Quadruplex-Forming Motif Inserted into 3'UTR of Ty1his3-AI Retrotransposon Inhibits Retrotransposition in Yeast

. 2021 Apr 20 ; 10 (4) : . [epub] 20210420

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33924086

Grantová podpora
18-00258S Grantová Agentura České Republiky

Guanine quadruplexes (G4s) serve as regulators of replication, recombination and gene expression. G4 motifs have been recently identified in LTR retrotransposons, but their role in the retrotransposon life-cycle is yet to be understood. Therefore, we inserted G4s into the 3'UTR of Ty1his3-AI retrotransposon and measured the frequency of retrotransposition in yeast strains BY4741, Y00509 (without Pif1 helicase) and with G4-stabilization by N-methyl mesoporphyrin IX (NMM) treatment. We evaluated the impact of G4s on mRNA levels by RT-qPCR and products of reverse transcription by Southern blot analysis. We found that the presence of G4 inhibited Ty1his3-AI retrotransposition. The effect was stronger when G4s were on a transcription template strand which leads to reverse transcription interruption. Both NMM and Pif1p deficiency reduced the retrotransposition irrespective of the presence of a G4 motif in the Ty1his3-AI element. Quantity of mRNA and products of reverse transcription did not fully explain the impact of G4s on Ty1his3-AI retrotransposition indicating that G4s probably affect some other steps of the retrotransposon life-cycle (e.g., translation, VLP formation, integration). Our results suggest that G4 DNA conformation can tune the activity of mobile genetic elements that in turn contribute to shaping the eukaryotic genomes.

Zobrazit více v PubMed

Kwok C.K., Merrick C.J. G-Quadruplexes: Prediction, characterization, and biological application. Trends Biotechnol. 2017;35:997–1013. doi: 10.1016/j.tibtech.2017.06.012. PubMed DOI

Henderson E., Hardin C.C., Walk S.K., Tinoco I., Blackburn E.H. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell. 1987;51:899–908. doi: 10.1016/0092-8674(87)90577-0. PubMed DOI

Rhodes D., Lipps H.J. G-quadruplexes and their regulatory roles in biology. Nucl. Acids Res. 2015;43:8627–8637. doi: 10.1093/nar/gkv862. PubMed DOI PMC

Spiegel J., Adhikari S., Balasubramanian S. The Structure and Function of DNA G-Quadruplexes. Trends Chem. 2020;2:123–136. doi: 10.1016/j.trechm.2019.07.002. PubMed DOI PMC

Kolesnikova S., Curtis E.A. Structure and function of multimeric G-Quadruplexes. Molecules. 2019;24:3074. doi: 10.3390/molecules24173074. PubMed DOI PMC

Andorf C.M., Kopylov M., Dobbs D., Koch K.E., Stroupe M.E., Lawrence C.J., Bass H.W. G-quadruplex (G4) motifs in the maize (Zea mays L.) genome are enriched at specific locations in thousands of genes coupled to energy status, hypoxia, low sugar, and nutrient deprivation. J. Genet. Genomics. 2014;41:627–647. doi: 10.1016/j.jgg.2014.10.004. PubMed DOI

Chambers V.S., Marsico G., Boutell J.M., Di Antonio M., Smith G.P., Balasubramanian S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015;33:877–881. doi: 10.1038/nbt.3295. PubMed DOI

Guiblet W., Cremona M., Cechova M., Harris R., Kejnovska I., Kejnovsky E., Eckert K.A., Chiaromonte F., Makova K.D. Long-read sequencing technology indicates genome-wide effects of non-B DNA on polymerization speed and error rate. Genome Res. 2018;28:1767–1778. doi: 10.1101/gr.241257.118. PubMed DOI PMC

Lexa M., Kejnovský E., Šteflová P., Konvalinova H., Vorlíčková M., Vyskot B. Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons. Nucl. Acids Res. 2013;42:968–978. doi: 10.1093/nar/gkt893. PubMed DOI PMC

Lexa M., Steflova P., Martinek T., Vorlickova M., Vyskot B., Kejnovsky E. Guanine quadruplexes are formed by specific regions of human transposable elements. BMC Genomics. 2014;15:1032. doi: 10.1186/1471-2164-15-1032. PubMed DOI PMC

Kejnovsky E., Lexa M. Quadruplex-forming DNA sequences spread by retrotransposons may serve as genome regulators. Mob. Genet. Elem. 2014;4:e28084. doi: 10.4161/mge.28084. PubMed DOI PMC

SanMiguel P., Bennetzen J.L. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 1998;82:37–44. doi: 10.1006/anbo.1998.0746. DOI

Charles M., Belcram H., Just J., Huneau C., Viollet A., Couloux A., Segurens B., Carter M., Huteau V., Coriton O., et al. Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics. 2008;180:1071–1086. doi: 10.1534/genetics.108.092304. PubMed DOI PMC

Schnable P.S., Ware D., Fulton R.S., Stein J.C., Wei F., Pasternak S., Liang C., Zhang J., Fulton L., Graves T.A., et al. The B73 maize genome: Complexity, diversity, and dynamics. Science. 2009;326:1112–1115. doi: 10.1126/science.1178534. PubMed DOI

Wicker T., Gundlach H., Spannagl M., Uauy C., Borrill P., Ramírez-González R.H., De Oliveira R., Mayer K., Paux E., Choulet F., et al. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 2018;19:103. doi: 10.1186/s13059-018-1479-0. PubMed DOI PMC

Curcio M.J., Lutz S., Lesage P. The Ty1 LTR-retrotransposon of budding yeast, Saccharomyces cerevisiae. Microbiol. Spectr. 2015;3:1–35. doi: 10.1128/microbiolspec.MDNA3-0053-2014. PubMed DOI PMC

Curcio M.J., Garfinkel D.J. Single-step selection for Ty1 element retrotransposition. Proc. Natl. Acad. Sci. USA. 1991;88:936–940. doi: 10.1073/pnas.88.3.936. PubMed DOI PMC

Tokan V., Puterova J., Lexa M., Kejnovsky E. Quadruplex DNA in long terminal repeats in maize LTR retrotransposons inhibits the expression of a reporter gene in yeast. BMC Genomics. 2018;19:184. doi: 10.1186/s12864-018-4563-7. PubMed DOI PMC

Mendoza O., Bourdoncle A., Boulé J.-B., Brosh R.M., Jr., Mergny J.-L. G-quadruplexes and helicases. Nucleic Acids Res. 2016;44:1989–2006. doi: 10.1093/nar/gkw079. PubMed DOI PMC

Paeschke K., Bochman M.L., Garcia P.D., Cejka P., Friedman K.L., Kowalczykowski S.C., Zakian V.A. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature. 2013;497:458–462. doi: 10.1038/nature12149. PubMed DOI PMC

Yett A., Lin L.Y., Beseiso D., Miao J., Yatsunyk L.A. N-methyl mesoporphyrin IX as a highly selective light-up probe for G-quadruplex DNA. J. Porphyr. Phthalocyanines. 2019;23:1195–1215. doi: 10.1142/S1088424619300179. PubMed DOI PMC

Hershman S.G., Chen Q., Lee J.Y., Kozak M.L., Yue P., Wang L.S., Johnson F.B. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucl. Acids Res. 2008;36:144–156. doi: 10.1093/nar/gkm986. PubMed DOI PMC

Collart M., Oliviero S. Preparation of yeast RNA. Curr. Protoc. Mol. Biol. 1993;23:13.12.1–13.12.5.. doi: 10.1002/0471142727.mb1312s23. PubMed DOI

Ruijter J., Ramakers C., Hoogaars W., Karlen Y., Bakker O., Van den Hoff M., Moorman A. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucl. Acids Res. 2009;37:e45. doi: 10.1093/nar/gkp045. PubMed DOI PMC

The R Project for Statistical Computing. [(accessed on 8 September 2020)]; Available online: https://www.R-project.org/

Hon J., Martinek T., Zendulka J., Lexa M. pqsfinder: An exhaustive and imperfection-tolerant search for potential quadruplex-forming sequences in R. Bioinformatics. 2017;33:3373–3379. doi: 10.1093/bioinformatics/btx413. PubMed DOI

Wei F., Stein J.C., Liang C., Zhang J., Fulton R.S., Baucom R.S., De Paoli E., Zhou S., Yang L., Han Y., et al. Detailed analysis of a contiguous 22-Mb region of the maize genome. PLoS Genet. 2009;5:e1000728. doi: 10.1371/journal.pgen.1000728. PubMed DOI PMC

Kypr J., Kejnovská I., Renčiuk D., Vorlíčková M. Circular dichroism and conformational polymorphism of DNA. Nucl. Acids Res. 2009;37:1713–1725. doi: 10.1093/nar/gkp026. PubMed DOI PMC

Scholes D.T., Banerjee M., Bowen B., Curcio M.J. Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics. 2001;159:1449–1465. PubMed PMC

Steinbauerova V., Novak P., Neumann P., Macas J. A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons. Genetica. 2011;139:1543–1555. doi: 10.1007/s10709-012-9654-9. PubMed DOI

Cho J., Benoit M., Catoni M., Drost H.G., Brestovitsky A., Oosterbeek M., Paszkowski J. Sensitive detection of pre-integration intermediates of long terminal repeat retrotransposons in crop plants. Nat. Plants. 2019;5:26–33. doi: 10.1038/s41477-018-0320-9. PubMed DOI PMC

Mules E.H., Uzun O., Gabriel A. In Vivo Ty1 reverse transcription can generate replication intermediates with untidy ends. J. Virol. 1998;72:6490–6503. doi: 10.1128/JVI.72.8.6490-6503.1998. PubMed DOI PMC

Boule J.B., Zakian V.A. The yeast Pif1p DNA helicase preferentially unwinds RNA-DNA substrates. Nucl. Acids Res. 2007;35:5809–5818. doi: 10.1093/nar/gkm613. PubMed DOI PMC

Stamenova R., Maxwell P.H., Kenny A.E., Curcio M.J. Rrm3 protects the Saccharomyces cerevisiae genome from instability at nascent sites of retrotransposition. Genetics. 2009;182:711–723. doi: 10.1534/genetics.109.104208. PubMed DOI PMC

Ivessa A.S., Zhou J.Q., Zakian V.A. The Saccharomyces Pif1Δ DNA helicase and the highly related Rrm3Δ have opposite effects on replication fork progression in ribosomal DNA. Cell. 2000;100:479–489. doi: 10.1016/S0092-8674(00)80683-2. PubMed DOI

Paeschke K., McDonald K.R., Zakian V.A. Telomeres: Structures in need of unwinding. FEBS Lett. 2010;584:3760–3772. doi: 10.1016/j.febslet.2010.07.007. PubMed DOI PMC

Huber M.D., Lee D.C., Maizels N. G4 DNA unwinding by BLM and Sgs1p: Substrate specificity and substrate-specific inhibition. Nucl. Acids Res. 2002;30:3954–3961. doi: 10.1093/nar/gkf530. PubMed DOI PMC

Liu Z., Lee A., Gilbert W. Gene disruption of a G4-DNA-dependent nuclease in yeast leads to cellular senescence and telomere shortening. Proc. Natl. Acad. Sci. USA. 1995;92:6002–6006. doi: 10.1073/pnas.92.13.6002. PubMed DOI PMC

Pohl T.J., Zakian V.A. Pif1 family DNA helicases: A helpmate to RNase H? DNA Repair. 2019;84:102633. doi: 10.1016/j.dnarep.2019.06.004. PubMed DOI PMC

Sahakyan A.B., Murat P., Mayer C., Balasubramanian S. G-quadruplex structures within the 3′UTR of LINE-1 elements stimulate retrotransposition. Nat. Struct. Mol. Biol. 2017;24:243–247. doi: 10.1038/nsmb.3367. PubMed DOI

Hagihara M., Yamauchi L., Seo A., Yoneda K., Senda M., Nakatani K. Antisense-induced guanine quadruplexes inhibit reverse transcription by HIV-1 reverse transcriptase. J. Am. Chem. Soc. 2010;132:11171–11178. doi: 10.1021/ja1032088. PubMed DOI

Guo J.U., Bartel D.P. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science. 2016;353:6306. doi: 10.1126/science.aaf5371. PubMed DOI PMC

Di Antonio M., Ponjavic A., Radzevičius A., Ranasinghe R.T., Catalano M., Zhang X., Balasubramanian S. Single-molecule visualization of DNA G-quadruplex formation in live cells. Nat. Chem. 2020;12:832–837. doi: 10.1038/s41557-020-0506-4. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Telomeric retrotransposons show propensity to form G-quadruplexes in various eukaryotic species

. 2023 Apr 10 ; 14 (1) : 3. [epub] 20230410

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...