Quadruplex-Forming Motif Inserted into 3'UTR of Ty1his3-AI Retrotransposon Inhibits Retrotransposition in Yeast
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-00258S
Grantová Agentura České Republiky
PubMed
33924086
PubMed Central
PMC8074290
DOI
10.3390/biology10040347
PII: biology10040347
Knihovny.cz E-zdroje
- Klíčová slova
- G-quadruplex, N-methyl mesoporphyrin (NMM), Pif1 helicase, Ty1 LTR retrotransposon, retrotransposition, yeast,
- Publikační typ
- časopisecké články MeSH
Guanine quadruplexes (G4s) serve as regulators of replication, recombination and gene expression. G4 motifs have been recently identified in LTR retrotransposons, but their role in the retrotransposon life-cycle is yet to be understood. Therefore, we inserted G4s into the 3'UTR of Ty1his3-AI retrotransposon and measured the frequency of retrotransposition in yeast strains BY4741, Y00509 (without Pif1 helicase) and with G4-stabilization by N-methyl mesoporphyrin IX (NMM) treatment. We evaluated the impact of G4s on mRNA levels by RT-qPCR and products of reverse transcription by Southern blot analysis. We found that the presence of G4 inhibited Ty1his3-AI retrotransposition. The effect was stronger when G4s were on a transcription template strand which leads to reverse transcription interruption. Both NMM and Pif1p deficiency reduced the retrotransposition irrespective of the presence of a G4 motif in the Ty1his3-AI element. Quantity of mRNA and products of reverse transcription did not fully explain the impact of G4s on Ty1his3-AI retrotransposition indicating that G4s probably affect some other steps of the retrotransposon life-cycle (e.g., translation, VLP formation, integration). Our results suggest that G4 DNA conformation can tune the activity of mobile genetic elements that in turn contribute to shaping the eukaryotic genomes.
Zobrazit více v PubMed
Kwok C.K., Merrick C.J. G-Quadruplexes: Prediction, characterization, and biological application. Trends Biotechnol. 2017;35:997–1013. doi: 10.1016/j.tibtech.2017.06.012. PubMed DOI
Henderson E., Hardin C.C., Walk S.K., Tinoco I., Blackburn E.H. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell. 1987;51:899–908. doi: 10.1016/0092-8674(87)90577-0. PubMed DOI
Rhodes D., Lipps H.J. G-quadruplexes and their regulatory roles in biology. Nucl. Acids Res. 2015;43:8627–8637. doi: 10.1093/nar/gkv862. PubMed DOI PMC
Spiegel J., Adhikari S., Balasubramanian S. The Structure and Function of DNA G-Quadruplexes. Trends Chem. 2020;2:123–136. doi: 10.1016/j.trechm.2019.07.002. PubMed DOI PMC
Kolesnikova S., Curtis E.A. Structure and function of multimeric G-Quadruplexes. Molecules. 2019;24:3074. doi: 10.3390/molecules24173074. PubMed DOI PMC
Andorf C.M., Kopylov M., Dobbs D., Koch K.E., Stroupe M.E., Lawrence C.J., Bass H.W. G-quadruplex (G4) motifs in the maize (Zea mays L.) genome are enriched at specific locations in thousands of genes coupled to energy status, hypoxia, low sugar, and nutrient deprivation. J. Genet. Genomics. 2014;41:627–647. doi: 10.1016/j.jgg.2014.10.004. PubMed DOI
Chambers V.S., Marsico G., Boutell J.M., Di Antonio M., Smith G.P., Balasubramanian S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015;33:877–881. doi: 10.1038/nbt.3295. PubMed DOI
Guiblet W., Cremona M., Cechova M., Harris R., Kejnovska I., Kejnovsky E., Eckert K.A., Chiaromonte F., Makova K.D. Long-read sequencing technology indicates genome-wide effects of non-B DNA on polymerization speed and error rate. Genome Res. 2018;28:1767–1778. doi: 10.1101/gr.241257.118. PubMed DOI PMC
Lexa M., Kejnovský E., Šteflová P., Konvalinova H., Vorlíčková M., Vyskot B. Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons. Nucl. Acids Res. 2013;42:968–978. doi: 10.1093/nar/gkt893. PubMed DOI PMC
Lexa M., Steflova P., Martinek T., Vorlickova M., Vyskot B., Kejnovsky E. Guanine quadruplexes are formed by specific regions of human transposable elements. BMC Genomics. 2014;15:1032. doi: 10.1186/1471-2164-15-1032. PubMed DOI PMC
Kejnovsky E., Lexa M. Quadruplex-forming DNA sequences spread by retrotransposons may serve as genome regulators. Mob. Genet. Elem. 2014;4:e28084. doi: 10.4161/mge.28084. PubMed DOI PMC
SanMiguel P., Bennetzen J.L. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 1998;82:37–44. doi: 10.1006/anbo.1998.0746. DOI
Charles M., Belcram H., Just J., Huneau C., Viollet A., Couloux A., Segurens B., Carter M., Huteau V., Coriton O., et al. Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics. 2008;180:1071–1086. doi: 10.1534/genetics.108.092304. PubMed DOI PMC
Schnable P.S., Ware D., Fulton R.S., Stein J.C., Wei F., Pasternak S., Liang C., Zhang J., Fulton L., Graves T.A., et al. The B73 maize genome: Complexity, diversity, and dynamics. Science. 2009;326:1112–1115. doi: 10.1126/science.1178534. PubMed DOI
Wicker T., Gundlach H., Spannagl M., Uauy C., Borrill P., Ramírez-González R.H., De Oliveira R., Mayer K., Paux E., Choulet F., et al. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 2018;19:103. doi: 10.1186/s13059-018-1479-0. PubMed DOI PMC
Curcio M.J., Lutz S., Lesage P. The Ty1 LTR-retrotransposon of budding yeast, Saccharomyces cerevisiae. Microbiol. Spectr. 2015;3:1–35. doi: 10.1128/microbiolspec.MDNA3-0053-2014. PubMed DOI PMC
Curcio M.J., Garfinkel D.J. Single-step selection for Ty1 element retrotransposition. Proc. Natl. Acad. Sci. USA. 1991;88:936–940. doi: 10.1073/pnas.88.3.936. PubMed DOI PMC
Tokan V., Puterova J., Lexa M., Kejnovsky E. Quadruplex DNA in long terminal repeats in maize LTR retrotransposons inhibits the expression of a reporter gene in yeast. BMC Genomics. 2018;19:184. doi: 10.1186/s12864-018-4563-7. PubMed DOI PMC
Mendoza O., Bourdoncle A., Boulé J.-B., Brosh R.M., Jr., Mergny J.-L. G-quadruplexes and helicases. Nucleic Acids Res. 2016;44:1989–2006. doi: 10.1093/nar/gkw079. PubMed DOI PMC
Paeschke K., Bochman M.L., Garcia P.D., Cejka P., Friedman K.L., Kowalczykowski S.C., Zakian V.A. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature. 2013;497:458–462. doi: 10.1038/nature12149. PubMed DOI PMC
Yett A., Lin L.Y., Beseiso D., Miao J., Yatsunyk L.A. N-methyl mesoporphyrin IX as a highly selective light-up probe for G-quadruplex DNA. J. Porphyr. Phthalocyanines. 2019;23:1195–1215. doi: 10.1142/S1088424619300179. PubMed DOI PMC
Hershman S.G., Chen Q., Lee J.Y., Kozak M.L., Yue P., Wang L.S., Johnson F.B. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucl. Acids Res. 2008;36:144–156. doi: 10.1093/nar/gkm986. PubMed DOI PMC
Collart M., Oliviero S. Preparation of yeast RNA. Curr. Protoc. Mol. Biol. 1993;23:13.12.1–13.12.5.. doi: 10.1002/0471142727.mb1312s23. PubMed DOI
Ruijter J., Ramakers C., Hoogaars W., Karlen Y., Bakker O., Van den Hoff M., Moorman A. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucl. Acids Res. 2009;37:e45. doi: 10.1093/nar/gkp045. PubMed DOI PMC
The R Project for Statistical Computing. [(accessed on 8 September 2020)]; Available online: https://www.R-project.org/
Hon J., Martinek T., Zendulka J., Lexa M. pqsfinder: An exhaustive and imperfection-tolerant search for potential quadruplex-forming sequences in R. Bioinformatics. 2017;33:3373–3379. doi: 10.1093/bioinformatics/btx413. PubMed DOI
Wei F., Stein J.C., Liang C., Zhang J., Fulton R.S., Baucom R.S., De Paoli E., Zhou S., Yang L., Han Y., et al. Detailed analysis of a contiguous 22-Mb region of the maize genome. PLoS Genet. 2009;5:e1000728. doi: 10.1371/journal.pgen.1000728. PubMed DOI PMC
Kypr J., Kejnovská I., Renčiuk D., Vorlíčková M. Circular dichroism and conformational polymorphism of DNA. Nucl. Acids Res. 2009;37:1713–1725. doi: 10.1093/nar/gkp026. PubMed DOI PMC
Scholes D.T., Banerjee M., Bowen B., Curcio M.J. Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics. 2001;159:1449–1465. PubMed PMC
Steinbauerova V., Novak P., Neumann P., Macas J. A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons. Genetica. 2011;139:1543–1555. doi: 10.1007/s10709-012-9654-9. PubMed DOI
Cho J., Benoit M., Catoni M., Drost H.G., Brestovitsky A., Oosterbeek M., Paszkowski J. Sensitive detection of pre-integration intermediates of long terminal repeat retrotransposons in crop plants. Nat. Plants. 2019;5:26–33. doi: 10.1038/s41477-018-0320-9. PubMed DOI PMC
Mules E.H., Uzun O., Gabriel A. In Vivo Ty1 reverse transcription can generate replication intermediates with untidy ends. J. Virol. 1998;72:6490–6503. doi: 10.1128/JVI.72.8.6490-6503.1998. PubMed DOI PMC
Boule J.B., Zakian V.A. The yeast Pif1p DNA helicase preferentially unwinds RNA-DNA substrates. Nucl. Acids Res. 2007;35:5809–5818. doi: 10.1093/nar/gkm613. PubMed DOI PMC
Stamenova R., Maxwell P.H., Kenny A.E., Curcio M.J. Rrm3 protects the Saccharomyces cerevisiae genome from instability at nascent sites of retrotransposition. Genetics. 2009;182:711–723. doi: 10.1534/genetics.109.104208. PubMed DOI PMC
Ivessa A.S., Zhou J.Q., Zakian V.A. The Saccharomyces Pif1Δ DNA helicase and the highly related Rrm3Δ have opposite effects on replication fork progression in ribosomal DNA. Cell. 2000;100:479–489. doi: 10.1016/S0092-8674(00)80683-2. PubMed DOI
Paeschke K., McDonald K.R., Zakian V.A. Telomeres: Structures in need of unwinding. FEBS Lett. 2010;584:3760–3772. doi: 10.1016/j.febslet.2010.07.007. PubMed DOI PMC
Huber M.D., Lee D.C., Maizels N. G4 DNA unwinding by BLM and Sgs1p: Substrate specificity and substrate-specific inhibition. Nucl. Acids Res. 2002;30:3954–3961. doi: 10.1093/nar/gkf530. PubMed DOI PMC
Liu Z., Lee A., Gilbert W. Gene disruption of a G4-DNA-dependent nuclease in yeast leads to cellular senescence and telomere shortening. Proc. Natl. Acad. Sci. USA. 1995;92:6002–6006. doi: 10.1073/pnas.92.13.6002. PubMed DOI PMC
Pohl T.J., Zakian V.A. Pif1 family DNA helicases: A helpmate to RNase H? DNA Repair. 2019;84:102633. doi: 10.1016/j.dnarep.2019.06.004. PubMed DOI PMC
Sahakyan A.B., Murat P., Mayer C., Balasubramanian S. G-quadruplex structures within the 3′UTR of LINE-1 elements stimulate retrotransposition. Nat. Struct. Mol. Biol. 2017;24:243–247. doi: 10.1038/nsmb.3367. PubMed DOI
Hagihara M., Yamauchi L., Seo A., Yoneda K., Senda M., Nakatani K. Antisense-induced guanine quadruplexes inhibit reverse transcription by HIV-1 reverse transcriptase. J. Am. Chem. Soc. 2010;132:11171–11178. doi: 10.1021/ja1032088. PubMed DOI
Guo J.U., Bartel D.P. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science. 2016;353:6306. doi: 10.1126/science.aaf5371. PubMed DOI PMC
Di Antonio M., Ponjavic A., Radzevičius A., Ranasinghe R.T., Catalano M., Zhang X., Balasubramanian S. Single-molecule visualization of DNA G-quadruplex formation in live cells. Nat. Chem. 2020;12:832–837. doi: 10.1038/s41557-020-0506-4. PubMed DOI PMC