A Glyphosate-Based Herbicide in Soil Differentially Affects Hormonal Homeostasis and Performance of Non-target Crop Plants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35154181
PubMed Central
PMC8829137
DOI
10.3389/fpls.2021.787958
Knihovny.cz E-zdroje
- Klíčová slova
- cascading herbicide effects, environmental pollutants, plant defense, plant ecology, plant physiological regulation, shikimate pathway,
- Publikační typ
- časopisecké články MeSH
Glyphosate is the most widely used herbicide with a yearly increase in global application. Recent studies report glyphosate residues from diverse habitats globally where the effect on non-target plants are still to be explored. Glyphosate disrupts the shikimate pathway which is the basis for several plant metabolites. The central role of phytohormones in regulating plant growth and responses to abiotic and biotic environment has been ignored in studies examining the effects of glyphosate residues on plant performance and trophic interactions. We studied interactive effects of glyphosate-based herbicide (GBH) residues and phosphate fertilizer in soil on the content of main phytohormones, their precursors and metabolites, as well as on plant performance and herbivore damage, in three plant species, oat (Avena sativa), potato (Solanum tuberosum), and strawberry (Fragaria x ananassa). Plant hormonal responses to GBH residues were highly species-specific. Potato responded to GBH soil treatment with an increase in stress-related phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), and jasmonic acid (JA) but a decrease in cytokinin (CK) ribosides and cytokinin-O-glycosides. GBH residues in combination with phosphate in soil increased aboveground biomass of potato plants and the concentration of the auxin phenylacetic acid (PAA) but decreased phaseic acid and cytokinin ribosides (CKR) and O-glycosides. Chorismate-derived compounds [IAA, PAA and benzoic acid (BzA)] as well as herbivore damage decreased in oat, when growing in GBH-treated soil but concentrations of the cytokinin dihydrozeatin (DZ) and CKR increased. In strawberry plants, phosphate treatment was associated with an elevation of auxin (IAA) and the CK trans-zeatin (tZ), while decreasing concentrations of the auxin PAA and CK DZ was observed in the case of GBH treatment. Our results demonstrate that ubiquitous herbicide residues have multifaceted consequences by modulating the hormonal equilibrium of plants, which can have cascading effects on trophic interactions.
Biodiversity Unit University of Turku Turku Finland
Zobrazit více v PubMed
Adie B., Chico J. M., Rubio-Somoza I., Solano R. (2007). Modulation of plant defenses by ethylene. J. Plant Growth Regul. 26 160–177. 10.1007/s00344-007-0012-6 DOI
Arimura G., Matsui K., Takabayashi J. (2009). Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol. 50 911–923. 10.1093/pcp/pcp030 PubMed DOI
Aristilde L., Reed M. L., Wilkes R. A., Youngster T., Kukurugya M. A., Katz V., et al. (2017). Glyphosate-induced specific and widespread perturbations in the metabolome of soil Pseudomonas species. Front. Environ. Sci. 5:34. 10.3389/fenvs.2017.00034 DOI
Asselbergh B., Curvers K., França S. C., Audenaert K., Vuylsteke M., Van Breusegem F., et al. (2007). Resistance to botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 144 1863–1877. 10.1104/pp.107.099226 PubMed DOI PMC
Berens M. L., Berry H. M., Mine A., Argueso C. T., Tsuda K. (2017). Evolution of hormone signaling networks in plant defense. Annu. Rev. Phytopathol. 55 401–425. 10.1146/annurev-phyto-080516-035544 PubMed DOI
Borggaard O. K., Gimsing A. L. (2008). Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag. Sci. 64 441–456. 10.1002/ps.1512 PubMed DOI
D’Alessandro M., Held M., Triponez Y., Turlings T. C. J. (2006). The role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps. J. Chem. Ecol. 32 2733–2748. 10.1007/s10886-006-9196-7 PubMed DOI
de Jonge H., de Jonge L. W., Jacobsen O. H., Yamaguchi T., Moldrup P. (2001). Glyphosate sorption in soils if different pH and phosphorus content. Soil Sci. 166 230–238. 10.1002/etc.3851 PubMed DOI
Deng Y., Lu S. (2017). Biosynthesis and regulation of phenylpropanoids in plants. Crit. Rev. Plant Sci. 36 257–290. 10.1080/07352689.2017.1402852 DOI
Ding P., Ding Y. (2020). Stories of salicylic acid: a plant defense hormone. Trends Plant Sci. 25 549–565. 10.1016/j.tplants.2020.01.004 PubMed DOI
Djilianov D. L., Dobrev P. I., Moyankova D. P., Vankova R., Georgieva D. T., Gajdošová S., et al. (2013). Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis. J. Plant Growth Regul. 32 564–574. 10.1007/s00344-013-9323-y DOI
Dobrev P. I., Vankova R. (2012). “Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues,” in Plant Salt Tolerance: Methods and Protocols Methods in Molecular Biology, eds Shabala S., Cuin T. A. (Totowa, NJ: Humana Press; ), 251–261. 10.1007/978-1-61779-986-0_17 PubMed DOI
Duke S. O., Powles S. B. (2008). Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64 319–325. 10.1002/ps.1518 PubMed DOI
Fuchs B., Krauss J. (2019). Can Epichloë endophytes enhance direct and indirect plant defence? Fungal Ecol. 38 98–103. 10.1016/j.funeco.2018.07.002 DOI
Fuchs B., Saikkonen K., Helander M. (2021). Glyphosate-modulated biosynthesis driving plant defense and species interactions. Trends Plant Sci. 26 312–323. 10.1016/j.tplants.2020.11.004 PubMed DOI
Gatehouse J. A. (2002). Plant resistance towards insect herbivores: a dynamic interaction. New Phytol. 156 145–169. 10.1046/j.1469-8137.2002.00519.x PubMed DOI
Gomes M. P., Le Manach S. G., Hénault-Ethier L., Labrecque M., Lucotte M., Juneau P. (2017). Glyphosate-dependent inhibition of photosynthesis in willow. Front. Plant Sci. 8:207. 10.3389/fpls.2017.00207 PubMed DOI PMC
Gomes M. P., Smedbol E., Chalifour A., Hénault-Ethier L., Labrecque M., Lepage L., et al. (2014). Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. J. Exp. Bot. 65 4691–4703. 10.1093/jxb/eru269 PubMed DOI
Gruden K., Lidoy J., Petek M., Podpečan V., Flors V., Papadopoulou K. K., et al. (2020). Ménage à Trois: unraveling the mechanisms regulating plant–microbe–arthropod interactions. Trends Plant Sci. 25 1215–1226. 10.1016/j.tplants.2020.07.008 PubMed DOI
Hammerschmidt R. (2018). How glyphosate affects plant disease development: it is more than enhanced susceptibility. Pest Manag. Sci. 74 1054–1063. 10.1002/ps.4521 PubMed DOI
Havlová M., Dobrev P. I., Motyka V., Štorchová H., Libus J., Dobrá J., et al. (2008). The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell. Environ. 31 341–353. 10.1111/j.1365-3040.2007.01766.x PubMed DOI
Helander M., Pauna A., Saikkonen K., Saloniemi I. (2019). Glyphosate residues in soil affect crop plant germination and growth. Sci. Rep. 9 1–9. 10.1038/s41598-019-56195-3 PubMed DOI PMC
Helander M., Saloniemi I., Saikkonen K. (2012). Glyphosate in northern ecosystems. Trends Plant Sci. 17 569–574. 10.1016/j.tplants.2012.05.008 PubMed DOI
Helander M., Saloniemi I., Omacini M., Druille M., Salminen J.-P., Saikkonen K. (2018). Glyphosate decreases mycorrhizal colonization and affects plant-soil feedback. Sci. Total Environ. 642 285–291. 10.1016/j.scitotenv.2018.05.377 PubMed DOI
Hoagland R. E. (1980). Effects of glyphosate on metabolism of phenolic compounds: VI. Effects of glyphosine and glyphosate metabolites on phenylalanine ammonia-lyase activity, growth, and protein, chlorophyll, and anthocyanin levels in soybean (Glycine max) seedlings. Weed Sci. 28 393–400. 10.1017/S0043174500055545 DOI
Hodgson J. G., Montserrat Marti G., Šerá B., Jones G., Bogaard A., Charles M., et al. (2020). Seed size, number and strategies in annual plants: a comparative functional analysis and synthesis. Ann. Bot. 126 1109–1128. 10.1093/aob/mcaa151 PubMed DOI PMC
Horiuchi J., Arimura G., Ozawa R., Shimoda T., Takabayashi J., Nishioka T. (2001). Exogenous ACC enhances volatiles production mediated by jasmonic acid in lima bean leaves. FEBS Lett. 509 332–336. 10.1016/S0014-5793(01)03194-5 PubMed DOI
Kahl G. (1974). Metabolism in plant storage tissue slices. Bot. Rev. 40 263–314.
Kazan K., Manners J. M. (2009). Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci. 14 373–382. 10.1016/j.tplants.2009.04.005 PubMed DOI
Kerchev P., van der Meer T., Sujeeth N., Verlee A., Stevens C. V., Van Breusegem F., et al. (2020). Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnol. Adv. 40:107503. 10.1016/j.biotechadv.2019.107503 PubMed DOI
Lee T. T., Dumas T. (1983). Effect of glyphosate on ethylene production in tobacco callus. Plant Physiol. 72 855–857. 10.1104/pp.72.3.855 PubMed DOI PMC
Lee T. T., Dumas T., Jevnikar J. J. (1983). Comparison of the effects of glyphosate and related compounds on indole-3-acetic acid metabolism and ethylene production in tobacco callus. Pestic. Biochem. Physiol. 20 354–359. 10.1016/0048-3575(83)90110-4 DOI
Lefevere H., Bauters L., Gheysen G. (2020). Salicylic acid biosynthesis in plants. Front. Plant Sci. 11:338. 10.3389/fpls.2020.00338 PubMed DOI PMC
Liu H., Brettell L. E., Qiu Z., Singh B. K. (2020). Microbiome-mediated stress resistance in plants. Trends Plant Sci. 25 733–743. 10.1016/j.tplants.2020.03.014 PubMed DOI
Maeda H., Dudareva N. (2012). The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63 73–105. 10.1146/annurev-arplant-042811-105439 PubMed DOI
Maggi F., la Cecilia D., Tang F. H. M., McBratney A. (2020). The global environmental hazard of glyphosate use. Sci. Total Environ. 717:137167. 10.1016/j.scitotenv.2020.137167 PubMed DOI
Munné-Bosch S., Müller M. (2013). Hormonal cross-talk in plant development and stress responses. Front. Plant Sci. 4:63. 10.3389/fpls.2013.00529 PubMed DOI PMC
Muola A., Fuchs B., Laihonen M., Rainio K., Heikkonen L., Ruuskanen S., et al. (2021). Risk in the circular food economy: glyphosate-based herbicide residues in manure fertilizers decrease crop yield. Sci. Total Environ. 750:141422. 10.1016/j.scitotenv.2020.141422 PubMed DOI
Myers J. P., Antoniou M. N., Blumberg B., Carroll L., Colborn T., Everett L. G., et al. (2016). Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ. Health 15:19. 10.1186/s12940-016-0117-0 PubMed DOI PMC
Niemeyer J. C., de Santo F. B., Guerra N., Ricardo Filho A. M., Pech T. M. (2018). Do recommended doses of glyphosate-based herbicides affect soil invertebrates? Field and laboratory screening tests to risk assessment. Chemosphere 198 154–160. 10.1016/j.chemosphere.2018.01.127 PubMed DOI
Ossipov V., Salminen J.-P., Ossipova S., Haukioja E., Pihlaja K. (2003). Gallic acid and hydrolysable tannins are formed in birch leaves from an intermediate compound of the shikimate pathway. Biochem. Syst. Ecol. 31 3–16. 10.1016/S0305-1978(02)00081-9 DOI
Padilla J. T., Selim H. M. (2019). Interactions among glyphosate and phosphate in soils: laboratory retention and transport studies. J. Environ. Qual. 48 156–163. 10.2134/jeq2018.06.0252 PubMed DOI
Paim B. T., Crizel R. L., Tatiane S. J., Rodrigues V. R., Rombaldi C. V., Galli V. (2020). Mild drought stress has potential to improve lettuce yield and quality. Sci Hort. 272:109578. 10.1016/j.scienta.2020.109578 DOI
Poveda K., Jiménez M. I. G., Kessler A. (2010). The enemy as ally: herbivore-induced increase in crop yield. Ecol. Appl. 20 1787–1793. 10.1890/09-1726.1 PubMed DOI
Rainio M. J., Margus A., Virtanen V., Lindström L., Salminen J.-P., Saikkonen K., et al. (2020). Glyphosate-based herbicide has soil-mediated effects on potato glycoalkaloids and oxidative status of a potato pest. Chemosphere 258:127254. 10.1016/j.chemosphere.2020.127254 PubMed DOI
Rekhter D., Lüdke D., Ding Y., Feussner K., Zienkiewicz K., Lipka V., et al. (2019). Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 365 498–502. 10.1126/science.aaw1720 PubMed DOI
Riedo J., Wettstein F. E., Rösch A., Herzog C., Banerjee S., Büchi L., et al. (2021). Widespread occurrence of pesticides in organically managed agricultural soils—the ghost of a conventional agricultural past? Environ. Sci. Technol. 55 2919–2928. 10.1021/acs.est.0c06405 PubMed DOI
Robert-Seilaniantz A., Grant M., Jones J. D. G. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 49 317–343. 10.1146/annurev-phyto-073009-114447 PubMed DOI
Serra A.-A., Couée I., Renault D., Gouesbet G., Sulmon C. (2015). Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress. J. Exp. Bot. 66 1801–1816. 10.1093/jxb/eru518 PubMed DOI PMC
Sharon A., Amsellem Z., Gressel J. (1992). Glyphosate suppression of an elicited defense response: increased susceptibility of Cassia obtusifolia to a mycoherbicide. Plant Physiol. 98 654–659. 10.1104/pp.98.2.654 PubMed DOI PMC
Soares C., Pereira R., Martins M., Tamagnini P., Serôdio J., Moutinho-Pereira J., et al. (2020). Glyphosate-dependent effects on photosynthesis of Solanum lycopersicum L.—an ecophysiological, ultrastructural and molecular approach. J. Hazardous Mater. 398:122871. 10.1016/j.jhazmat.2020.122871 PubMed DOI
Spormann S., Soares C., Fidalgo F. (2019). Salicylic acid alleviates glyphosate-induced oxidative stress in Hordeum vulgare L. J. Environ. Manage. 241 226–234. 10.1016/j.jenvman.2019.04.035 PubMed DOI
Thaler J. S., Humphrey P. T., Whiteman N. K. (2012). Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 17 260–270. 10.1016/j.tplants.2012.02.010 PubMed DOI
Wang Y.-J., Zhou D., Sun R. (2005). Effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils. J. Environ. Sci. (China) 17 711–715. PubMed
Wickham H. (2016). ggplot2: Elegant Graphics For Data Analysis, 2nd Edn. Cham: Springer International Publishing, 10.1007/978-3-319-24277-4 DOI
Widhalm J. R., Dudareva N. (2015). A familiar ring to it: biosynthesis of plant benzoic acids. Mol. Plant 8 83–97. 10.1016/j.molp.2014.12.001 PubMed DOI
Yasuor H., Abu-Abied M., Belausov E., Madmony A., Sadot E., Riov J., et al. (2006). Glyphosate-induced anther indehiscence in cotton Is partially temperature dependent and involves cytoskeleton and secondary wall modifications and auxin accumulation. Plant Physiol. 141 1306–1315. 10.1104/pp.106.081943 PubMed DOI PMC
Zabalza A., Orcaray L., Fernández-Escalada M., Zulet-González A., Royuela M. (2017). The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots. Pestic. Biochem. Physiol. 141 96–102. 10.1016/j.pestbp.2016.12.005 PubMed DOI