An objective comparison of cell-tracking algorithms
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 AG020961
NIA NIH HHS - United States
PubMed
29083403
PubMed Central
PMC5777536
DOI
10.1038/nmeth.4473
PII: nmeth.4473
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- benchmarking MeSH
- buněčné linie MeSH
- buněčný tracking metody MeSH
- interpretace obrazu počítačem * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge.
ACCESS Linnaeus Centre KTH Royal Institute of Technology Stockholm Sweden
Bioengineering and Aerospace Engineering Department Universidad Carlos 3 de Madrid Getafe Spain
Bioengineering Department TECNUN School of Engineering University of Navarra San Sebastián Spain
BioImage Analysis Unit Institut Pasteur Paris France
Centre for Biomedical Image Analysis Masaryk University Brno Czech Republic
Department of Engineering University of Nottingham Nottingham UK
Facultade de Engenharia Universidade do Porto Porto Portugal
Faculty of Engineering University of Nottingham Ningbo China
Heidelberg Collaboratory for Image Processing IWR University of Heidelberg Heidelberg Germany
i3S Instituto de Investigação e Inovação em Saúde Universidade do Porto Porto Portugal
Institute of Molecular and Cell Biology A*Star Singapore
Instituto de Investigación Sanitaria Gregorio Marañon Madrid Spain
Intelligent Systems Department Delft University of Technology Delft the Netherlands
Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
Zobrazit více v PubMed
Franz CM, Jones GE, Ridley AJ. Cell migration in development and disease. Dev Cell. 2002;2:153–158. PubMed
Bullen A. Microscopy imaging techniques for drug discovery. Nat Rev Drug Discov. 2007;7:54–67. PubMed
Walter RJ, Berns MW. In: Digital image processing and analysis, in Video Microscopy. Inoué S, editor. Springer Sciences; 1986. pp. 327–392.
Schneider CA, Rasband WS, Elicieri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675. PubMed PMC
Meijering E. Cell segmentation: 50 years down the road. IEEE Signal Proc Mag. 2012;29:140–145.
Dufour AC, Liu T-Y, Ducroz C, Tournemenne R, Cummings B, Thibeaux R, Guillen N, Hero AO, Olivo-Marin JC. Signal processing challenges in quantitative 3-D cell morphology: More than meets the eye. IEEE Signal Proc Mag. 2015;32:30–40.
Zimmer C, Zhang B, Dufour A, Thebaud A, Berlemont S, Meas-Yedid J, Olivo-Marin JC. On the digital trail of mobile cells. IEEE Signal Proc Mag. 2006;23:54–62.
Wuttisarnwattana P, Gargesha M, van’t HofW, Cooke KR, Wilson DL. Automatic stem cell detection in microscopic whole mouse cryo-imaging. IEEE Trans Med Imag. 2016;35:819–829. PubMed PMC
Lerner B, Clocksin WF, Dhanjal S, Hultén S, Bishop CM. Automatic signal classification in fluorescence in situ hybridization images. Cytometry. 2001;43:87–93. PubMed
Chen X, Zhou X, Wong STC. Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy. IEEE Trans Biomed Eng. 2006;53:762–766. PubMed
Henry KM, Pase L, Ramos-Lopez CF, Lieschke GJ, Renshaw SA, Reyes-Aldasoro CC. PhagoSight: an open-source MATLAB package for the analysis of fluorescent neutrophil and macrophage migration in a zebrafish model. PloS ONE. 2013;8:e72636. PubMed PMC
Wählby C, Sintorn IM, Elandsson F, Borgefors G, Bengtsson E. Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J Microsc-Oxford. 2004;215:67–76. PubMed
Cicconet M, Geiger D, Gunsalus K. Wavelet-based circular hough-transform and its application in embryo development analysis. VISAPP 2013, Proceedings of the International Conference on Computer Vision Theory and Applications; 2013. pp. 669–674.
Türetken E, Wang X, Becker CJ, Haubold C, Fua P. Network flow integer programming to track elliptical cells in time-lapse sequences. IEEE Trans Med Imag. 2016;36:942–951. PubMed
Malpica N, Ortiz-de-Solorzano C, Vaquero JJ, Santos A, Vallcorba I, Garcia-Sagredo JM, Pozo F. Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry Part A. 1997;28:289–297. PubMed
Ortiz-de-Solorzano C, García-Rodríguez E, Jones A, Pinkel D, Gray JW, Sudar D, Lockett SJ. Segmentation of confocal microscopy images of cell nuclei in thick tissue sections. J Microsc-Oxford. 1999;193:212–226. PubMed
Cliffe A, Doupé DP, Sung H, Lim IKH, Ong KH, Cheng L, Yu W. Quantitative 3D analysis of complex single border cell behaviors in coordinated collective cell migration. Nat Commun. 2017;8:14905. PubMed PMC
Ronneberger O, Fisher P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Proc MICCAI 2015 LCNS. 2015;9351:234–241.
Schiegg M, Hanslovsky P, Haubold C, Koethe U, Hufnagel L, Hampretch FA. Graphical model for joint segmentation and tracking of multiple dividing cells. Bioinformatics. 2015;31:948–56. PubMed
Zimmer C, Labruyere E, Meas-Yedid V, Guillen N, Olivo-Marin J-C. Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: a tool for cell-based drug testing. IEEE Trans Med Imag. 2002;21:1212–1221. PubMed
Dufour A, Thibeaux R, Labruyere E, Guillen N, Olivo-Marin JC. 3D active meshes: fast discrete deformable models for cell tracking in 3D time-lapse microscopy. IEEE Trans Image Process. 2011;20:1925–37. PubMed
Maška M, Daněk O, Garasa S, Rouzaut A, Muñoz-Barrutia A, Ortiz-de-Solorzano C. Segmentation and shape tracking of whole fluorescent cells based on the Chan-Vese model. IEEE Trans Med Imag. 2013;32:995–1005. PubMed
Ortiz-de-Solorzano C, Malladi R, Lelievre SA, Lockett SJ. Segmentation of nuclei and cells using membrane related protein markers. J Microsc-Oxford. 2001;201:404–415. PubMed
Dzyubachyk O, van Cappellen WA, Essers J, Niessen WJ, Meijering E. Advanced level-set-based cell tracking in time-lapse fluorescence microscopy. IEEE Trans Med Imag. 2010;29:852–867. PubMed
Dufour A, Shinin V, Tajbakhsh S, Guillen-Aghion N, Olivo-Marin JC, Zimmer C. Segmenting and tracking fluorescent cells in dynamic 3D microscopy with coupled active surfaces. IEEE Trans Image Process. 2005;14:1396–1410. PubMed
Bensch R, Ronneberger O. Cell segmentation and tracking in phase contrast images using graph cut with asymmetric boundary costs. Proc 2015 IEEE Int Symp Biomed Imaging (ISBI) 2015:1120–1123.
Harder N, Mora-Bermúdez F, Godinez WJ, Wünsche A, Elis R, Ellenberg J, Rohr K. Automatic analysis of dividing cells in live cell movies to detect mitotic delays and correlate phenotypes in time. Genome Res. 2009;19:2113–2124. PubMed PMC
Bise R, Yin Z, Kanade T. Reliable cell tracking by global data association. Proc 2011 IEEE Int Symp Biomed Imaging (ISBI) 2011:1004–1010.
Magnusson KEG, Jaldén J, Gilbert PM, Blau HM. Global linking of cell tracks using the Viterbi algorithm. IEEE Trans Med Imag. 2015;34:1–19. PubMed PMC
Maška M, Ulman V, Svoboda D, Matula Pt, Matula Pv, Ederra C, Urbiola A, España T, Venkatesan S, Balak DMW, Karas P, Bolcková T, Štreitová M, Carthel C, Coraluppi S, Harder N, Rohr K, Magnusson KEG, Jaldén J, Blau HM, Dzyubachyk O, Křížek P, Hagen GM, Pastor-Escuredo D, Jimenez-Carretero D, Ledesma-Carbayo MJ, Muñoz-Barrutia A, Meijering E, Kozubek M, Ortiz-de-Solorzano C. A benchmark for comparison of cell tracking algorithms. Bioinformatics. 2014;30:1609–1617. PubMed PMC
Svoboda D, Ulman V. MitoGen: A framework for generating 3D synthetic time-lapse sequences of cell populations in fluorescence microscopy. IEEE Trans Med Imaging. 2017;36:310–321. PubMed
Murray JI, Bao Z, Boule TJ, Boeck ME, Mericle BL, Nicholas TJ, Zhao Z, Sandel MJ, Waterston RH. Automated analysis of embryonic gene expression with cellular resolution in C. elegans. Nat Methods. 2008;5:703–9. PubMed PMC
Amat F, Lemon W, Mossing DP, McDole K, Wan Y, Branson K, Myers EW, Keller PJ. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat Methods. 2014;11:951–8. PubMed
Chenouard N, Smal I, de Chaumont F, Maška M, Sbalzarini IF, Gong Y, et al. Objective comparison of particle tracking methods. Nat Methods. 2014;11:281–289. PubMed PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Rueden C, Saafeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Elliceri K, Tomancak P, Cardona A. Fiji: an open source platform for biological-image analysis. Nat Methods. 2012;9:676–82. PubMed PMC
Klette R, Zamperoni P. Handbook of image processing operators. In: Klette Reinhard, Zamperoni Piero., editors. Handbook of image processing operators. Chichester; New York: Wiley; 1996.
Lin CL, Miller JD. 3D characterization and analysis of particle shape using X-ray microtomography (XMT) Powder Technology. 2005;154:61–69.
Matula Pa, Maška M, Sorokin DV, Matula Pe, Ortiz-de-Solorzano C, Kozubek M. Cell Tracking Accuracy Measurement Based on Comparison of Acyclic Oriented Graphs. PLoS One. 2015;10:e0144959. PubMed PMC
Li K, Miller ED, Chen M, Kanade T, Weiss LE, Campbell PG. Cell population tracking and lineage construction with spatiotemporal context. Med Image Anal. 2008;12:546–566. PubMed PMC
Brown MR, Summers HD, Rees P, Smith PJ, Chappell SC, Errington RJ. Flow-based cytometric analysis of cell cycle via simulated cell populations. PLoS Comput Biol. 2010;6:e10000741. PubMed PMC
Topology-preserving contourwise shape fusion
Metrics reloaded: recommendations for image analysis validation
The Cell Tracking Challenge: 10 years of objective benchmarking
Self-supervised pretraining for transferable quantitative phase image cell segmentation
BIAFLOWS: A Collaborative Framework to Reproducibly Deploy and Benchmark Bioimage Analysis Workflows
The Quantitative-Phase Dynamics of Apoptosis and Lytic Cell Death
CytoPacq: a web-interface for simulating multi-dimensional cell imaging
Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison
Why rankings of biomedical image analysis competitions should be interpreted with care