• Je něco špatně v tomto záznamu ?

Universal promoter scanning by Pol II during transcription initiation in Saccharomyces cerevisiae

C. Qiu, H. Jin, I. Vvedenskaya, JA. Llenas, T. Zhao, I. Malik, AM. Visbisky, SL. Schwartz, P. Cui, P. Čabart, KH. Han, WKM. Lai, RP. Metz, CD. Johnson, SH. Sze, BF. Pugh, BE. Nickels, CD. Kaplan

. 2020 ; 21 (1) : 132. [pub] 20200602

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21020466

Grantová podpora
R01 GM088343 NIGMS NIH HHS - United States
R35 GM118059 NIGMS NIH HHS - United States
R01 GM120450 NIGMS NIH HHS - United States
R01 GM097260 NIGMS NIH HHS - United States

BACKGROUND: The majority of eukaryotic promoters utilize multiple transcription start sites (TSSs). How multiple TSSs are specified at individual promoters across eukaryotes is not understood for most species. In Saccharomyces cerevisiae, a pre-initiation complex (PIC) comprised of Pol II and conserved general transcription factors (GTFs) assembles and opens DNA upstream of TSSs. Evidence from model promoters indicates that the PIC scans from upstream to downstream to identify TSSs. Prior results suggest that TSS distributions at promoters where scanning occurs shift in a polar fashion upon alteration in Pol II catalytic activity or GTF function. RESULTS: To determine the extent of promoter scanning across promoter classes in S. cerevisiae, we perturb Pol II catalytic activity and GTF function and analyze their effects on TSS usage genome-wide. We find that alterations to Pol II, TFIIB, or TFIIF function widely alter the initiation landscape consistent with promoter scanning operating at all yeast promoters, regardless of promoter class. Promoter architecture, however, can determine the extent of promoter sensitivity to altered Pol II activity in ways that are predicted by a scanning model. CONCLUSIONS: Our observations coupled with previous data validate key predictions of the scanning model for Pol II initiation in yeast, which we term the shooting gallery. In this model, Pol II catalytic activity and the rate and processivity of Pol II scanning together with promoter sequence determine the distribution of TSSs and their usage.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21020466
003      
CZ-PrNML
005      
20210830102134.0
007      
ta
008      
210728s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s13059-020-02040-0 $2 doi
035    __
$a (PubMed)32487207
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Qiu, Chenxi $u Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA $u Present Address: Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
245    10
$a Universal promoter scanning by Pol II during transcription initiation in Saccharomyces cerevisiae / $c C. Qiu, H. Jin, I. Vvedenskaya, JA. Llenas, T. Zhao, I. Malik, AM. Visbisky, SL. Schwartz, P. Cui, P. Čabart, KH. Han, WKM. Lai, RP. Metz, CD. Johnson, SH. Sze, BF. Pugh, BE. Nickels, CD. Kaplan
520    9_
$a BACKGROUND: The majority of eukaryotic promoters utilize multiple transcription start sites (TSSs). How multiple TSSs are specified at individual promoters across eukaryotes is not understood for most species. In Saccharomyces cerevisiae, a pre-initiation complex (PIC) comprised of Pol II and conserved general transcription factors (GTFs) assembles and opens DNA upstream of TSSs. Evidence from model promoters indicates that the PIC scans from upstream to downstream to identify TSSs. Prior results suggest that TSS distributions at promoters where scanning occurs shift in a polar fashion upon alteration in Pol II catalytic activity or GTF function. RESULTS: To determine the extent of promoter scanning across promoter classes in S. cerevisiae, we perturb Pol II catalytic activity and GTF function and analyze their effects on TSS usage genome-wide. We find that alterations to Pol II, TFIIB, or TFIIF function widely alter the initiation landscape consistent with promoter scanning operating at all yeast promoters, regardless of promoter class. Promoter architecture, however, can determine the extent of promoter sensitivity to altered Pol II activity in ways that are predicted by a scanning model. CONCLUSIONS: Our observations coupled with previous data validate key predictions of the scanning model for Pol II initiation in yeast, which we term the shooting gallery. In this model, Pol II catalytic activity and the rate and processivity of Pol II scanning together with promoter sequence determine the distribution of TSSs and their usage.
650    _2
$a DNA-polymerasa II $x metabolismus $7 D004257
650    _2
$a modely genetické $7 D008957
650    _2
$a promotorové oblasti (genetika) $7 D011401
650    _2
$a Saccharomyces cerevisiae $x enzymologie $x genetika $7 D012441
650    _2
$a transkripční faktory hlavní $x metabolismus $7 D035165
650    12
$a počátek transkripce $7 D024363
650    12
$a iniciace genetické transkripce $7 D061785
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Jin, Huiyan $u Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
700    1_
$a Vvedenskaya, Irina $u Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA $u Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
700    1_
$a Llenas, Jordi Abante $u Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843-3128, USA $u Present Address: Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
700    1_
$a Zhao, Tingting $u Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
700    1_
$a Malik, Indranil $u Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA $u Present Address: Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
700    1_
$a Visbisky, Alex M $u Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
700    1_
$a Schwartz, Scott L $u Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
700    1_
$a Cui, Ping $u Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
700    1_
$a Čabart, Pavel $u Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA $u Present Address: First Faculty of Medicine, Charles University, BIOCEV, 252 42, Vestec, Czech Republic
700    1_
$a Han, Kang Hoo $u Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
700    1_
$a Lai, William K M $u Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA $u Present Address: Department of Molecular Biology and Genetics, 458 Biotechnology, Cornell University, New York, 14853, USA
700    1_
$a Metz, Richard P $u Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
700    1_
$a Johnson, Charles D $u Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
700    1_
$a Sze, Sing-Hoi $u Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA $u Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843-3127, USA
700    1_
$a Pugh, B Franklin $u Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA $u Present Address: Department of Molecular Biology and Genetics, 458 Biotechnology, Cornell University, New York, 14853, USA
700    1_
$a Nickels, Bryce E $u Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA $u Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
700    1_
$a Kaplan, Craig D $u Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA. craig.kaplan@pitt.edu
773    0_
$w MED00006605 $t Genome biology $x 1474-760X $g Roč. 21, č. 1 (2020), s. 132
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32487207 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830102134 $b ABA008
999    __
$a ok $b bmc $g 1691104 $s 1140912
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 21 $c 1 $d 132 $e 20200602 $i 1474-760X $m Genome biology $n Genome Biol $x MED00006605
GRA    __
$a R01 GM088343 $p NIGMS NIH HHS $2 United States
GRA    __
$a R35 GM118059 $p NIGMS NIH HHS $2 United States
GRA    __
$a R01 GM120450 $p NIGMS NIH HHS $2 United States
GRA    __
$a R01 GM097260 $p NIGMS NIH HHS $2 United States
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...