Replicative DNA polymerase epsilon and delta holoenzymes show wide-ranging inhibition at G-quadruplexes in the human genome
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
R01 GM136684
NIGMS NIH HHS - United States
21-00580S
Czech Science Foundation
CA237153
NIH HHS - United States
R01 CA237153
NCI NIH HHS - United States
R35 GM151945
NIGMS NIH HHS - United States
PubMed
40298112
PubMed Central
PMC12038398
DOI
10.1093/nar/gkaf352
PII: 8121651
Knihovny.cz E-zdroje
- MeSH
- aminochinoliny MeSH
- DNA-polymerasa II * antagonisté a inhibitory metabolismus MeSH
- DNA-polymerasa III * antagonisté a inhibitory metabolismus MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- genom lidský * MeSH
- holoenzymy metabolismus MeSH
- kyseliny pikolinové farmakologie MeSH
- lidé MeSH
- mikrosatelitní repetice MeSH
- proteiny vázající poly-ADP-ribosu MeSH
- replikace DNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminochinoliny MeSH
- DNA-polymerasa II * MeSH
- DNA-polymerasa III * MeSH
- DNA MeSH
- holoenzymy MeSH
- kyseliny pikolinové MeSH
- POLD3 protein, human MeSH Prohlížeč
- POLE protein, human MeSH Prohlížeč
- proteiny vázající poly-ADP-ribosu MeSH
- pyridostatin MeSH Prohlížeč
G-quadruplexes (G4s) are functional elements of the human genome, some of which inhibit DNA replication. We investigated replication of G4s within highly abundant microsatellite (GGGA, GGGT) and transposable element (L1 and SVA) sequences. We found that genome-wide, numerous motifs are located preferentially on the replication leading strand and the transcribed strand templates. We directly tested replicative polymerase ϵ and δ holoenzyme inhibition at these G4s, compared to low abundant motifs. For all G4s, DNA synthesis inhibition was higher on the G-rich than C-rich strand or control sequence. No single G4 was an absolute block for either holoenzyme; however, the inhibitory potential varied over an order of magnitude. Biophysical analyses showed the motifs form varying topologies, but replicative polymerase inhibition did not correlate with a specific G4 structure. Addition of the G4 stabilizer pyridostatin severely inhibited forward polymerase synthesis specifically on the G-rich strand, enhancing G/C strand asynchrony. Our results reveal that replicative polymerase inhibition at every G4 examined is distinct, causing complementary strand synthesis to become asynchronous, which could contribute to slowed fork elongation. Altogether, we provide critical information regarding how replicative eukaryotic holoenzymes navigate synthesis through G4s naturally occurring thousands of times in functional regions of the human genome.
Zobrazit více v PubMed
Tomasetti C, Li L, Vogelstein B Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science. 2017; 355:1330–4.10.1126/science.aaf9011. PubMed DOI PMC
Hoyt SJ, Storer JM, Hartley GA et al. . From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science. 2022; 376:eabk3112.10.1126/science.abk3112. PubMed DOI PMC
Guiblet WM, Cremona MA, Harris RS et al. . Non-B DNA: a major contributor to small- and large-scale variation in nucleotide substitution frequencies across the genome. Nucleic Acids Res. 2021; 49:1497–516.10.1093/nar/gkaa1269. PubMed DOI PMC
López Castel A, Cleary JD, Pearson CE Repeat instability as the basis for human diseases and as a potential target for therapy. Nat Rev Mol Cell Biol. 2010; 11:165–70.10.1038/nrm2854. PubMed DOI
Makova KD, Weissensteiner MH Noncanonical DNA structures are drivers of genome evolution. Trends Genet. 2023; 39:109–24.10.1016/j.tig.2022.11.005. PubMed DOI PMC
Usdin K The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res. 2008; 18:1011–9.10.1101/gr.070409.107. PubMed DOI PMC
Wang G, Vasquez KM Dynamic alternative DNA structures in biology and disease. Nat Rev Genet. 2023; 24:211–34.10.1038/s41576-022-00539-9. PubMed DOI PMC
Khristich AN, Mirkin S On the wrong DNA track: molecular mechanisms of repeat-mediated genome instability. J Biol Chem. 2020; 295:4134–70.10.1074/jbc.REV119.007678. PubMed DOI PMC
Burge S, Parkinson GN, Hazel P et al. . Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006; 34:5402–15.10.1093/nar/gkl655. PubMed DOI PMC
Spiegel J, Adhikari S, Balasubramanian S The structure and function of DNA G-quadruplexes. Trends Chem. 2020; 2:123–36.10.1016/j.trechm.2019.07.002. PubMed DOI PMC
Guiblet WM, DeGiorgio M, Cheng X et al. . Selection and thermostability suggest G-quadruplexes are novel functional elements of the human genome. Genome Res. 2021; 31:1136–49.10.1101/gr.269589.120. PubMed DOI PMC
Varshney D, Spiegel J, Zyner K et al. . The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol. 2020; 21:459–74.10.1038/s41580-020-0236-x. PubMed DOI PMC
Hänsel-Hertsch R, Beraldi D, Lensing SV et al. . G-quadruplex structures mark human regulatory chromatin. Nat Genet. 2016; 48:1267–72.10.1038/ng.3662. PubMed DOI
Huppert JL, Balasubramanian S G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007; 35:406–13.10.1093/nar/gkl1057. PubMed DOI PMC
Lexa M, Steflova P, Martinek T et al. . Guanine quadruplexes are formed by specific regions of human transposable elements. BMC Genomics. 2014; 15:1032.10.1186/1471-2164-15-1032. PubMed DOI PMC
Tokan V, Rodriguez Lorenzo JL, Jedlicka P et al. . Quadruplex-forming motif inserted into 3′UTR of Ty1his3-AI retrotransposon inhibits retrotransposition in yeast. Biology. 2021; 10:347. PubMed PMC
Sahakyan AB, Murat P, Mayer C et al. . G-quadruplex structures within the 3′ UTR of LINE-1 elements stimulate retrotransposition. Nat Struct Mol Biol. 2017; 24:243–7. PubMed
Bacolla A, Ye Z, Ahmed Z et al. . Cancer mutational burden is shaped by G4 DNA, replication stress and mitochondrial dysfunction. Prog Biophys Mol Biol. 2019; 147:47–61.10.1016/j.pbiomolbio.2019.03.004. PubMed DOI PMC
Zhang R, Shu H, Wang Y et al. . G-quadruplex structures are key modulators of somatic structural variants in cancers. Cancer Res. 2023; 83:1234–48.10.1158/0008-5472.CAN-22-3089. PubMed DOI PMC
Georgakopoulos-Soares I, Morganella S, Jain N et al. . Noncanonical secondary structures arising from non-B DNA motifs are determinants of mutagenesis. Genome Res. 2018; 28:1264–71.10.1101/gr.231688.117. PubMed DOI PMC
Chambers VS, Marsico G, Boutell JM et al. . High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol. 2015; 33:877–81.10.1038/nbt.3295. PubMed DOI
Hui WWI, Simeone A, Zyner KG et al. . Single-cell mapping of DNA G-quadruplex structures in human cancer cells. Sci Rep. 2021; 11:23641.10.1038/s41598-021-02943-3. PubMed DOI PMC
Lerner LK, Sale JE Replication of G quadruplex DNA. Genes. 2019; 10:95.10.3390/genes10020095. PubMed DOI PMC
Sato K, Knipscheer P G-quadruplex resolution: from molecular mechanisms to physiological relevance. DNA Repair. 2023; 130:103552.10.1016/j.dnarep.2023.103552. PubMed DOI
Lee WTC, Yin Y, Morten MJ et al. . Single-molecule imaging reveals replication fork coupled formation of G-quadruplex structures hinders local replication stress signaling. Nat Commun. 2021; 12:2525.10.1038/s41467-021-22830-9. PubMed DOI PMC
Sato K, Martin-Pintado N, Post H et al. . Multistep mechanism of G-quadruplex resolution during DNA replication. Sci Adv. 2021; 7:eabf8653.10.1126/sciadv.abf8653. PubMed DOI PMC
Kruisselbrink E, Guryev V, Brouwer K et al. . Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. Curr Biol. 2008; 18:900–5.10.1016/j.cub.2008.05.013. PubMed DOI
Williams SL, Casas-Delucchi CS, Raguseo F et al. . Replication-induced DNA secondary structures drive fork uncoupling and breakage. EMBO J. 2023; 42:e114334.10.15252/embj.2023114334. PubMed DOI PMC
Kumar C, Batra S, Griffith JD et al. . The interplay of RNA:DNA hybrid structure and G-quadruplexes determines the outcome of R-loop-replisome collisions. eLife. 2021; 10:e72286.10.7554/eLife.72286. PubMed DOI PMC
Lopes J, Piazza A, Bermejo R et al. . G-quadruplex-induced instability during leading strand replication. EMBO J. 2011; 30:4033–46.10.1038/emboj.2011.316. PubMed DOI PMC
Guilliam TA, Yeeles JTP An updated perspective on the polymerase division of labor during eukaryotic DNA replication. Crit Rev Biochem Mol Biol. 2020; 55:469–81.10.1080/10409238.2020.1811630. PubMed DOI
Guilliam TA, Yeeles JT The eukaryotic replisome tolerates leading-strand base damage by replicase switching. EMBO J. 2021; 40:e107037.10.15252/embj.2020107037. PubMed DOI PMC
Batra S, Allwein B, Kumar C et al. . G-quadruplex-stalled eukaryotic replisome structure reveals helical inchworm DNA translocation. Science. 2025; 387:eadt1978.10.1126/science.adt1978. PubMed DOI
Stein M, Eckert KA Impact of G-quadruplexes and chronic inflammation on genome instability: additive effects during carcinogenesis. Genes. 2021; 12:1779.10.3390/genes12111779. PubMed DOI PMC
Sahakyan AB, Chambers VS, Marsico G et al. . Machine learning model for sequence-driven DNA G-quadruplex formation. Sci Rep. 2017; 7:14535.10.1038/s41598-017-14017-4. PubMed DOI PMC
Morganella S, Alexandrov LB, Glodzik D et al. . The topography of mutational processes in breast cancer genomes. Nat Commun. 2016; 7:11383.10.1038/ncomms11383. PubMed DOI PMC
Frankish A, Carbonell-Sala S, Diekhans M et al. . GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 2023; 51:D942–9.10.1093/nar/gkac1071. PubMed DOI PMC
Georgakopoulos-Soares I, Victorino J, Parada GE et al. . High-throughput characterization of the role of non-B DNA motifs on promoter function. Cell Genomics. 2022; 2:100111.10.1016/j.xgen.2022.100111. PubMed DOI PMC
Georgakopoulos-Soares I, Mouratidis I, Parada GE et al. . Asymmetron: a toolkit for the identification of strand asymmetry patterns in biological sequences. Nucleic Acids Res. 2021; 49:e4.10.1093/nar/gkaa1052. PubMed DOI PMC
Kejnovská I, Stadlbauer P, Trantírek L et al. . G-quadruplex formation by DNA sequences deficient in guanines: two tetrad parallel quadruplexes do not fold intramolecularly. 2021; 27:12115–25.10.1002/chem.202100895. PubMed DOI
Mergny J-L, Li J, Lacroix L et al. . Thermal difference spectra: a specific signature for nucleic acid structures. Nucleic Acids Res. 2005; 33:e138.10.1093/nar/gni134. PubMed DOI PMC
Dahl JM, Thomas N, Tracy MA et al. . Probing the mechanisms of two exonuclease domain mutators of DNA polymerase ε. Nucleic Acids Res. 2022; 50:962–74.10.1093/nar/gkab1255. PubMed DOI PMC
Fortune JM, Stith CM, Kissling GE et al. . RPA and PCNA suppress formation of large deletion errors by yeast DNA polymerase δ. Nucleic Acids Res. 2006; 34:4335–41.10.1093/nar/gkl403. PubMed DOI PMC
Stith CM, Sterling J, Resnick MA et al. . Flexibility of eukaryotic Okazaki fragment maturation through regulated strand displacement synthesis. J Biol Chem. 2008; 283:34129–40.10.1074/jbc.M806668200. PubMed DOI PMC
Nguyen B, Sokoloski J, Galletto R et al. . Diffusion of human replication protein A along single-stranded DNA. J Mol Biol. 2014; 426:3246–61.10.1016/j.jmb.2014.07.014. PubMed DOI PMC
Li M, Sengupta B, Benkovic SJ et al. . PCNA monoubiquitination is regulated by diffusion of Rad6/Rad18 complexes along RPA filaments. Biochemistry. 2020; 59:4694–702.10.1021/acs.biochem.0c00849. PubMed DOI PMC
Shah SN, Opresko PL, Meng X et al. . DNA structure and the Werner protein modulate human DNA polymerase delta-dependent replication dynamics within the common fragile site FRA16D. Nucleic Acids Res. 2010; 38:1149–62.10.1093/nar/gkp1131. PubMed DOI PMC
Stein M, Hile SE, Weissensteiner MH et al. . Variation in G-quadruplex sequence and topology differentially impacts human DNA polymerase fidelity. DNA Repair (Amst). 2022; 119:103402.10.1016/j.dnarep.2022.103402. PubMed DOI PMC
Hile SE, Eckert KA Positive correlation between DNA polymerase alpha-primase pausing and mutagenesis within polypyrimidine/polypurine microsatellite sequences. J Mol Biol. 2004; 335:745–59.10.1016/j.jmb.2003.10.075. PubMed DOI
Das M, Hile SE, Brewster J et al. . DNA polymerase zeta can efficiently replicate structures formed by AT/TA repeat sequences and prevent their deletion. Nucleic Acids Res. 2025; 53:gkae1254.10.1093/nar/gkae1254. PubMed DOI PMC
Shastri N, Tsai Y-C, Hile S et al. . Genome-wide identification of structure-forming repeats as principal sites of fork collapse upon ATR inhibition. Mol Cell. 2018; 72:222–38.10.1016/j.molcel.2018.08.047. PubMed DOI PMC
Khare V, Eckert KA The proofreading 3′→5′ exonuclease activity of DNA polymerases: a kinetic barrier to translesion DNA synthesis. Mutation Res. 2002; 510:45–54.10.1016/S0027-5107(02)00251-8. PubMed DOI
Zuker M Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003; 31:3406–15.10.1093/nar/gkg595. PubMed DOI PMC
Guiblet WM, Cremona MA, Cechova M et al. . Long-read sequencing technology indicates genome-wide effects of non-B DNA on polymerization speed and error rate. Genome Res. 2018; 28:1767–78.10.1101/gr.241257.118. PubMed DOI PMC
DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al. . Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011; 72:245–56.10.1016/j.neuron.2011.09.011. PubMed DOI PMC
Renton AE, Majounie E, Waite A et al. . A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011; 72:257–68.10.1016/j.neuron.2011.09.010. PubMed DOI PMC
Rutherford NJ, Heckman MG, DeJesus-Hernandez M et al. . Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype. Neurobiol Aging. 2012; 33:2950–7.10.1016/j.neurobiolaging.2012.07.005. PubMed DOI PMC
Prorok P, Artufel M, Aze A et al. . Involvement of G-quadruplex regions in mammalian replication origin activity. Nat Commun. 2019; 10:3274.10.1038/s41467-019-11104-0. PubMed DOI PMC
Vouzas AE, Gilbert DM Replication timing and transcriptional control: beyond cause and effect - part IV. Curr Opin Genet Dev. 2023; 79:102031.10.1016/j.gde.2023.102031. PubMed DOI PMC
Swan MK, Johnson RE, Prakash L et al. . Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase δ. Nat Struct Mol Biol. 2009; 16:979–86. PubMed PMC
Zheng F, Georgescu RE, Li H et al. . Structure of eukaryotic DNA polymerase δ bound to the PCNA clamp while encircling DNA. Proc Natl Acad Sci USA. 2020; 117:30344–53.10.1073/pnas.2017637117. PubMed DOI PMC
Yuan Z, Georgescu R, Schauer GD et al. . Structure of the polymerase ϵ holoenzyme and atomic model of the leading strand replisome. Nat Commun. 2020; 11:3156.10.1038/s41467-020-16910-5. PubMed DOI PMC
Haeusler AR, Donnelly CJ, Periz G et al. . C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature. 2014; 507:195–200.10.1038/nature13124. PubMed DOI PMC
Šket P, Pohleven J, Kovanda A et al. . Characterization of DNA G-quadruplex species forming from C9ORF72 G4C2-expanded repeats associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurobiol Aging. 2015; 36:1091–6.10.1016/j.neurobiolaging.2014.09.012. PubMed DOI
Li XM, Zheng KW, Zhang JY et al. . Guanine-vacancy-bearing G-quadruplexes responsive to guanine derivatives. Proc Natl Acad Sci USA. 2015; 112:14581–6.10.1073/pnas.1516925112. PubMed DOI PMC
Fleming AM, Zhou J, Wallace SS et al. . A role for the fifth G-track in G-quadruplex forming oncogene promoter sequences during oxidative stress: do these “spare tires” have an evolved function. ACS Cent Sci. 2015; 1:226–33.10.1021/acscentsci.5b00202. PubMed DOI PMC
Sun D, Guo K, Shin Y-J Evidence of the formation of G-quadruplex structures in the promoter region of the human vascular endothelial growth factor gene. Nucleic Acids Res. 2011; 39:1256–65.10.1093/nar/gkq926. PubMed DOI PMC
Sun D, Liu W-J, Guo K et al. . The proximal promoter region of the human vascular endothelial growth factor gene has a G-quadruplex structure that can be targeted by G-quadruplex-interactive agents. Mol Cancer Ther. 2008; 7:880–9.10.1158/1535-7163.MCT-07-2119. PubMed DOI PMC
Kaiser CE, Van Ert NA, Agrawal P et al. . Insight into the complexity of the i-motif and G-quadruplex DNA structures formed in the KRAS promoter and subsequent drug-induced gene repression. J Am Chem Soc. 2017; 139:8522–36.10.1021/jacs.7b02046. PubMed DOI PMC
del Mundo IMA, Zewail-Foote M, Kerwin SM et al. . Alternative DNA structure formation in the mutagenic human c-MYC promoter. Nucleic Acids Res. 2017; 45:4929–43.10.1093/nar/gkx100. PubMed DOI PMC
Liu L-Y, Ma T-Z, Zeng Y-L et al. . Structural basis of pyridostatin and its derivatives specifically binding to G-quadruplexes. J Am Chem Soc. 2022; 144:11878–87.10.1021/jacs.2c04775. PubMed DOI
Teng F-Y, Jiang Z-Z, Guo M et al. . G-quadruplex DNA: a novel target for drug design. Cell Mol Life Sci. 2021; 78:6557–83.10.1007/s00018-021-03921-8. PubMed DOI PMC
Rodriguez R, Miller KM, Forment JV et al. . Small-molecule–induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol. 2012; 8:301–10.10.1038/nchembio.780. PubMed DOI PMC
Vesela E, Chroma K, Turi Z et al. . Common chemical inductors of replication stress: focus on cell-based studies. Biomolecules. 2017; 7:19.10.3390/biom7010019. PubMed DOI PMC
Cheng CH, Kuchta RD DNA polymerase epsilon: aphidicolin inhibition and the relationship between polymerase and exonuclease activity. Biochemistry. 1993; 32:8568–74.10.1021/bi00084a025. PubMed DOI
Aoyagi N, Oshige M, Hirose F et al. . DNA polymerase ε from Drosophila melanogaster. Biochem Biophys Res Commun. 1997; 230:297–301.10.1006/bbrc.1996.5945. PubMed DOI
Baranovskiy AG, Babayeva ND, Suwa Y et al. . Structural basis for inhibition of DNA replication by aphidicolin. Nucleic Acids Res. 2014; 42:14013–21.10.1093/nar/gku1209. PubMed DOI PMC
Esnault C, Magat T, Zine El Aabidine A et al. . G4access identifies G-quadruplexes and their associations with open chromatin and imprinting control regions. Nat Genet. 2023; 55:1359–69.10.1038/s41588-023-01437-4. PubMed DOI
Jana J, Weisz K Thermodynamic stability of G-quadruplexes: impact of sequence and environment. ChemBioChem. 2021; 22:2848–56.10.1002/cbic.202100127. PubMed DOI PMC
Castillo Bosch P, Segura-Bayona S, Koole W et al. . FANCJ promotes DNA synthesis through G-quadruplex structures. EMBO J. 2014; 33:2521–33.10.15252/embj.201488663. PubMed DOI PMC
Hogg M, Osterman P, Bylund GO et al. . Structural basis for processive DNA synthesis by yeast DNA polymerase varepsilon. Nat Struct Mol Biol. 2014; 21:49–55.10.1038/nsmb.2712. PubMed DOI
Jain R, Rice WJ, Malik R et al. . Cryo-EM structure and dynamics of eukaryotic DNA polymerase delta holoenzyme. Nat Struct Mol Biol. 2019; 26:955–62.10.1038/s41594-019-0305-z. PubMed DOI PMC
Lancey C, Tehseen M, Raducanu VS et al. . Structure of the processive human Pol delta holoenzyme. Nat Commun. 2020; 11:1109.10.1038/s41467-020-14898-6. PubMed DOI PMC
Roske JJ, Yeeles JTP Structural basis for processive daughter-strand synthesis and proofreading by the human leading-strand DNA polymerase Pol epsilon. Nat Struct Mol Biol. 2024; 31:1921–31.10.1038/s41594-024-01370-y. PubMed DOI PMC
Nair DT, Johnson RE, Prakash L et al. . Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science. 2005; 309:2219–22.10.1126/science.1116336. PubMed DOI
Zahn KE, Wallace SS, Doublie S DNA polymerases provide a canon of strategies for translesion synthesis past oxidatively generated lesions. Curr Opin Struct Biol. 2011; 21:358–69.10.1016/j.sbi.2011.03.008. PubMed DOI PMC
Kumar N, Sahoo B, Varun KA et al. . Effect of loop length variation on quadruplex-Watson Crick duplex competition. Nucleic Acids Res. 2008; 36:4433–42.10.1093/nar/gkn402. PubMed DOI PMC
Chalikian TV, Liu L, Macgregor RB Duplex-tetraplex equilibria in guanine- and cytosine-rich DNA. Biophys Chem. 2020; 267:106473.10.1016/j.bpc.2020.106473. PubMed DOI
Piazza A, Adrian M, Samazan F et al. . Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites. EMBO J. 2015; 34:1718–34.10.15252/embj.201490702. PubMed DOI PMC
Mathad RI, Hatzakis E, Dai J et al. . c-MYC promoter G-quadruplex formed at the 5′-end of NHE III1 element: insights into biological relevance and parallel-stranded G-quadruplex stability. Nucleic Acids Res. 2011; 39:9023–33.10.1093/nar/gkr612. PubMed DOI PMC
Schiavone D, Jozwiakowski S, Romanello M et al. . PrimPol is required for replicative tolerance of G-quadruplexes in vertebrate cells. Mol Cell. 2016; 61:161–9.10.1016/j.molcel.2015.10.038. PubMed DOI PMC
Thys RG, Wang YH DNA replication dynamics of the GGGGCC repeat of the C9orf72 gene. J Biol Chem. 2015; 290:28953–62.10.1074/jbc.M115.660324. PubMed DOI PMC
Zhou B, Liu C, Geng Y et al. . Topology of a G-quadruplex DNA formed by C9orf72 hexanucleotide repeats associated with ALS and FTD. Sci Rep. 2015; 5:16673.10.1038/srep16673. PubMed DOI PMC
Su Z, Zhang Y, Gendron TF et al. . Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron. 2014; 83:1043–50.10.1016/j.neuron.2014.07.041. PubMed DOI PMC
Li S, Shen X Long interspersed nuclear element 1 and B1/alu repeats blueprint genome compartmentalization. Curr Opin Genet Dev. 2023; 80:102049. PubMed
Howell R, Usdin K The ability to form intrastrand tetraplexes is an evolutionarily conserved feature of the 3′ end of L1 retrotransposons. Mol Biol Evol. 1997; 14:144–55.10.1093/oxfordjournals.molbev.a025747. PubMed DOI
Kejnovsky E, Tokan V, Lexa M Transposable elements and G-quadruplexes. Chromosome Res. 2015; 23:615–23.10.1007/s10577-015-9491-7. PubMed DOI
Ardeljan D, Steranka JP, Liu C et al. . Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication. Nat Struct Mol Biol. 2020; 27:168–78. PubMed PMC
Salas TR, Petruseva I, Lavrik O et al. . Human replication protein A unfolds telomeric G-quadruplexes. Nucleic Acids Res. 2006; 34:4857–65.10.1093/nar/gkl564. PubMed DOI PMC
Ray S, Qureshi MH, Malcolm DW et al. . RPA-mediated unfolding of systematically varying G-quadruplex structures. Biophys J. 2013; 104:2235–45.10.1016/j.bpj.2013.04.004. PubMed DOI PMC
Wang Y-R, Guo T-T, Zheng Y-T et al. . Replication protein A plays multifaceted roles complementary to specialized helicases in processing G-quadruplex DNA. iScience. 2021; 24:102493.10.1016/j.isci.2021.102493. PubMed DOI PMC
Sparks MA, Singh SP, Burgers PM et al. . Complementary roles of Pif1 helicase and single stranded DNA binding proteins in stimulating DNA replication through G-quadruplexes. Nucleic Acids Res. 2019; 47:8595–605. PubMed PMC
Pytko KG, Dannenberg RL, Eckert KA et al. . Replication of [AT/TA](25) microsatellite sequences by Human DNA polymerase delta holoenzymes is dependent on dNTP and RPA levels. Biochemistry. 2024; 63:969–83.10.1021/acs.biochem.4c00006. PubMed DOI
Lormand JD, Buncher N, Murphy CT et al. . DNA polymerase δ stalls on telomeric lagging strand templates independently from G-quadruplex formation. Nucleic Acids Res. 2013; 41:10323–33.10.1093/nar/gkt813. PubMed DOI PMC
Jones ML, Baris Y, Taylor MRG et al. . Structure of a human replisome shows the organisation and interactions of a DNA replication machine. EMBO J. 2021; 40:e108819.10.15252/embj.2021108819. PubMed DOI PMC
Lerner LK, Holzer S, Kilkenny ML et al. . Timeless couples G-quadruplex detection with processing by DDX11 helicase during DNA replication. EMBO J. 2020; 39:e104185.10.15252/embj.2019104185. PubMed DOI PMC
Biffi G, Tannahill D, Miller J et al. . Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues. PLoS One. 2014; 9:e102711.10.1371/journal.pone.0102711. PubMed DOI PMC
Zimmer J, Tacconi EMC, Folio C et al. . Targeting BRCA1 and BRCA2 deficiencies with G-quadruplex-interacting compounds. Mol Cell. 2016; 61:449–60.10.1016/j.molcel.2015.12.004. PubMed DOI PMC
Groelly FJ, Porru M, Zimmer J et al. . Anti-tumoural activity of the G-quadruplex ligand pyridostatin against BRCA1/2-deficient tumours. EMBO Mol Med. 2022; 14:e14501.10.15252/emmm.202114501. PubMed DOI PMC
Bossaert M, Pipier A, Riou JF et al. . Transcription-associated topoisomerase 2alpha (TOP2A) activity is a major effector of cytotoxicity induced by G-quadruplex ligands. eLife. 2021; 10:e65184.10.7554/eLife.65184. PubMed DOI PMC
Olivieri M, Cho T, Alvarez-Quilon A et al. . A genetic map of the response to DNA damage in Human cells. Cell. 2020; 182:481–496.10.1016/j.cell.2020.05.040. PubMed DOI PMC
Xu H, Di Antonio M, McKinney S et al. . CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun. 2017; 8:14432.10.1038/ncomms14432. PubMed DOI PMC
Koh GCC, Boushaki S, Zhao SJ et al. . The chemotherapeutic drug CX-5461 is a potent mutagen in cultured human cells. Nat Genet. 2024; 56:23–6.10.1038/s41588-023-01602-9. PubMed DOI PMC