BACKGROUND: The majority of eukaryotic promoters utilize multiple transcription start sites (TSSs). How multiple TSSs are specified at individual promoters across eukaryotes is not understood for most species. In Saccharomyces cerevisiae, a pre-initiation complex (PIC) comprised of Pol II and conserved general transcription factors (GTFs) assembles and opens DNA upstream of TSSs. Evidence from model promoters indicates that the PIC scans from upstream to downstream to identify TSSs. Prior results suggest that TSS distributions at promoters where scanning occurs shift in a polar fashion upon alteration in Pol II catalytic activity or GTF function. RESULTS: To determine the extent of promoter scanning across promoter classes in S. cerevisiae, we perturb Pol II catalytic activity and GTF function and analyze their effects on TSS usage genome-wide. We find that alterations to Pol II, TFIIB, or TFIIF function widely alter the initiation landscape consistent with promoter scanning operating at all yeast promoters, regardless of promoter class. Promoter architecture, however, can determine the extent of promoter sensitivity to altered Pol II activity in ways that are predicted by a scanning model. CONCLUSIONS: Our observations coupled with previous data validate key predictions of the scanning model for Pol II initiation in yeast, which we term the shooting gallery. In this model, Pol II catalytic activity and the rate and processivity of Pol II scanning together with promoter sequence determine the distribution of TSSs and their usage.
- MeSH
- DNA-polymerasa II metabolismus MeSH
- iniciace genetické transkripce * MeSH
- modely genetické MeSH
- počátek transkripce * MeSH
- promotorové oblasti (genetika) MeSH
- Saccharomyces cerevisiae enzymologie genetika MeSH
- transkripční faktory hlavní metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The colorectal cancer harbor germline, somatic or epimutations in mismatch repair genes, MUTYH or POLE gene, which lead to the hypermutated and ultramutator phenotypes with increased immune response. The mutations in POLE gene were reported to occur more frequently in early-onset colorectal cancer (EOCRC), and the patients are strong candidates for checkpoint inhibitor therapy. Here, we report mutation analysis within the endonuclease domain of the POLE gene in the cohort of patients with EOCRC in order to identify recurrent or new mutations and evaluate their association with the presence of tumor-infiltrating lymphocytes (TILs) and peritumoral lymphoid reaction. We have shown a significant association between MSI tumors and TILs (p = 0.004). Using sensitive single-tube nested PCR with subsequent Sanger sequencing, we have found in one female patient diagnosed at age 48 with rectal adenocarcinoma with mucinous elements staged pT3pN2pM1 a silent variant within the exon 9 NM_006231.3 c.849 C > T, NP_00622.2 p.Leu283 = recorded in dSNP as rs1232888774 with MAF = 0.00002. In silico prediction, result showed possible involvement into splicing; therefore, this rare variant can be involved into EOCRC pathogenesis. In the time of precise medicine, it is important to develop screening strategies also for less common conditions such as EOCRC allowing to predict tailored therapy for younger patients suffering from CRC that harbor mutations in the POLE gene.
- MeSH
- DNA-polymerasa II genetika MeSH
- dospělí MeSH
- genotypizační techniky MeSH
- kolorektální nádory genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace * MeSH
- proteiny vázající poly-ADP-ribosu genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Completion of DNA replication needs to be ensured even when challenged with fork progression problems or DNA damage. PCNA and its modifications constitute a molecular switch to control distinct repair pathways. In yeast, SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of replication where Srs2 can disrupt Rad51 filaments and prevent homologous recombination (HR). We report here an unexpected additional mechanism by which S-PCNA and Srs2 block the synthesis-dependent extension of a recombination intermediate, thus limiting its potentially hazardous resolution in association with a cross-over. This new Srs2 activity requires the SUMO interaction motif at its C-terminus, but neither its translocase activity nor its interaction with Rad51. Srs2 binding to S-PCNA dissociates Polδ and Polη from the repair synthesis machinery, thus revealing a novel regulatory mechanism controlling spontaneous genome rearrangements. Our results suggest that cycling cells use the Siz1-dependent SUMOylation of PCNA to limit the extension of repair synthesis during template switch or HR and attenuate reciprocal DNA strand exchanges to maintain genome stability.
- MeSH
- DNA-helikasy genetika metabolismus MeSH
- DNA-polymerasa II genetika metabolismus MeSH
- DNA-polymerasa III genetika metabolismus MeSH
- homologní rekombinace * MeSH
- mutace genetika MeSH
- nestabilita genomu MeSH
- oprava DNA genetika účinky záření MeSH
- poškození DNA genetika účinky záření MeSH
- proliferační antigen buněčného jádra genetika metabolismus MeSH
- protein SUMO-1 genetika metabolismus MeSH
- rekombinasa Rad51 genetika metabolismus MeSH
- replikace DNA genetika účinky záření MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sumoylace MeSH
- ultrafialové záření škodlivé účinky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH