BIAFLOWS: A Collaborative Framework to Reproducibly Deploy and Benchmark Bioimage Analysis Workflows
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33205108
PubMed Central
PMC7660398
DOI
10.1016/j.patter.2020.100040
PII: S2666-3899(20)30045-3
Knihovny.cz E-zdroje
- Klíčová slova
- benchmarking, bioimaging, community, deep learning, deployment, image analysis, reproducibility, software, web application,
- Publikační typ
- časopisecké články MeSH
Image analysis is key to extracting quantitative information from scientific microscopy images, but the methods involved are now often so refined that they can no longer be unambiguously described by written protocols. We introduce BIAFLOWS, an open-source web tool enabling to reproducibly deploy and benchmark bioimage analysis workflows coming from any software ecosystem. A curated instance of BIAFLOWS populated with 34 image analysis workflows and 15 microscopy image datasets recapitulating common bioimage analysis problems is available online. The workflows can be launched and assessed remotely by comparing their performance visually and according to standard benchmark metrics. We illustrated these features by comparing seven nuclei segmentation workflows, including deep-learning methods. BIAFLOWS enables to benchmark and share bioimage analysis workflows, hence safeguarding research results and promoting high-quality standards in image analysis. The platform is thoroughly documented and ready to gather annotated microscopy datasets and workflows contributed by the bioimaging community.
Cytomine SCRL FS 4000 Liège Belgium
Dundee Imaging Facility School of Life Sciences University of Dundee Dundee DD1 5EH UK
Faculty of Engineering İzmir Demokrasi University 35330 Balçova Turkey
FIMM HiLIFE University of Helsinki 00014 Helsinki Finland
HEPL University of Liège 4000 Liège Belgium
Life Sciences Core Facilities Weizmann Institute of Science Rehovot 7610001 Israel
Masaryk University 601 77 Brno Czech Republic
Montefiore Institute University of Liège 4000 Liège Belgium
MRI BioCampus Montpellier Montpellier 34094 France
Politehnica Bucarest Bucarest 060042 Romania
Universidade Federal do Paraná Curitiba 80060 000 Brazil
Zobrazit více v PubMed
Ouyang W., Zimmer C. The imaging tsunami: computational opportunities and challenges. Curr. Opin. Syst. Biol. 2017;4:105–113.
Eliceiri K.W., Berthold M.R., Goldberg I.G., Ibáñez L., Manjunath B.S., Martone M.E., Murphy R.F., Peng H., Plant A.L., Roysam B. Biological imaging software tools. Nat. Methods. 2012;9:697–710. PubMed PMC
Carpenter A.E., Kamentsky L., Eliceiri K.W. A call for bioimaging software usability. Nat. Methods. 2012;9:666–670. PubMed PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC
Munafò M.R., Nosek B.A., Bishop D.V.M., Button K.S., Chambers C.D., Percie du Sert N., Simonsohn U., Wagenmakers E.-J., Ware J.J., Ioannidis J.P.A. A manifesto for reproducible science. Nat. Hum. Behav. 2017;1:0021. PubMed PMC
Hutson M. Artificial intelligence faces reproducibility crisis. Science. 2018;359:725–726. PubMed
Ellenberg J., Swedlow J.R., Barlow M., Cook C.E., Sarkans U., Patwardhan A., Brazma A., Birney E. A call for public archives for biological image data. Nat. Methods. 2018;15:849–854. PubMed PMC
Allan C., Burel J.M., Moore J., Blackburn C., Linkert M., Loynton S., Macdonald D., Moore W.J., Neves C., Patterson A. OMERO: flexible, model-driven data management for experimental biology. Nat. Methods. 2012;9:245–253. PubMed PMC
Kvilekval K., Fedorov D., Obara B., Singh A., Manjunath B.S. Bisque: a platform for bioimage analysis and management. Bioinformatics. 2010;26:544–552. PubMed
Williams E., Moore J., Li S.W., Rustici G., Tarkowska A., Chessel A., Leo S., Antal B., Ferguson R.K., Sarkans U. Image Data Resource: a bioimage data integration and publication platform. Nat. Methods. 2017;14:775–781. PubMed PMC
Vandewalle P. Code sharing is associated with research impact in image processing. Comput. Sci. Eng. 2012;14:42–47.
Maier-Hein L., Eisenmann M., Reinke A., Onogur S., Stankovic M., Scholz P., Arbel T., Bogunovic H., Bradley A.P., Carass A. Why rankings of biomedical image analysis competitions should be interpreted with care. Nat. Commun. 2018;9:5217. PubMed PMC
Meijering E., Carpenter A., Peng H., Hamprecht F.A., Olivo-Marin J.C. Imagining the future of bioimage analysis. Nat. Biotechnol. 2016;34:1250–1255. PubMed
Perkel J.M. A toolkit for data transparency takes shape. Nature. 2018;560:513–515. PubMed
Grüning B.A., Rasche E., Rebolledo-Jaramillo B., Eberhard C., Houwaart T., Chilton J., Coraor N., Backofen R., Taylor J., Nekrutenkoet A. Jupyter and Galaxy: easing entry barriers into complex data analyses for biomedical researchers. PLoS Comput. Biol. 2017;13:e1005425. PubMed PMC
Marée R., Rollus L., Stévens B., Hoyoux R., Louppe G., Vandaele R., Begon J.M., Kainz P., Geurts P., Wehenkel L. Collaborative analysis of multi-gigapixel imaging data with Cytomine. Bioinformatics. 2016;32:1395–1401. PubMed PMC
Glatard T., Kiar G., Aumentado-Armstrong T., Beck N., Bellec P., Bernard R., Bonnet A., Brown S.T., Camarasu-Pop S., Cervenansky F. Boutiques: a flexible framework to integrate command-line applications in computing platforms. GigaScience. 2018;7:giy016. PubMed PMC
Kurtzer G.M., Sochat V., Bauer M.W. Singularity: scientific containers for mobility of compute. PLoS One. 2017;12:e0177459. PubMed PMC
Yoo A., Jette M., Grondona M. SLURM: simple Linux utility for resource management, job scheduling strategies for parallel processing. Lect. Notes Comput. Sci. 2003;2862:44–60.
Kozubek M. Challenges and benchmarks in bioimage analysis. Adv. Anat. Embryol. Cell Biol. 2016;219:231–262. PubMed
Brown K.M., Barrionuevo G., Canty A.J., De Paola V., Hirsch J.A., Jefferis G.S., Lu J., Snippe M., Sugihara I., Ascoli G.A. The DIADEM data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions. Neuroinformatics. 2011;9:143–157. PubMed PMC
Ulman V., Maška M., Magnusson K.E.G., Ronneberger O., Haubold C., Harder N., Matula P., Matula P., Svoboda D., Radojevic M. An objective comparison of cell-tracking algorithms. Nat. Methods. 2017;14:1141–1152. PubMed PMC
Chenouard N., Smal I., de Chaumont F., Maška M., Sbalzarini I.F., Gong Y., Cardinale J., Carthel C., Coraluppi S., Winter M. Objective comparison of particle tracking methods. Nat. Methods. 2014;11:281–289. PubMed PMC
Caicedo J.C., Goodman A., Karhohs K.W., Cimini B.A., Ackerman J., Haghighi M., Heng C., Becker T., Doan M., McQuin C. Nucleus segmentation across imaging experiments: the 2018 data science bowl. Nat. Methods. 2019;16:1247–1253. PubMed PMC
Svoboda D., Kozubek M., Stejskal S. Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry. Cytometry A. 2009;75:494–509. PubMed
Wiesner D., Svoboda D., Maška M., Kozubek M. CytoPacq: a web-interface for simulating multi-dimensional cell imaging. Bioinformatics. 2019;35:4531–4533. PubMed PMC
Cuntz H., Forstner F., Borst A., Häusser M. One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Comput. Biol. 2010;6:e1000877. PubMed PMC
Jassi P., Hamarneh G. VascuSynth: vascular tree synthesis software. Insight J. 2011 http://hdl.handle.net/10380/3260
Lehmussola A., Ruusuvuori P., Selinummi J., Huttunen H., Yli-Harja O. Computational framework for simulating fluorescence microscope images with cell populations. IEEE Trans. Med. Imaging. 2007;26:1010–1016. PubMed
Vandaele R., Aceto J., Muller M., Péronnet F., Debat V., Wang C.W., Huang C.T., Jodogne S., Martinive P., Geurts P. Landmark detection in 2D bioimages for geometric morphometrics: a multi-resolution tree-based approach. Sci. Rep. 2018;8:538. PubMed PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC
de Chaumont F., Dallongeville S., Chenouard N., Hervé N., Pop S., Provoost T., Meas-Yedid V., Pankajakshan P., Lecomte T., Le Montagner Y. Icy: an open bioimage informatics platform for extended reproducible research. Nat. Methods. 2012;9:690–696. PubMed
McQuin C., Goodman A., Chernyshev V., Kamentsky L., Cimini B.A., Karhohs K.W., Doan M., Ding L., Rafelski S.M., Thirstrup D. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol. 2018;16:e2005970. PubMed PMC
Peng H., Ruan Z., Long F., Simpson J.H., Myers E.W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. 2010;28:348–353. PubMed PMC
Berg S., Kutra D., Kroeger T., Straehle C.N., Kausler B.X., Haubold C., Schiegg M., Ales J., Beier T., Rudy M. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods. 2019;16:1226–1232. PubMed
Eaton J.W., Bateman D., Hauberg S., Wehbring R. Free Software Foundation; 2016. GNU Octave Version 4.2.0 Manual: A High-Level Interactive Language for Numerical Computations.https://octave.org/doc/octave-4.2.0.pdf
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.
Chollet F. Manning; 2017. Deep Learning with Python.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A. (2017). Automatic Differentiation in PyTorch. NIPS Autodiff Workshop, 2017.
Sirinukunwattana K., Pluim J.P.W., Chen H., Qi X., Heng P.A., Guo Y.B., Wang L.Y., Matuszewski B.J., Bruni E., Sanchez U. Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 2017;35:489–502. PubMed
Multon S., Pesesse L., Weatherspoon A., Florquin S., Van de Poel J.F., Martin P., Vincke G., Hoyoux R., Marée R., Verpoorten D. A Massive Open Online Course (MOOC) on practical histology: a goal, a tool, a large public! Return on a first experience. Ann. Pathol. 2018;38:76–84. PubMed
Ellenberg J., Swedlow J.R., Barlow M., Cook C.E., Sarkans U., Patwardhan A., Brazma A., Birney E. A call for public archives for biological image data. Nat. Methods. 2018;15:849–854. PubMed PMC