A Glyphosate-Based Herbicide in Soil Differentially Affects Hormonal Homeostasis and Performance of Non-target Crop Plants

. 2021 ; 12 () : 787958. [epub] 20220127

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35154181

Glyphosate is the most widely used herbicide with a yearly increase in global application. Recent studies report glyphosate residues from diverse habitats globally where the effect on non-target plants are still to be explored. Glyphosate disrupts the shikimate pathway which is the basis for several plant metabolites. The central role of phytohormones in regulating plant growth and responses to abiotic and biotic environment has been ignored in studies examining the effects of glyphosate residues on plant performance and trophic interactions. We studied interactive effects of glyphosate-based herbicide (GBH) residues and phosphate fertilizer in soil on the content of main phytohormones, their precursors and metabolites, as well as on plant performance and herbivore damage, in three plant species, oat (Avena sativa), potato (Solanum tuberosum), and strawberry (Fragaria x ananassa). Plant hormonal responses to GBH residues were highly species-specific. Potato responded to GBH soil treatment with an increase in stress-related phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), and jasmonic acid (JA) but a decrease in cytokinin (CK) ribosides and cytokinin-O-glycosides. GBH residues in combination with phosphate in soil increased aboveground biomass of potato plants and the concentration of the auxin phenylacetic acid (PAA) but decreased phaseic acid and cytokinin ribosides (CKR) and O-glycosides. Chorismate-derived compounds [IAA, PAA and benzoic acid (BzA)] as well as herbivore damage decreased in oat, when growing in GBH-treated soil but concentrations of the cytokinin dihydrozeatin (DZ) and CKR increased. In strawberry plants, phosphate treatment was associated with an elevation of auxin (IAA) and the CK trans-zeatin (tZ), while decreasing concentrations of the auxin PAA and CK DZ was observed in the case of GBH treatment. Our results demonstrate that ubiquitous herbicide residues have multifaceted consequences by modulating the hormonal equilibrium of plants, which can have cascading effects on trophic interactions.

Zobrazit více v PubMed

Adie B., Chico J. M., Rubio-Somoza I., Solano R. (2007). Modulation of plant defenses by ethylene. J. Plant Growth Regul. 26 160–177. 10.1007/s00344-007-0012-6 DOI

Arimura G., Matsui K., Takabayashi J. (2009). Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol. 50 911–923. 10.1093/pcp/pcp030 PubMed DOI

Aristilde L., Reed M. L., Wilkes R. A., Youngster T., Kukurugya M. A., Katz V., et al. (2017). Glyphosate-induced specific and widespread perturbations in the metabolome of soil Pseudomonas species. Front. Environ. Sci. 5:34. 10.3389/fenvs.2017.00034 DOI

Asselbergh B., Curvers K., França S. C., Audenaert K., Vuylsteke M., Van Breusegem F., et al. (2007). Resistance to botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 144 1863–1877. 10.1104/pp.107.099226 PubMed DOI PMC

Berens M. L., Berry H. M., Mine A., Argueso C. T., Tsuda K. (2017). Evolution of hormone signaling networks in plant defense. Annu. Rev. Phytopathol. 55 401–425. 10.1146/annurev-phyto-080516-035544 PubMed DOI

Borggaard O. K., Gimsing A. L. (2008). Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag. Sci. 64 441–456. 10.1002/ps.1512 PubMed DOI

D’Alessandro M., Held M., Triponez Y., Turlings T. C. J. (2006). The role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps. J. Chem. Ecol. 32 2733–2748. 10.1007/s10886-006-9196-7 PubMed DOI

de Jonge H., de Jonge L. W., Jacobsen O. H., Yamaguchi T., Moldrup P. (2001). Glyphosate sorption in soils if different pH and phosphorus content. Soil Sci. 166 230–238. 10.1002/etc.3851 PubMed DOI

Deng Y., Lu S. (2017). Biosynthesis and regulation of phenylpropanoids in plants. Crit. Rev. Plant Sci. 36 257–290. 10.1080/07352689.2017.1402852 DOI

Ding P., Ding Y. (2020). Stories of salicylic acid: a plant defense hormone. Trends Plant Sci. 25 549–565. 10.1016/j.tplants.2020.01.004 PubMed DOI

Djilianov D. L., Dobrev P. I., Moyankova D. P., Vankova R., Georgieva D. T., Gajdošová S., et al. (2013). Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis. J. Plant Growth Regul. 32 564–574. 10.1007/s00344-013-9323-y DOI

Dobrev P. I., Vankova R. (2012). “Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues,” in Plant Salt Tolerance: Methods and Protocols Methods in Molecular Biology, eds Shabala S., Cuin T. A. (Totowa, NJ: Humana Press; ), 251–261. 10.1007/978-1-61779-986-0_17 PubMed DOI

Duke S. O., Powles S. B. (2008). Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64 319–325. 10.1002/ps.1518 PubMed DOI

Fuchs B., Krauss J. (2019). Can Epichloë endophytes enhance direct and indirect plant defence? Fungal Ecol. 38 98–103. 10.1016/j.funeco.2018.07.002 DOI

Fuchs B., Saikkonen K., Helander M. (2021). Glyphosate-modulated biosynthesis driving plant defense and species interactions. Trends Plant Sci. 26 312–323. 10.1016/j.tplants.2020.11.004 PubMed DOI

Gatehouse J. A. (2002). Plant resistance towards insect herbivores: a dynamic interaction. New Phytol. 156 145–169. 10.1046/j.1469-8137.2002.00519.x PubMed DOI

Gomes M. P., Le Manach S. G., Hénault-Ethier L., Labrecque M., Lucotte M., Juneau P. (2017). Glyphosate-dependent inhibition of photosynthesis in willow. Front. Plant Sci. 8:207. 10.3389/fpls.2017.00207 PubMed DOI PMC

Gomes M. P., Smedbol E., Chalifour A., Hénault-Ethier L., Labrecque M., Lepage L., et al. (2014). Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. J. Exp. Bot. 65 4691–4703. 10.1093/jxb/eru269 PubMed DOI

Gruden K., Lidoy J., Petek M., Podpečan V., Flors V., Papadopoulou K. K., et al. (2020). Ménage à Trois: unraveling the mechanisms regulating plant–microbe–arthropod interactions. Trends Plant Sci. 25 1215–1226. 10.1016/j.tplants.2020.07.008 PubMed DOI

Hammerschmidt R. (2018). How glyphosate affects plant disease development: it is more than enhanced susceptibility. Pest Manag. Sci. 74 1054–1063. 10.1002/ps.4521 PubMed DOI

Havlová M., Dobrev P. I., Motyka V., Štorchová H., Libus J., Dobrá J., et al. (2008). The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell. Environ. 31 341–353. 10.1111/j.1365-3040.2007.01766.x PubMed DOI

Helander M., Pauna A., Saikkonen K., Saloniemi I. (2019). Glyphosate residues in soil affect crop plant germination and growth. Sci. Rep. 9 1–9. 10.1038/s41598-019-56195-3 PubMed DOI PMC

Helander M., Saloniemi I., Saikkonen K. (2012). Glyphosate in northern ecosystems. Trends Plant Sci. 17 569–574. 10.1016/j.tplants.2012.05.008 PubMed DOI

Helander M., Saloniemi I., Omacini M., Druille M., Salminen J.-P., Saikkonen K. (2018). Glyphosate decreases mycorrhizal colonization and affects plant-soil feedback. Sci. Total Environ. 642 285–291. 10.1016/j.scitotenv.2018.05.377 PubMed DOI

Hoagland R. E. (1980). Effects of glyphosate on metabolism of phenolic compounds: VI. Effects of glyphosine and glyphosate metabolites on phenylalanine ammonia-lyase activity, growth, and protein, chlorophyll, and anthocyanin levels in soybean (Glycine max) seedlings. Weed Sci. 28 393–400. 10.1017/S0043174500055545 DOI

Hodgson J. G., Montserrat Marti G., Šerá B., Jones G., Bogaard A., Charles M., et al. (2020). Seed size, number and strategies in annual plants: a comparative functional analysis and synthesis. Ann. Bot. 126 1109–1128. 10.1093/aob/mcaa151 PubMed DOI PMC

Horiuchi J., Arimura G., Ozawa R., Shimoda T., Takabayashi J., Nishioka T. (2001). Exogenous ACC enhances volatiles production mediated by jasmonic acid in lima bean leaves. FEBS Lett. 509 332–336. 10.1016/S0014-5793(01)03194-5 PubMed DOI

Kahl G. (1974). Metabolism in plant storage tissue slices. Bot. Rev. 40 263–314.

Kazan K., Manners J. M. (2009). Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci. 14 373–382. 10.1016/j.tplants.2009.04.005 PubMed DOI

Kerchev P., van der Meer T., Sujeeth N., Verlee A., Stevens C. V., Van Breusegem F., et al. (2020). Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnol. Adv. 40:107503. 10.1016/j.biotechadv.2019.107503 PubMed DOI

Lee T. T., Dumas T. (1983). Effect of glyphosate on ethylene production in tobacco callus. Plant Physiol. 72 855–857. 10.1104/pp.72.3.855 PubMed DOI PMC

Lee T. T., Dumas T., Jevnikar J. J. (1983). Comparison of the effects of glyphosate and related compounds on indole-3-acetic acid metabolism and ethylene production in tobacco callus. Pestic. Biochem. Physiol. 20 354–359. 10.1016/0048-3575(83)90110-4 DOI

Lefevere H., Bauters L., Gheysen G. (2020). Salicylic acid biosynthesis in plants. Front. Plant Sci. 11:338. 10.3389/fpls.2020.00338 PubMed DOI PMC

Liu H., Brettell L. E., Qiu Z., Singh B. K. (2020). Microbiome-mediated stress resistance in plants. Trends Plant Sci. 25 733–743. 10.1016/j.tplants.2020.03.014 PubMed DOI

Maeda H., Dudareva N. (2012). The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63 73–105. 10.1146/annurev-arplant-042811-105439 PubMed DOI

Maggi F., la Cecilia D., Tang F. H. M., McBratney A. (2020). The global environmental hazard of glyphosate use. Sci. Total Environ. 717:137167. 10.1016/j.scitotenv.2020.137167 PubMed DOI

Munné-Bosch S., Müller M. (2013). Hormonal cross-talk in plant development and stress responses. Front. Plant Sci. 4:63. 10.3389/fpls.2013.00529 PubMed DOI PMC

Muola A., Fuchs B., Laihonen M., Rainio K., Heikkonen L., Ruuskanen S., et al. (2021). Risk in the circular food economy: glyphosate-based herbicide residues in manure fertilizers decrease crop yield. Sci. Total Environ. 750:141422. 10.1016/j.scitotenv.2020.141422 PubMed DOI

Myers J. P., Antoniou M. N., Blumberg B., Carroll L., Colborn T., Everett L. G., et al. (2016). Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ. Health 15:19. 10.1186/s12940-016-0117-0 PubMed DOI PMC

Niemeyer J. C., de Santo F. B., Guerra N., Ricardo Filho A. M., Pech T. M. (2018). Do recommended doses of glyphosate-based herbicides affect soil invertebrates? Field and laboratory screening tests to risk assessment. Chemosphere 198 154–160. 10.1016/j.chemosphere.2018.01.127 PubMed DOI

Ossipov V., Salminen J.-P., Ossipova S., Haukioja E., Pihlaja K. (2003). Gallic acid and hydrolysable tannins are formed in birch leaves from an intermediate compound of the shikimate pathway. Biochem. Syst. Ecol. 31 3–16. 10.1016/S0305-1978(02)00081-9 DOI

Padilla J. T., Selim H. M. (2019). Interactions among glyphosate and phosphate in soils: laboratory retention and transport studies. J. Environ. Qual. 48 156–163. 10.2134/jeq2018.06.0252 PubMed DOI

Paim B. T., Crizel R. L., Tatiane S. J., Rodrigues V. R., Rombaldi C. V., Galli V. (2020). Mild drought stress has potential to improve lettuce yield and quality. Sci Hort. 272:109578. 10.1016/j.scienta.2020.109578 DOI

Poveda K., Jiménez M. I. G., Kessler A. (2010). The enemy as ally: herbivore-induced increase in crop yield. Ecol. Appl. 20 1787–1793. 10.1890/09-1726.1 PubMed DOI

Rainio M. J., Margus A., Virtanen V., Lindström L., Salminen J.-P., Saikkonen K., et al. (2020). Glyphosate-based herbicide has soil-mediated effects on potato glycoalkaloids and oxidative status of a potato pest. Chemosphere 258:127254. 10.1016/j.chemosphere.2020.127254 PubMed DOI

Rekhter D., Lüdke D., Ding Y., Feussner K., Zienkiewicz K., Lipka V., et al. (2019). Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 365 498–502. 10.1126/science.aaw1720 PubMed DOI

Riedo J., Wettstein F. E., Rösch A., Herzog C., Banerjee S., Büchi L., et al. (2021). Widespread occurrence of pesticides in organically managed agricultural soils—the ghost of a conventional agricultural past? Environ. Sci. Technol. 55 2919–2928. 10.1021/acs.est.0c06405 PubMed DOI

Robert-Seilaniantz A., Grant M., Jones J. D. G. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 49 317–343. 10.1146/annurev-phyto-073009-114447 PubMed DOI

Serra A.-A., Couée I., Renault D., Gouesbet G., Sulmon C. (2015). Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress. J. Exp. Bot. 66 1801–1816. 10.1093/jxb/eru518 PubMed DOI PMC

Sharon A., Amsellem Z., Gressel J. (1992). Glyphosate suppression of an elicited defense response: increased susceptibility of Cassia obtusifolia to a mycoherbicide. Plant Physiol. 98 654–659. 10.1104/pp.98.2.654 PubMed DOI PMC

Soares C., Pereira R., Martins M., Tamagnini P., Serôdio J., Moutinho-Pereira J., et al. (2020). Glyphosate-dependent effects on photosynthesis of Solanum lycopersicum L.—an ecophysiological, ultrastructural and molecular approach. J. Hazardous Mater. 398:122871. 10.1016/j.jhazmat.2020.122871 PubMed DOI

Spormann S., Soares C., Fidalgo F. (2019). Salicylic acid alleviates glyphosate-induced oxidative stress in Hordeum vulgare L. J. Environ. Manage. 241 226–234. 10.1016/j.jenvman.2019.04.035 PubMed DOI

Thaler J. S., Humphrey P. T., Whiteman N. K. (2012). Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 17 260–270. 10.1016/j.tplants.2012.02.010 PubMed DOI

Wang Y.-J., Zhou D., Sun R. (2005). Effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils. J. Environ. Sci. (China) 17 711–715. PubMed

Wickham H. (2016). ggplot2: Elegant Graphics For Data Analysis, 2nd Edn. Cham: Springer International Publishing, 10.1007/978-3-319-24277-4 DOI

Widhalm J. R., Dudareva N. (2015). A familiar ring to it: biosynthesis of plant benzoic acids. Mol. Plant 8 83–97. 10.1016/j.molp.2014.12.001 PubMed DOI

Yasuor H., Abu-Abied M., Belausov E., Madmony A., Sadot E., Riov J., et al. (2006). Glyphosate-induced anther indehiscence in cotton Is partially temperature dependent and involves cytoskeleton and secondary wall modifications and auxin accumulation. Plant Physiol. 141 1306–1315. 10.1104/pp.106.081943 PubMed DOI PMC

Zabalza A., Orcaray L., Fernández-Escalada M., Zulet-González A., Royuela M. (2017). The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots. Pestic. Biochem. Physiol. 141 96–102. 10.1016/j.pestbp.2016.12.005 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...