Variation in G-quadruplex sequence and topology differentially impacts human DNA polymerase fidelity

. 2022 Nov ; 119 () : 103402. [epub] 20220909

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36116264

Grantová podpora
R01 CA237153 NCI NIH HHS - United States
R01 ES014737 NIEHS NIH HHS - United States
R01 GM136684 NIGMS NIH HHS - United States
R56 ES014737 NIEHS NIH HHS - United States

Odkazy

PubMed 36116264
PubMed Central PMC9798401
DOI 10.1016/j.dnarep.2022.103402
PII: S1568-7864(22)00135-5
Knihovny.cz E-zdroje

G-quadruplexes (G4s), a type of non-B DNA, play important roles in a wide range of molecular processes, including replication, transcription, and translation. Genome integrity relies on efficient and accurate DNA synthesis, and is compromised by various stressors, to which non-B DNA structures such as G4s can be particularly vulnerable. However, the impact of G4 structures on DNA polymerase fidelity is largely unknown. Using an in vitro forward mutation assay, we investigated the fidelity of human DNA polymerases delta (δ4, four-subunit), eta (η), and kappa (κ) during synthesis of G4 motifs representing those in the human genome. The motifs differ in sequence, topology, and stability, features that may affect DNA polymerase errors. Polymerase error rate hierarchy (δ4 < κ < η) is largely maintained during G4 synthesis. Importantly, we observed unique polymerase error signatures during synthesis of VEGF G4 motifs, stable G4s which form parallel topologies. These statistically significant errors occurred within, immediately flanking, and encompassing the G4 motif. For pol δ4, the errors were deletions, insertions and complex errors within the G4 or encompassing the G4 motif and surrounding sequence. For pol η, the errors occurred in 3' sequences flanking the G4 motif. For pol κ, the errors were frameshift mutations within G-tracts of the G4. Because these error signatures were not observed during synthesis of an antiparallel G4 and, to a lesser extent, a hybrid G4, we suggest that G4 topology and/or stability could influence polymerase fidelity. Using in silico analyses, we show that most polymerase errors are predicted to have minimal effects on predicted G4 stability. Our results provide a unique view of G4s not previously elucidated, showing that G4 motif heterogeneity differentially influences polymerase fidelity within the motif and flanking sequences. Thus, our study advances the understanding of how DNA polymerase errors contribute to G4 mutagenesis.

Zobrazit více v PubMed

Lee M, Zhang S, Wang X, Chao H, Zhao H, Darzynkiewicz Z, et al. Two forms of human DNA polymerase δ: Who does what and why? DNA Repair. 2019;81:102656. doi: 10.1016/j.dnarep.2019.102656. PubMed DOI

Fuchs J, Cheblal A, Gasser SM. Underappreciated Roles of DNA Polymerase δ in Replication Stress Survival. Trends in Genetics. 2021;37(5):476–87. doi: 10.1016/j.tig.2020.12.003. PubMed DOI

Eckert KA, Tsao W-C. Detours to Replication: Functions of Specialized DNA Polymerases during Oncogene-induced Replication Stress. International Journal of Molecular Sciences. 2018;19(10):3255. doi: 10.3390/ijms19103255. PubMed DOI PMC

Ananda G, Hile S, Breski A, Wang Y, Kelkar Y, Makova K, et al. Microsatellite Interruptions Stabilize Primate Genomes and Exist as Population-Specific Single Nucleotide Polymorphisms within Individual Human Genomes. PLOS Genetics. 2014;10(7):e1004498. doi: 10.1371/journal.pgen.1004498. PubMed DOI PMC

Bergoglio V, Boyer A, Walsh E, Naim V, Legube G, Lee M, et al. DNA synthesis by Pol η promotes fragile site stability by preventing under-replicated DNA in mitosis. The Journal of Cell Biology. 2013;201(3):395–408. doi: 10.1083/jcb.201207066. PubMed DOI PMC

Twayana S, Bacolla A, Barreto-Galvez A, De-Paula R, Drosopoulos W, Kosiyatrakul S, et al. Translesion polymerase eta both facilitates DNA replication and promotes increased human genetic variation at common fragile sites. Proceedings of the National Academy of Sciences of the United States of America. 2021;118(48):e2106477118. doi: 10.1073/pnas.2106477118. PubMed DOI PMC

Walsh E, Wang X, Lee M, Eckert K. Mechanism of replicative DNA polymerase delta pausing and a potential role for DNA polymerase kappa in common fragile site replication. Journal of Molecular Biology. 2013;425(2):232–43. doi: 10.1016/j.jmb.2012.11.016. PubMed DOI PMC

Tonzi P, Yin Y, Lee C, Rothenberg E, Huang T. Translesion polymerase kappa-dependent DNA synthesis underlies replication fork recovery. eLife. 2018;7:e41426. doi: 10.7554/eLife.41426. PubMed DOI PMC

Sen D, Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature. 1988;334(6180):364–6. doi: 10.1038/334364a0. PubMed DOI

Rhodes D, Lipps HJ. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Research. 2015;43:8627–37. doi: 10.1093/nar/gkv862. PubMed DOI PMC

Battacharryya D, Mirihana Arachchilage G, Basu S. Metal Cations in G-Quadruplex Folding and Stability. Frontiers in Chemistry. 2016;4(38). doi: 10.3389/fchem.2016.00038. PubMed DOI PMC

Sen D, Gilbert W. A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature. 1990;344(6265):410–4. doi: 10.1038/344410a0. PubMed DOI

Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Research. 2005;33:2908–16. doi: 10.1093/nar/gki609. PubMed DOI PMC

Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP, Balasubramanian S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nature Biotechnology. 2015;33(8):877–81. doi: 10.1038/nbt.3295. PubMed DOI

Masai H, Tanaka T. G-quadruplex DNA and RNA: Their roles in regulation of DNA replication and other biological functions. Biochemical and biophysical research communications. 2020;531(1):25–38. doi: 10.1016/j.bbrc.2020.05.132. PubMed DOI

Savva L, Georgiades SN. Recent Developments in Small-Molecule Ligands of Medicinal Relevance for Harnessing the Anticancer Potential of G-Quadruplexes. Molecules. 2021;26(4):841. doi: 10.3390/molecules26040841. PubMed DOI PMC

Xu H, Di Antonio M, McKinney S, Mathew V, Ho B, O’Neil NJ, et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nature Communications. 2017;8(1):14432. doi: 10.1038/ncomms14432. PubMed DOI PMC

Zimmer J, Tacconi E, Folio C, Badie S, Porru M, Klare K, et al. Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds. Molecular cell. 2016;61(3):449–60. doi: 10.1016/j.molcel.2015.12.004. PubMed DOI PMC

Estep K, Butler T, Ding J, Brosh R. G4-Interacting DNA Helicases and Polymerases: Potential Therapeutic Targets. Current Medicinal Chemistry. 2019;26(16):2881–97. doi: 10.2174/0929867324666171116123345. PubMed DOI PMC

Tang F, Wang YG, Zi, Guo S, Wang Y. Polymerase η Recruits DHX9 Helicase to Promote Replication across Guanine Quadruplex Structures. Journal of the American Chemical Society. 2022. doi: 10.1021/jacs.2c05312. PubMed DOI PMC

Sato K, Martin-Pintado N, Post H, Altelaar M, Knipscheer P. Multistep mechanism of G-quadruplex resolution during DNA replication. Science Advances. 2021;7(39):eabf8653. doi: 10.1126/sciadv.abf8653. PubMed DOI PMC

Stein M, Eckert K. Impact of G-Quadruplexes and Chronic Inflammation on Genome Instability: Additive Effects during Carcinogenesis. Genes. 2021;12(11):1779. doi: 10.3390/genes12111779. PubMed DOI PMC

Bacolla A, Ye Z, Ahmed Z, Trainer JA. Cancer mutational burden is shaped by G4 DNA, replication stress and mitochondrial dysfunction. Progress in Biophysics and Molecular Biology. 2019;147:47–61. doi: 10.1016/j.pbiomolbio.2019.03.004. PubMed DOI PMC

Du X, Gertz EM, Wojtowicz D, Zhabinskaya D, Levens D, Benham CJ, et al. Potential non-B DNA regions in the human genome are associated with higher rates of nucleotide mutation and expression variation. Nucleic Acids Research. 2014;42:12367–79. doi: 10.1093/nar/gku921. PubMed DOI PMC

Georgakopoulos-Soares I, Morganella S, Jain N, Hemberg M, Nik-Zainal S. Noncanonical secondary structures arising from non-B DNA motifs are determinants of mutagenesis. Genome Research. 2018;28(9):1264–71. doi: 10.1101/gr.231688.117. PubMed DOI PMC

Guiblet W, Cremona M, Harris R, Chen D, Eckert K, Chiaromonte F, et al. Non-B DNA: a major contributor to small- and large-scale variation in nucleotide substitution frequencies across the genome. Nucleic Acids Research. 2021;49(3):1497–516. doi: 10.1093/nar/gkaa1269. PubMed DOI PMC

De S, Michor F. DNA secondary structures and epigenetic determinants of cancer genome evolution. Nature Structural and Molecular Biology. 2011;18:950–5. doi: 10.1038/nsmb.2089. PubMed DOI PMC

Bacolla A, Tainer J, Vasquez K, Cooper D. Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences. Nucleic Acids Research. 2016;44(12):5673–88. doi: 10.1093/nar/gkw261. PubMed DOI PMC

Sarkies P, Reams C, Simpson L, Sale J. Epigenetic instability due to defective replication of structured DNA. Molecular cell. 2010;40(5):703–13. doi: 10.1016/j.molcel.2010.11.009. PubMed DOI PMC

Eddy S, Ketkar A, Zafar MK, Maddukuri L, Choi J-Y, Eoff RL. Human Rev1 polymerase disrupts G-quadruplex DNA. Nucleic Acids Research. 2014;42(5):3272–85. doi: 10.1093/nar/gkt1314. PubMed DOI PMC

Ketkar A, Smith L, Johnson C, Richey A, Berry M, Maddukuri L, et al. Human Rev1 relies on insert-2 to promote selective binding and accurate replication of stabilized G-quadruplex motifs. Nucleic Acids Research. 2021;49(4):2065–84. doi: 10.1093/nar/gkab041. PubMed DOI PMC

Koole W, van Schendel R, Karambelas AE, van Heteren JT, Okihara KL, Tijsterman M. A Polymerase Theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites. Nature Communications. 2014;5:3216. doi: 10.1038/ncomms4216. PubMed DOI

Eddy S, Maddukuri L, Ketkar A, Zafar M, Henninger E, Pursell Z, et al. Evidence for the kinetic partitioning of polymerase activity on G-quadruplex DNA. Biochemistry. 2015;54(20):3218–30. doi: 10.1021/acs.biochem.5b00060. PubMed DOI PMC

Eddy S, Tillman M, Maddukuri L, Ketkar A, Zafar MK, Eoff RL. Human Translesion Polymerase κ Exhibits Enhanced Activity and Reduced Fidelity Two Nucleotides from G-Quadruplex DNA. Biochemistry. 2016;55(37):5218–29. doi: 10.1021/acs.biochem.6b00374. PubMed DOI PMC

Edwards DN, Machwe A, Wang Z, Orren DK. Intramolecular Telomeric G-quadruplexes Dramatically Inhibit DNA Synthesis by Replicative and Translesion Polymerases, Revealing their Potential to Lead Genetic Change. PLoS One. 2014;9(1):e80664. doi: 10.1371/journal.pone.0080664. PubMed DOI PMC

Kejnovská I, Stadlbauer P, Trantírek L, Renčiuk D, Gajarský M, Krafčík D, et al. G-Quadruplex formation by DNA sequences deficient in guanines : Two tetrad parallel quadruplexes do not fold intramolecularly. Chemistry - A European Journal. 2021;27(47):12115–25 doi: 10.1002/chem.202100895. PubMed DOI

Eckert K, Mowery A, Hile S. Misalignment-mediated DNA polymerase beta mutations: comparison of microsatellite and frame-shift error rates using a forward mutation assay. Biochemistry. 2002;41(33):10490–8. doi: 10.1021/bi025918c. PubMed DOI

Hile S, Eckert K. DNA polymerase kappa produces interrupted mutations and displays polar pausing within mononucleotide microsatellite sequences. Nucleic Acids Research. 2008;36(2):688–96. doi: 10.1093/nar/gkm1089. PubMed DOI PMC

Eckert KA, Ingle CA, Drinkwater NR. N-Ethyl-N-nitrosourea induces A:T to C:G transversion mutations as well as transition mutations in SOS-induced Escherichia coli. Carcinogenesis. 1989;10(12):2261–7. doi: 10.1093/carcin/10.12.2261. PubMed DOI

Zhou Y, Meng X, Zhang S, Lee E, Lee M. Characterization of human DNA polymerase delta and its subassemblies reconstituted by expression in the MultiBac system. PloS one. 2012;7(6):e39156. doi: 10.1371/journal.pone.0039156. PubMed DOI PMC

Barnes R, Hile S, Lee M, Eckert K. DNA polymerases eta and kappa exchange with the polymerase delta holoenzyme to complete common fragile site synthesis. DNA Repair. 2017;57:1–11. doi: 10.1016/j.dnarep.2017.05.006. PubMed DOI PMC

Hingorani MM, Coman MM. On the Specificity of Interaction between the Saccharomyces cerevisiae Clamp Loader Replication Factor C and Primed DNA Templates during DNA Replication *. Journal of Biological Chemistry. 2002;277(49):47213–24. doi: 10.1074/jbc.M206764200. PubMed DOI PMC

Hile SE, Wang X, Lee MYWT, Eckert KA. Beyond translesion synthesis: polymerase κ fidelity as a potential determinant of microsatellite stability. Nucleic Acids Research. 2012;40(4):1636–47. doi: 10.1093/nar/gkr889. PubMed DOI PMC

Sahakyan AB, Chambers VS, Marsico G, Santner T, Di Antonio M, Balasubramanian S. Machine learning model for sequence-driven DNA G-quadruplex formation. Scientific Reports. 2017;7(1):14535. doi: 10.1038/s41598-017-14017-4. PubMed DOI PMC

Soper DS. Fisher's Exact Test Calculator [Software] 2022. [cited 2022 January]. Available from: https://www.danielsoper.com/statcalc.

Gray RD, Trent JO, Arumugam S, Chaires JB. Folding Landscape of a Parallel G-Quadruplex. The Journal of Physical Chemistry Letters. 2019;10:1146–51. doi: 10.1021/acs.jpclett.9b00227. PubMed DOI PMC

Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Research. 2022;34(19):5402–15. doi: 10.1093/nar/gkl655. PubMed DOI PMC

Kwok CK, Merrick CJ. G-Quadruplexes: Prediction, Characterization, and Biological Application. Cell Press Reviews. 2017;35:997–1013. doi: 10.1016/j.tibtech.2017.06.012. PubMed DOI

Jana J, Weisz K. Thermodynamic Stability of G-Quadruplexes: Impact of Sequence and Environment. Chembiochem. 2021;22:2848–56. doi: 10.1002/cbic.202100127. PubMed DOI PMC

Sun D, Guo K, Shin Y-J. Evidence of the formation of G-quadruplex structures in the promoter region of the human vascular endothelial growth factor gene. Nucleic Acids Research. 2011;39(4):1256–65. doi: 10.1093/nar/gkq926. PubMed DOI PMC

Abdulovic A, Hile S, Kunkel T, Eckert K. The in vitro fidelity of yeast DNA polymerase δ and polymerase ε holoenzymes during dinucleotide microsatellite DNA synthesis. DNA Repair. 2011;10(5):497–505. doi: 10.1016/j.dnarep.2011.02.003. PubMed DOI PMC

Kelkar Y, Strubczewski N, Hile S, Chiaromonte F, Eckert K, Makova K. What is a microsatellite: a computational and experimental definition based upon repeat mutational behavior at A/T and GT/AC repeats. Genome Biology and Evolution. 2010;2:620–35. doi: 10.1093/gbe/evq046. PubMed DOI PMC

Baptiste B, Jacob K, Eckert K. Genetic evidence that both dNTP-stabilized and strand slippage mechanisms may dictate DNA polymerase errors within mononucleotide microsatellites. DNA Repair. 2015;29:91–100. doi: 10.1016/j.dnarep.2015.02.016. PubMed DOI PMC

Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research. 2003;31(13):3406–15. doi: 10.1093/nar/gkg595. PubMed DOI PMC

Lovett S. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Molecular microbiology. 2004;52(5):1243–53. doi: 10.1111/j.1365-2958.2004.04076.x. PubMed DOI

Lemmens B, van Schendel R, Tijsterman M. Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers. Nature Communications. 2015;6:8909. doi: 10.1038/ncomms9909. PubMed DOI PMC

Tarailo-Graovac M, Wong T, Qin Z, Flibotte S, Taylor J, Moerman D, et al. Spectrum of variations in dog-1/FANCJ and mdf-1/MAD1 defective Caenorhabditis elegans strains after long-term propagation. BMC Genomics. 2015;16(1):210. doi: 10.1186/s12864-015-1402-y. PubMed DOI PMC

Monsen R, DeLeeuw L, Dean W, Gray R, Chakravarthy S, Hopkins J, et al. Long promoter sequences form higher-order G-quadruplexes: an integrative structural biology study of c-Myc, k-Ras and c-Kit promoter sequences. Nucleic Acids Research. 2022;50(7):4127–47. doi: 10.1093/nar/gkac182. PubMed DOI PMC

Arora A, Nair D, Maiti S. Effect of flanking bases on quadruplex stability and Watson-Crick duplex competition. The FEBS journal. 2009;276(13):3628–40. doi: 10.1111/j.1742-4658.2009.07082.x. PubMed DOI

Murat P, Guilbaud G, Sale J. DNA polymerase stalling at structured DNA constrains the expansion of short tandem repeats. Genome biology. 2020;21(1):209. doi: 10.1186/s13059-020-02124-x. PubMed DOI PMC

Betous R, Rey L, Wang G, Pillaire M-J, Puget N, Cazaux C, et al. Role of TLS DNA Polymerases eta and kappa in Processing Naturally Occurring Structured DNA in Human Cells. Molecular Carcinogenesis. 2009;48(4):369–78. doi: 10.1002/mc.20509. PubMed DOI PMC

Sattin G, Artese A, Nadai M, Costa G, Parrotta L, Alcaro S, et al. Conformation and stability of intramolecular telomeric G-quadruplexes: sequence effects in the loops. PloS one. 2013;8(12):e84113. doi: 10.1371/journal.pone.0084113. PubMed DOI PMC

Gong J, Wen C, Tang M, Duan R, Chen J, Zhang J, et al. G-quadruplex structural variations in human genome associated with single-nucleotide variations and their impact on gene activity. Proceedings of the National Academy of Sciences of the United States of America. 2021;118(21):e2013230118. doi: 10.1073/pnas.2013230118. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...