Non-canonical DNA in human and other ape telomere-to-telomere genomes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
R35 GM151945
NIGMS NIH HHS - United States
PubMed
39713403
PubMed Central
PMC11661062
DOI
10.1101/2024.09.02.610891
PII: 2024.09.02.610891
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Non-canonical (non-B) DNA structures-e.g., bent DNA, hairpins, G-quadruplexes (G4s), Z-DNA, etc.-which form at certain sequence motifs (e.g., A-phased repeats, inverted repeats, etc.), have emerged as important regulators of cellular processes and drivers of genome evolution. Yet, they have been understudied due to their repetitive nature and potentially inaccurate sequences generated with short-read technologies. Here we comprehensively characterize such motifs in the long-read telomere-to-telomere (T2T) genomes of human, bonobo, chimpanzee, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. Non-B DNA motifs are enriched at the genomic regions added to T2T assemblies, and occupy 9-15%, 9-11%, and 12-38% of autosomes, and chromosomes X and Y, respectively. G4s and Z-DNA are enriched at promoters and enhancers, as well as at origins of replication. Repetitive sequences harbor more non-B DNA motifs than non-repetitive sequences, especially in the short arms of acrocentric chromosomes. Most centromeres and/or their flanking regions are enriched in at least one non-B DNA motif type, consistent with a potential role of non-B structures in determining centromeres. Our results highlight the uneven distribution of predicted non-B DNA structures across ape genomes and suggest their novel functions in previously inaccessible genomic regions.
Center for Medical Genomics Penn State University University Park PA 16802 USA
Department of Biology Penn State University University Park PA 16802 USA
Department of Statistics Penn State University University Park PA 16802 USA
L'EMbeDS Sant'Anna School of Advanced Studies 56127 Pisa Italy
Zobrazit více v PubMed
Watson J.D. and Crick F.H.C. (1953) Genetical Implications of the Structure of Deoxyribonucleic Acid. Nature, 171, 964–967. PubMed
Guiblet W.M., Cremona M.A., Cechova M., Harris R.S., Kejnovská I., Kejnovsky E., Eckert K., Chiaromonte F. and Makova K.D. (2018) Long-read sequencing technology indicates genome-wide effects of non-B DNA on polymerization speed and error rate. Genome Res., 28, 1767–1778. PubMed PMC
Fleming A.M. and Burrows C.J. (2020) Interplay of Guanine Oxidation and G-Quadruplex Folding in Gene Promoters. J. Am. Chem. Soc., 142, 1115–1136. PubMed PMC
Roychoudhury S., Pramanik S., Harris H.L., Tarpley M., Sarkar A., Spagnol G., Sorgen P.L., Chowdhury D., Band V., Klinkebiel D., et al. (2020) Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome. Proc. Natl. Acad. Sci. U. S. A., 117, 11409–11420. PubMed PMC
Zyner K.G., Simeone A., Flynn S.M., Doyle C., Marsico G., Adhikari S., Portella G., Tannahill D. and Balasubramanian S. (2022) G-quadruplex DNA structures in human stem cells and differentiation. Nat. Commun., 13, 142. PubMed PMC
Matos-Rodrigues G., van Wietmarschen N., Wu W., Tripathi V., Koussa N.C., Pavani R., Nathan W.J., Callen E., Belinky F., Mohammed A., et al. (2022) S1-END-seq reveals DNA secondary structures in human cells. Mol. Cell, 10.1016/j.molcel.2022.08.007. PubMed DOI PMC
Cer R.Z., Bruce K.H., Mudunuri U.S., Yi M., Volfovsky N., Luke B.T., Bacolla A., Collins J.R. and Stephens R.M. (2011) Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes. Nucleic Acids Res, 39, D383–91. PubMed PMC
Prorok P., Artufel M., Aze A., Coulombe P., Peiffer I., Lacroix L., Guédin A., Mergny J.-L., Damaschke J., Schepers A., et al. (2019) Involvement of G-quadruplex regions in mammalian replication origin activity. Nat. Commun., 10, 3274. PubMed PMC
Akerman I., Kasaai B., Bazarova A., Sang P.B., Peiffer I., Artufel M., Derelle R., Smith G., Rodriguez-Martinez M., Romano M., et al. (2020) A predictable conserved DNA base composition signature defines human core DNA replication origins. Nat. Commun., 11, 4826. PubMed PMC
Sahakyan A.B., Murat P., Mayer C. and Balasubramanian S. (2017) G-quadruplex structures within the 3’ UTR of LINE-1 elements stimulate retrotransposition. Nat. Struct. Mol. Biol., 24, 243–247. PubMed
Moye A.L., Porter K.C., Cohen S.B., Phan T., Zyner K.G., Sasaki N., Lovrecz G.O., Beck J.L. and Bryan T.M. (2015) Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat. Commun., 6, 7643. PubMed PMC
Haran T.E. and Mohanty U. (2009) The unique structure of A-tracts and intrinsic DNA bending. Quarterly Reviews of Biophysics, 42, 41–81. PubMed
Spiegel J., Cuesta S.M., Adhikari S., Hänsel-Hertsch R., Tannahill D. and Balasubramanian S. (2021) G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol., 22, 117. PubMed PMC
Gong J.-Y., Wen C.-J., Tang M.-L., Duan R.-F., Chen J.-N., Zhang J.-Y., Zheng K.-W., He Y., Hao Y.-H., Yu Q., et al. (2021) G-quadruplex structural variations in human genome associated with single-nucleotide variations and their impact on gene activity. Proc. Natl. Acad. Sci. U. S. A., 118. PubMed PMC
Gazanion E., Lacroix L., Alberti P., Gurung P., Wein S., Cheng M., Mergny J.-L., Gomes A.R. and Lopez-Rubio J.-J. (2020) Genome wide distribution of G-quadruplexes and their impact on gene expression in malaria parasites. PLoS Genet., 16, e1008917. PubMed PMC
Saranathan N. and Vivekanandan P. (2019) G-Quadruplexes: More Than Just a Kink in Microbial Genomes. Trends Microbiol., 27, 148–163. PubMed PMC
Biswas B., Kandpal M. and Vivekanandan P. (2017) A G-quadruplex motif in an envelope gene promoter regulates transcription and virion secretion in HBV genotype B. Nucleic Acids Research, 45, 11268–11280. PubMed PMC
Shin S.-I., Ham S., Park J., Seo S.H., Lim C.H., Jeon H., Huh J. and Roh T.-Y. (2016) Z-DNA-forming sites identified by ChIP-Seq are associated with actively transcribed regions in the human genome. DNA Res., 23, 477–486. PubMed PMC
Sulovari A., Li R., Audano P.A., Porubsky D., Vollger M.R., Logsdon G.A., Human Genome Structural Variation Consortium, Warren W.C., Pollen A.A., Chaisson M.J.P., et al. (2019) Human-specific tandem repeat expansion and differential gene expression during primate evolution. Proc. Natl. Acad. Sci. U. S. A., 116, 23243–23253. PubMed PMC
Roberts J.W. (2019) Mechanisms of Bacterial Transcription Termination. Journal of Molecular Biology, 431, 4030–4039. PubMed
Yamamoto Y., Miura O. and Ohyama T. (2021) Cruciform Formable Sequences within Pou5f1 Enhancer Are Indispensable for Mouse ES Cell Integrity. International Journal of Molecular Sciences, 22, 3399. PubMed PMC
Del Mundo I.M.A., Zewail-Foote M., Kerwin S.M. and Vasquez K.M. (2017) Alternative DNA structure formation in the mutagenic human c-MYC promoter. Nucleic Acids Res., 45, 4929–4943. PubMed PMC
Georgakopoulos-Soares I., Victorino J., Parada G.E., Agarwal V., Zhao J., Wong H.Y., Umar M.I., Elor O., Muhwezi A., An J.-Y., et al. (2022) High-throughput characterization of the role of non-B DNA motifs on promoter function. Cell Genomics, 2, 100111. PubMed PMC
Roy S.S., Bagri S., Vinayagamurthy S., Sengupta A., Then C.R., Kumar R., Sridharan S. and Chowdhury S. (2024) Artificially inserted strong promoter containing multiple G-quadruplexes induces long-range chromatin modification. Elife, 13. PubMed PMC
Hänsel-Hertsch R., Beraldi D., Lensing S.V., Marsico G., Zyner K., Parry A., Di Antonio M., Pike J., Kimura H., Narita M., et al. (2016) G-quadruplex structures mark human regulatory chromatin. Nat. Genet., 48, 1267–1272. PubMed
Lago S., Nadai M., Cernilogar F.M., Kazerani M., Domíniguez Moreno H., Schotta G. and Richter S.N. (2021) Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat. Commun., 12, 3885. PubMed PMC
Miura O., Ogake T., Yoneyama H., Kikuchi Y. and Ohyama T. (2019) A strong structural correlation between short inverted repeat sequences and the polyadenylation signal in yeast and nucleosome exclusion by these inverted repeats. Current Genetics, 65, 575–590. PubMed PMC
Hou Y., Li F., Zhang R., Li S., Liu H., Qin Z.S. and Sun X. (2019) Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure. Epigenetics, 14, 894–911. PubMed PMC
Robinson J., Raguseo F., Nuccio S.P., Liano D. and Di Antonio M. (2021) DNA G-quadruplex structures: more than simple roadblocks to transcription? Nucleic Acids Res., 49, 8419–8431. PubMed PMC
Poggi L. and Richard G.-F. (2021) Alternative DNA Structures In Vivo : Molecular Evidence and Remaining Questions. Microbiology and Molecular Biology Reviews, 85. PubMed PMC
Georgakopoulos-Soares I., Parada G.E., Wong H.Y., Medhi R., Furlan G., Munita R., Miska E.A., Kwok C.K. and Hemberg M. (2022) Alternative splicing modulation by G-quadruplexes. Nat. Commun., 13, 2404. PubMed PMC
Bochman M.L., Paeschke K. and Zakian V.A. (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet., 13, 770–780. PubMed PMC
Bugaut A. and Balasubramanian S. (2012) 5’-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res., 40, 4727–4741. PubMed PMC
Lyu K., Chow E.Y.-C., Mou X., Chan T.-F. and Kwok C.K. (2021) RNA G-quadruplexes (rG4s): genomics and biological functions. Nucleic Acids Res., 10.1093/nar/gkab187. PubMed DOI PMC
Kasinathan S. and Henikoff S. (2018) Non-B-Form DNA Is Enriched at Centromeres. Mol. Biol. Evol., 35, 949–962. PubMed PMC
Kipling D. and Warburton P.E. (1997) Centromeres, CENP-B and Tigger too. Trends Genet, 13, 141–145. PubMed
Goldberg I.G., Sawhney H., Pluta A.F., Warburton P.E. and Earnshaw W.C. (1996) Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: implications for CENP-B function at centromeres. Mol Cell Biol, 16, 5156–5168. PubMed PMC
Patchigolla V.S.P. and Mellone B.G. (2022) Enrichment of Non-B-Form DNA at D. melanogaster Centromeres. Genome Biol Evol, 14. PubMed PMC
Liu Q., Yi C., Zhang Z., Su H., Liu C., Huang Y., Li W., Hu X., Liu C., Birchler J.A., et al. (2023) Non-B-form DNA tends to form in centromeric regions and has undergone changes in polyploid oat subgenomes. Proc Natl Acad Sci U S A, 120, e2211683120. PubMed PMC
Yi C., Liu Q., Huang Y., Liu C., Guo X., Fan C., Zhang K., Liu Y. and Han F. (2024) Non-B-form DNA is associated with centromere stability in newly-formed polyploid wheat. Sci China Life Sci, 67, 1479–1488. PubMed
Mirkin E.V. and Mirkin S.M. (2007) Replication fork stalling at natural impediments. Microbiol. Mol. Biol. Rev., 71, 13–35. PubMed PMC
Wang G. and Vasquez K.M. (2014) Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair, 19, 143–151. PubMed PMC
Kaushal S. and Freudenreich C.H. (2019) The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer, 58, 270–283. PubMed PMC
Sauer M. and Paeschke K. (2017) G-quadruplex unwinding helicases and their function. Biochem. Soc. Trans., 45, 1173–1182. PubMed
Twayana S., Bacolla A., Barreto-Galvez A., De-Paula R.B., Drosopoulos W.C., Kosiyatrakul S.T., Bouhassira E.E., Tainer J.A., Madireddy A. and Schildkraut C.L. (2021) Translesion polymerase eta both facilitates DNA replication and promotes increased human genetic variation at common fragile sites. Proc. Natl. Acad. Sci. U. S. A., 118. PubMed PMC
Bournique E., Dall’Osto M., Hoffmann J.-S. and Bergoglio V. (2018) Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 808, 62–73. PubMed
Tsao W.-C. and Eckert K.A. (2018) Detours to Replication: Functions of Specialized DNA Polymerases during Oncogene-induced Replication Stress. Int. J. Mol. Sci., 19. PubMed PMC
Boyer A.-S., Grgurevic S., Cazaux C. and Hoffmann J.-S. (2013) The human specialized DNA polymerases and non-B DNA: vital relationships to preserve genome integrity. J. Mol. Biol., 425, 4767–4781. PubMed
McKinney J.A., Wang G. and Vasquez K.M. (2020) Distinct mechanisms of mutagenic processing of alternative DNA structures by repair proteins. Mol Cell Oncol, 7, 1743807. PubMed PMC
McGinty R.J. and Sunyaev S.R. Mutagenesis at non-B DNA motifs in the human genome: a course correction. 10.1101/2022.02.08.479604. PubMed DOI PMC
Makova K.D. and Weissensteiner M.H. (2023) Noncanonical DNA structures are drivers of genome evolution. Trends Genet., 39, 109–124. PubMed PMC
Haeusler A.R., Donnelly C.J., Periz G., Simko E.A.J., Shaw P.G., Kim M.-S., Maragakis N.J., Troncoso J.C., Pandey A., Sattler R., et al. (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature, 507, 195–200. PubMed PMC
Tateishi-Karimata H. and Sugimoto N. (2021) Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Res., 49, 7839–7855. PubMed PMC
Cheloshkina K. and Poptsova M. (2021) Comprehensive analysis of cancer breakpoints reveals signatures of genetic and epigenetic contribution to cancer genome rearrangements. PLoS Comput. Biol., 17, e1008749. PubMed PMC
Maizels N. (2015) G4-associated human diseases. EMBO Rep., 16, 910–922. PubMed PMC
Weissensteiner M.H., Cremona M.A., Guiblet W.M., Stoler N., Harris R.S., Cechova M., Eckert K.A., Chiaromonte F., Huang Y.-F. and Makova K.D. (2023) Accurate sequencing of DNA motifs able to form alternative (non-B) structures. Genome Res., 33, 907–922. PubMed PMC
McGinty R.J. and Sunyaev S.R. (2023) Revisiting mutagenesis at non-B DNA motifs in the human genome. Nat. Struct. Mol. Biol., 30, 417–424. PubMed PMC
Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A.V., Mikheenko A., Vollger M.R., Altemose N., Uralsky L., Gershman A., et al. (2022) The complete sequence of a human genome. Science, 376, 44–53. PubMed PMC
Rhie A., Nurk S., Cechova M., Hoyt S.J., Taylor D.J., Altemose N., Hook P.W., Koren S., Rautiainen M., Alexandrov I.A., et al. (2023) The complete sequence of a human Y chromosome. Nature, 621, 344–354. PubMed PMC
Makova K.D., Pickett B.D., Harris R.S., Hartley G.A., Cechova M., Pal K., Nurk S., Yoo D., Li Q., Hebbar P., et al. (2024) The complete sequence and comparative analysis of ape sex chromosomes. Nature, 630, 401–411. PubMed PMC
Yoo D., Rhie A., Hebbar P., Antonacci F., Logsdon G.A., Solar S.J., Antipov D., Pickett B.D., Safonova Y., Montinaro F., et al. (2024) Complete sequencing of ape genomes. bioRxiv, 10.1101/2024.07.31.605654. PubMed DOI
Sahakyan A.B., Chambers V.S., Marsico G., Santner T., Di Antonio M. and Balasubramanian S. (2017) Machine learning model for sequence-driven DNA G-quadruplex formation. Sci. Rep., 7, 14535. PubMed PMC
Quinlan A.R. and Hall I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841–842. PubMed PMC
Yu H., Li F., Yang B., Qi Y., Guneri D., Chen W., Waller Z.A.E., Li K. and Ding Y. (2024) iM-Seeker: a webserver for DNA i-motifs prediction and scoring via automated machine learning. Nucleic Acids Res, 52, W19–W28. PubMed PMC
Jain C., Rhie A., Zhang H., Chu C., Walenz B.P., Koren S. and Phillippy A.M. (2020) Weighted minimizer sampling improves long read mapping. Bioinformatics, 36, i111–i118. PubMed PMC
Rhie A., Walenz B.P., Koren S. and Phillippy A.M. (2020) Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol., 21, 245. PubMed PMC
Mohanty S.K., Chiaromonte F. and Makova K.D. (2024) Evolutionary Dynamics of G-Quadruplexes in Human and Other Great Ape Telomere-to-Telomere Genomes. bioRxiv, 10.1101/2024.11.05.621973. DOI
Guiblet W.M., DeGiorgio M., Cheng X., Chiaromonte F., Eckert K.A., Huang Y.-F. and Makova K.D. (2021) Selection and thermostability suggest G-quadruplexes are novel functional elements of the human genome. Genome Res., 31, 1136–1149. PubMed PMC
Hoyt S.J., Storer J.M., Hartley G.A., Grady P.G.S., Gershman A., de Lima L.G., Limouse C., Halabian R., Wojenski L., Rodriguez M., et al. (2022) From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science, 376, eabk3112. PubMed PMC
Gershman A., Sauria M.E.G., Guitart X., Vollger M.R., Hook P.W., Hoyt S.J., Jain M., Shumate A., Razaghi R., Koren S., et al. (2022) Epigenetic patterns in a complete human genome. Science, 376, eabj5089. PubMed PMC
Hui W.W.I., Simeone A., Zyner K.G., Tannahill D. and Balasubramanian S. (2021) Single-cell mapping of DNA G-quadruplex structures in human cancer cells. Sci Rep, 11, 23641. PubMed PMC
Hinrichs A.S., Karolchik D., Baertsch R., Barber G.P., Bejerano G., Clawson H., Diekhans M., Furey T.S., Harte R.A., Hsu F., et al. (2006) The UCSC Genome Browser Database: update 2006. Nucleic Acids Res, 34, D590–8. PubMed PMC
Brázda V., Kolomazník J., Lýsek J., Bartas M., Fojta M., Šťastný J. and Mergny J.-L. (2019) G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics, 35, 3493–3495. PubMed PMC
Katoh K. and Standley D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 30, 772–780. PubMed PMC
Zorita E., Cuscó P. and Filion G.J. (2015) Starcode: sequence clustering based on all-pairs search. Bioinformatics, 31, 1913–1919. PubMed PMC
Kejnovská I., Bednárová K., Renciuk D., Dvoráková Z., Školáková P., Trantírek L., Fiala R., Vorlícková M. and Sagi J. (2017) Clustered abasic lesions profoundly change the structure and stability of human telomeric G-quadruplexes. Nucleic Acids Res, 45, 4294–4305. PubMed PMC
Perez G., Barber G.P., Benet-Pages A., Casper J., Clawson H., Diekhans M., Fischer C., Gonzalez J.N., Hinrichs A.S., Lee C.M., et al. (2025) The UCSC Genome Browser database: 2025 update. Nucleic Acids Res, 53, D1243–D1249. PubMed PMC
Altemose N., Logsdon G.A., Bzikadze A.V., Sidhwani P., Langley S.A., Caldas G.V., Hoyt S.J., Uralsky L., Ryabov F.D., Shew C.J., et al. (2022) Complete genomic and epigenetic maps of human centromeres. Science, 376, eabl4178. PubMed PMC
Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J. and Marra M.A. (2009) Circos: an information aesthetic for comparative genomics. Genome Res, 19, 1639–1645. PubMed PMC
R Core Team (2024) R: A Language and Environment for Statistical Computing Vienna, Austria.
Wickham H., Averick M., Bryan J., Chang W., McGowan L.D., François R., Grolemund G., Hayes A., Henry L., Hester J., et al. (2019) Welcome to the Tidyverse. Journal of Open Source Software, 4, 1686.
Ahlmann-Eltze C. (2024) ggupset: Combination Matrix Axis for ‘ggplot2’ to Create ‘UpSet’ Plots.
Pedersen T.L. (2024) patchwork: The Composer of Plots.
Wilke C.O. (2024) cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’.
Claus O. Wilke B.M.W. (2024) ggtext: Improved Text Rendering Support for ‘ggplot2’.
van den Brand T. (2024) ggh4x: Hacks for ‘ggplot2’.
Cox R. and Mirkin S.M. (1997) Characteristic enrichment of DNA repeats in different genomes. Proc. Natl. Acad. Sci. U. S. A., 94, 5237–5242. PubMed PMC
Zhao J., Bacolla A., Wang G. and Vasquez K.M. (2010) Non-B DNA structure-induced genetic instability and evolution. Cell. Mol. Life Sci., 67, 43–62. PubMed PMC
Sinden R.R., Zheng G.X., Brankamp R.G. and Allen K.N. (1991) On the deletion of inverted repeated DNA in Escherichia coli: effects of length, thermal stability, and cruciform formation in vivo. Genetics, 129, 991–1005. PubMed PMC
Halder R., Halder K., Sharma P., Garg G., Sengupta S. and Chowdhury S. (2010) Guanine quadruplex DNA structure restricts methylation of CpG dinucleotides genome-wide. Mol. Biosyst., 6, 2439–2447. PubMed
Mao S.-Q., Ghanbarian A.T., Spiegel J., Martínez Cuesta S., Beraldi D., Di Antonio M., Marsico G., Hänsel-Hertsch R., Tannahill D. and Balasubramanian S. (2018) DNA G-quadruplex structures mold the DNA methylome. Nat. Struct. Mol. Biol., 25, 951–957. PubMed PMC
Gerton J.L. (2024) A working model for the formation of Robertsonian chromosomes. J Cell Sci, 137. PubMed PMC
de Lima L.G., Guarracino A., Koren S., Potapova T., McKinney S., Rhie A., Solar S.J., Seidel C., Fagen B., Walenz B.P., et al. (2024) The formation and propagation of human Robertsonian chromosomes. bioRxiv, 10.1101/2024.09.24.614821. DOI
Kejnovsky E., Tokan V. and Lexa M. (2015) Transposable elements and G-quadruplexes. Chromosome Res., 23, 615–623. PubMed
Kejnovsky E. and Lexa M. (2014) Quadruplex-forming DNA sequences spread by retrotransposons may serve as genome regulators. Mob. Genet. Elements, 4, e28084. PubMed PMC
Lexa M., Steflova P., Martinek T., Vorlickova M., Vyskot B. and Kejnovsky E. (2014) Guanine quadruplexes are formed by specific regions of human transposable elements. BMC Genomics, 15, 1032. PubMed PMC
Langley S.A., Miga K.H., Karpen G.H. and Langley C.H. (2019) Haplotypes spanning centromeric regions reveal persistence of large blocks of archaic DNA. Elife, 8. PubMed PMC
Sigurpalsdottir B.D., Stefansson O.A., Holley G., Beyter D., Zink F., Hardarson M.Þ., Sverrisson S.Þ., Kristinsdottir N., Magnusdottir D.N., Magnusson O.Þ., et al. (2024) A comparison of methods for detecting DNA methylation from long-read sequencing of human genomes. Genome Biol, 25, 69. PubMed PMC
Nicoletto G., Terreri M., Maurizio I., Ruggiero E., Cernilogar F.M., Vaine C.A., Cottini M.V., Shcherbakova I., Penney E.B., Gallina I., et al. (2024) G-quadruplexes in an SVA retrotransposon cause aberrant TAF1 gene expression in X-linked dystonia parkinsonism. Nucleic Acids Res, 52, 11571–11586. PubMed
Esnault C., Magat T., Zine El Aabidine A., Garcia-Oliver E., Cucchiarini A., Bouchouika S., Lleres D., Goerke L., Luo Y., Verga D., et al. (2023) G4access identifies G-quadruplexes and their associations with open chromatin and imprinting control regions. Nat Genet, 55, 1359–1369. PubMed
Bárcenas-Walls J.R., Ansaloni F., Hervé B., Strandback E., Nyman T., Castelo-Branco G. and Bartošovič M. (2024) Nano-CUT&Tag for multimodal chromatin profiling at single-cell resolution. Nat Protoc, 19, 791–830. PubMed
Lahnsteiner A., Craig S.J.C., Kamali K., Weissensteiner B., McGrath B., Risch A. and Makova K.D. (2024) In vivo detection of DNA secondary structures using permanganate/S1 footprinting with direct adapter ligation and sequencing (PDAL-Seq). Methods Enzymol, 695, 159–191. PubMed
Meneveri R., Agresti A., Marozzi A., Saccone S., Rocchi M., Archidiacono N., Corneo G., Della Valle G. and Ginelli E. (1993) Molecular organization and chromosomal location of human GC-rich heterochromatic blocks. Gene, 123, 227–234. PubMed
Meneveri R., Agresti A., Rocchi M., Marozzi A. and Ginelli E. (1995) Analysis of GC-rich repetitive nucleotide sequences in great apes. J Mol Evol, 40, 405–412. PubMed
Butterfield R.J., Dunn D.M., Duval B., Moldt S. and Weiss R.B. (2023) Deciphering D4Z4 CpG methylation gradients in fascioscapulohumeral muscular dystrophy using nanopore sequencing. Genome Res, 33, 1439–1454. PubMed PMC
Bedrat A., Lacroix L. and Mergny J.-L. (2016) Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res, 44, 1746–1759. PubMed PMC
Wang G., Christensen L.A. and Vasquez K.M. (2006) Z-DNA-forming sequences generate large-scale deletions in mammalian cells. Proc Natl Acad Sci U S A, 103, 2677–2682. PubMed PMC
Chittoor S.S. and Giunta S. (2024) Comparative analysis of predicted DNA secondary structures infers complex human centromere topology. Am J Hum Genet, 10.1016/j.ajhg.2024.10.016. PubMed DOI PMC
Ohzeki J.-I., Nakano M., Okada T. and Masumoto H. (2002) CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol, 159, 765–775. PubMed PMC
Sen Gupta A., Seidel C., Tsuchiya D., McKinney S., Yu Z., Smith S.E., Unruh J.R. and Gerton J.L. (2023) Defining a core configuration for human centromeres during mitosis. Nat Commun, 14, 7947. PubMed PMC
Brázda V., Bartas M. and Bowater R.P. (2021) Evolution of Diverse Strategies for Promoter Regulation. Trends Genet, 37, 730–744. PubMed
Yella V.R. and Vanaja A. (2023) Computational analysis on the dissemination of non-B DNA structural motifs in promoter regions of 1180 cellular genomes. Biochimie, 214, 101–111. PubMed
Sinden R.R., Pytlos-Sinden M.J. and Potaman V.N. (2007) Slipped strand DNA structures. Front Biosci, 12, 4788–4799. PubMed
Ma H., Ding W., Chen Y., Zhou J., Chen W., Lan C., Mao H., Li Q., Yan W. and Su H. (2023) Centromere Plasticity With Evolutionary Conservation and Divergence Uncovered by Wheat 10+ Genomes. Mol Biol Evol, 40. PubMed PMC
Jia H., Tan S., Cai Y., Guo Y., Shen J., Zhang Y., Ma H., Zhang Q., Chen J., Qiao G., et al. (2024) Low-input PacBio sequencing generates high-quality individual fly genomes and characterizes mutational processes. Nat Commun, 15, 5644. PubMed PMC
Gehring K., Leroy J.L. and Guéron M. (1993) A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature, 363, 561–565. PubMed
Dhakal S., Yu Z., Konik R., Cui Y., Koirala D. and Mao H. (2012) G-quadruplex and i-motif are mutually exclusive in ILPR double-stranded DNA. Biophys J, 102, 2575–2584. PubMed PMC