchik D., Baertsch R., Barber G.P., Bejerano G., Clawson H., Diekhans M., Furey T.S., Harte R.A., Hsu F., et al. (2006) The UCSC Genome Browser Database: update 2006. Nucleic Acids Res, 34, D590–8. PubMed PMC

Brázda V., Kolomazník J., Lýsek J., Bartas M., Fojta M., Šťastný J. and Mergny J.-L. (2019) G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics, 35, 3493–3495. PubMed PMC

Katoh K. and Standley D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 30, 772–780. PubMed PMC

Zorita E., Cuscó P. and Filion G.J. (2015) Starcode: sequence clustering based on all-pairs search. Bioinformatics, 31, 1913–1919. PubMed PMC

Kejnovská I., Bednárová K., Renciuk D., Dvoráková Z., Školáková P., Trantírek L., Fiala R., Vorlícková M. and Sagi J. (2017) Clustered abasic lesions profoundly change the structure and stability of human telomeric G-quadruplexes. Nucleic Acids Res, 45, 4294–4305. PubMed PMC

Perez G., Barber G.P., Benet-Pages A., Casper J., Clawson H., Diekhans M., Fischer C., Gonzalez J.N., Hinrichs A.S., Lee C.M., et al. (2025) The UCSC Genome Browser database: 2025 update. Nucleic Acids Res, 53, D1243–D1249. PubMed PMC

Altemose N., Logsdon G.A., Bzikadze A.V., Sidhwani P., Langley S.A., Caldas G.V., Hoyt S.J., Uralsky L., Ryabov F.D., Shew C.J., et al. (2022) Complete genomic and epigenetic maps of human centromeres. Science, 376, eabl4178. PubMed PMC

Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J. and Marra M.A. (2009) Circos: an information aesthetic for comparative genomics. Genome Res, 19, 1639–1645. PubMed PMC

R Core Team (2024) R: A Language and Environment for Statistical Computing Vienna, Austria.

Wickham H., Averick M., Bryan J., Chang W., McGowan L.D., François R., Grolemund G., Hayes A., Henry L., Hester J., et al. (2019) Welcome to the Tidyverse. Journal of Open Source Software, 4, 1686.

Ahlmann-Eltze C. (2024) ggupset: Combination Matrix Axis for ‘ggplot2’ to Create ‘UpSet’ Plots.

Pedersen T.L. (2024) patchwork: The Composer of Plots.

Wilke C.O. (2024) cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’.

Claus O. Wilke B.M.W. (2024) ggtext: Improved Text Rendering Support for ‘ggplot2’.

van den Brand T. (2024) ggh4x: Hacks for ‘ggplot2’.

Cox R. and Mirkin S.M. (1997) Characteristic enrichment of DNA repeats in different genomes. Proc. Natl. Acad. Sci. U. S. A., 94, 5237–5242. PubMed PMC

Zhao J., Bacolla A., Wang G. and Vasquez K.M. (2010) Non-B DNA structure-induced genetic instability and evolution. Cell. Mol. Life Sci., 67, 43–62. PubMed PMC

Sinden R.R., Zheng G.X., Brankamp R.G. and Allen K.N. (1991) On the deletion of inverted repeated DNA in Escherichia coli: effects of length, thermal stability, and cruciform formation in vivo. Genetics, 129, 991–1005. PubMed PMC

Halder R., Halder K., Sharma P., Garg G., Sengupta S. and Chowdhury S. (2010) Guanine quadruplex DNA structure restricts methylation of CpG dinucleotides genome-wide. Mol. Biosyst., 6, 2439–2447. PubMed

Mao S.-Q., Ghanbarian A.T., Spiegel J., Martínez Cuesta S., Beraldi D., Di Antonio M., Marsico G., Hänsel-Hertsch R., Tannahill D. and Balasubramanian S. (2018) DNA G-quadruplex structures mold the DNA methylome. Nat. Struct. Mol. Biol., 25, 951–957. PubMed PMC

Gerton J.L. (2024) A working model for the formation of Robertsonian chromosomes. J Cell Sci, 137. PubMed PMC

de Lima L.G., Guarracino A., Koren S., Potapova T., McKinney S., Rhie A., Solar S.J., Seidel C., Fagen B., Walenz B.P., et al. (2024) The formation and propagation of human Robertsonian chromosomes. bioRxiv, 10.1101/2024.09.24.614821. DOI

Kejnovsky E., Tokan V. and Lexa M. (2015) Transposable elements and G-quadruplexes. Chromosome Res., 23, 615–623. PubMed

Kejnovsky E. and Lexa M. (2014) Quadruplex-forming DNA sequences spread by retrotransposons may serve as genome regulators. Mob. Genet. Elements, 4, e28084. PubMed PMC

Lexa M., Steflova P., Martinek T., Vorlickova M., Vyskot B. and Kejnovsky E. (2014) Guanine quadruplexes are formed by specific regions of human transposable elements. BMC Genomics, 15, 1032. PubMed PMC

Langley S.A., Miga K.H., Karpen G.H. and Langley C.H. (2019) Haplotypes spanning centromeric regions reveal persistence of large blocks of archaic DNA. Elife, 8. PubMed PMC

Sigurpalsdottir B.D., Stefansson O.A., Holley G., Beyter D., Zink F., Hardarson M.Þ., Sverrisson S.Þ., Kristinsdottir N., Magnusdottir D.N., Magnusson O.Þ., et al. (2024) A comparison of methods for detecting DNA methylation from long-read sequencing of human genomes. Genome Biol, 25, 69. PubMed PMC

Nicoletto G., Terreri M., Maurizio I., Ruggiero E., Cernilogar F.M., Vaine C.A., Cottini M.V., Shcherbakova I., Penney E.B., Gallina I., et al. (2024) G-quadruplexes in an SVA retrotransposon cause aberrant TAF1 gene expression in X-linked dystonia parkinsonism. Nucleic Acids Res, 52, 11571–11586. PubMed

Esnault C., Magat T., Zine El Aabidine A., Garcia-Oliver E., Cucchiarini A., Bouchouika S., Lleres D., Goerke L., Luo Y., Verga D., et al. (2023) G4access identifies G-quadruplexes and their associations with open chromatin and imprinting control regions. Nat Genet, 55, 1359–1369. PubMed

Bárcenas-Walls J.R., Ansaloni F., Hervé B., Strandback E., Nyman T., Castelo-Branco G. and Bartošovič M. (2024) Nano-CUT&Tag for multimodal chromatin profiling at single-cell resolution. Nat Protoc, 19, 791–830. PubMed

Lahnsteiner A., Craig S.J.C., Kamali K., Weissensteiner B., McGrath B., Risch A. and Makova K.D. (2024) In vivo detection of DNA secondary structures using permanganate/S1 footprinting with direct adapter ligation and sequencing (PDAL-Seq). Methods Enzymol, 695, 159–191. PubMed

Meneveri R., Agresti A., Marozzi A., Saccone S., Rocchi M., Archidiacono N., Corneo G., Della Valle G. and Ginelli E. (1993) Molecular organization and chromosomal location of human GC-rich heterochromatic blocks. Gene, 123, 227–234. PubMed

Meneveri R., Agresti A., Rocchi M., Marozzi A. and Ginelli E. (1995) Analysis of GC-rich repetitive nucleotide sequences in great apes. J Mol Evol, 40, 405–412. PubMed

Butterfield R.J., Dunn D.M., Duval B., Moldt S. and Weiss R.B. (2023) Deciphering D4Z4 CpG methylation gradients in fascioscapulohumeral muscular dystrophy using nanopore sequencing. Genome Res, 33, 1439–1454. PubMed PMC

Bedrat A., Lacroix L. and Mergny J.-L. (2016) Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res, 44, 1746–1759. PubMed PMC

Wang G., Christensen L.A. and Vasquez K.M. (2006) Z-DNA-forming sequences generate large-scale deletions in mammalian cells. Proc Natl Acad Sci U S A, 103, 2677–2682. PubMed PMC

Chittoor S.S. and Giunta S. (2024) Comparative analysis of predicted DNA secondary structures infers complex human centromere topology. Am J Hum Genet, 10.1016/j.ajhg.2024.10.016. PubMed DOI PMC

Ohzeki J.-I., Nakano M., Okada T. and Masumoto H. (2002) CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol, 159, 765–775. PubMed PMC

Sen Gupta A., Seidel C., Tsuchiya D., McKinney S., Yu Z., Smith S.E., Unruh J.R. and Gerton J.L. (2023) Defining a core configuration for human centromeres during mitosis. Nat Commun, 14, 7947. PubMed PMC

Brázda V., Bartas M. and Bowater R.P. (2021) Evolution of Diverse Strategies for Promoter Regulation. Trends Genet, 37, 730–744. PubMed

Yella V.R. and Vanaja A. (2023) Computational analysis on the dissemination of non-B DNA structural motifs in promoter regions of 1180 cellular genomes. Biochimie, 214, 101–111. PubMed

Sinden R.R., Pytlos-Sinden M.J. and Potaman V.N. (2007) Slipped strand DNA structures. Front Biosci, 12, 4788–4799. PubMed

Ma H., Ding W., Chen Y., Zhou J., Chen W., Lan C., Mao H., Li Q., Yan W. and Su H. (2023) Centromere Plasticity With Evolutionary Conservation and Divergence Uncovered by Wheat 10+ Genomes. Mol Biol Evol, 40. PubMed PMC

Jia H., Tan S., Cai Y., Guo Y., Shen J., Zhang Y., Ma H., Zhang Q., Chen J., Qiao G., et al. (2024) Low-input PacBio sequencing generates high-quality individual fly genomes and characterizes mutational processes. Nat Commun, 15, 5644. PubMed PMC

Gehring K., Leroy J.L. and Guéron M. (1993) A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature, 363, 561–565. PubMed

Dhakal S., Yu Z., Konik R., Cui Y., Koirala D. and Mao H. (2012) G-quadruplex and i-motif are mutually exclusive in ILPR double-stranded DNA. Biophys J, 102, 2575–2584. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...