An objective comparison of cell-tracking algorithms

. 2017 Dec ; 14 (12) : 1141-1152. [epub] 20171030

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29083403

Grantová podpora
R01 AG020961 NIA NIH HHS - United States

We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge.

ACCESS Linnaeus Centre KTH Royal Institute of Technology Stockholm Sweden

Baxter Laboratory for Stem Cell Biology Department of Microbiology and Immunology and Institute for Stem Cell Biology and Regenerative Medicine Stanford University School of Medicine Stanford California USA

Bioengineering and Aerospace Engineering Department Universidad Carlos 3 de Madrid Getafe Spain

Bioengineering Department TECNUN School of Engineering University of Navarra San Sebastián Spain

BioImage Analysis Unit Institut Pasteur Paris France

Biomedical Computer Vision Group Department of Bioinformatics and Functional Genomics BIOQUANT IPMB University of Heidelberg and DKFZ Heidelberg Germany

Biomedical Imaging Group Rotterdam Departments of Medical Informatics and Radiology Erasmus University Medical Center Rotterdam Rotterdam the Netherlands

Centre for Biomedical Image Analysis Masaryk University Brno Czech Republic

CIBERONC IDISNA and Program of Solid Tumors and Biomarkers Center for Applied Medical Research University of Navarra Pamplona Spain

Computer Science Department and BIOSS Centre for Biological Signaling Studies University of Freiburg Frieburg Germany

Department of Engineering University of Nottingham Nottingham UK

Division of Image Processing Department of Radiology Leiden University Medical Center Leiden the Netherlands

Facultade de Engenharia Universidade do Porto Porto Portugal

Faculty of Engineering University of Nottingham Ningbo China

Group for Automated Image and Data Analysis Institute for Applied Computer Science Karlsruhe Institute of Technology Eggenstein Leopoldshafen Germany

Heidelberg Collaboratory for Image Processing IWR University of Heidelberg Heidelberg Germany

i3S Instituto de Investigação e Inovação em Saúde Universidade do Porto Porto Portugal

Institute of Molecular and Cell Biology A*Star Singapore

Instituto de Investigación Sanitaria Gregorio Marañon Madrid Spain

Intelligent Systems Department Delft University of Technology Delft the Netherlands

Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany

Research Centre in Biomedical Engineering School of Mathematics Computer Science and Engineering City University of London London UK

S3IT University of Zurich Zurich Switzerland

Zobrazit více v PubMed

Franz CM, Jones GE, Ridley AJ. Cell migration in development and disease. Dev Cell. 2002;2:153–158. PubMed

Bullen A. Microscopy imaging techniques for drug discovery. Nat Rev Drug Discov. 2007;7:54–67. PubMed

Walter RJ, Berns MW. In: Digital image processing and analysis, in Video Microscopy. Inoué S, editor. Springer Sciences; 1986. pp. 327–392.

Schneider CA, Rasband WS, Elicieri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675. PubMed PMC

Meijering E. Cell segmentation: 50 years down the road. IEEE Signal Proc Mag. 2012;29:140–145.

Dufour AC, Liu T-Y, Ducroz C, Tournemenne R, Cummings B, Thibeaux R, Guillen N, Hero AO, Olivo-Marin JC. Signal processing challenges in quantitative 3-D cell morphology: More than meets the eye. IEEE Signal Proc Mag. 2015;32:30–40.

Zimmer C, Zhang B, Dufour A, Thebaud A, Berlemont S, Meas-Yedid J, Olivo-Marin JC. On the digital trail of mobile cells. IEEE Signal Proc Mag. 2006;23:54–62.

Wuttisarnwattana P, Gargesha M, van’t HofW, Cooke KR, Wilson DL. Automatic stem cell detection in microscopic whole mouse cryo-imaging. IEEE Trans Med Imag. 2016;35:819–829. PubMed PMC

Lerner B, Clocksin WF, Dhanjal S, Hultén S, Bishop CM. Automatic signal classification in fluorescence in situ hybridization images. Cytometry. 2001;43:87–93. PubMed

Chen X, Zhou X, Wong STC. Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy. IEEE Trans Biomed Eng. 2006;53:762–766. PubMed

Henry KM, Pase L, Ramos-Lopez CF, Lieschke GJ, Renshaw SA, Reyes-Aldasoro CC. PhagoSight: an open-source MATLAB package for the analysis of fluorescent neutrophil and macrophage migration in a zebrafish model. PloS ONE. 2013;8:e72636. PubMed PMC

Wählby C, Sintorn IM, Elandsson F, Borgefors G, Bengtsson E. Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J Microsc-Oxford. 2004;215:67–76. PubMed

Cicconet M, Geiger D, Gunsalus K. Wavelet-based circular hough-transform and its application in embryo development analysis. VISAPP 2013, Proceedings of the International Conference on Computer Vision Theory and Applications; 2013. pp. 669–674.

Türetken E, Wang X, Becker CJ, Haubold C, Fua P. Network flow integer programming to track elliptical cells in time-lapse sequences. IEEE Trans Med Imag. 2016;36:942–951. PubMed

Malpica N, Ortiz-de-Solorzano C, Vaquero JJ, Santos A, Vallcorba I, Garcia-Sagredo JM, Pozo F. Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry Part A. 1997;28:289–297. PubMed

Ortiz-de-Solorzano C, García-Rodríguez E, Jones A, Pinkel D, Gray JW, Sudar D, Lockett SJ. Segmentation of confocal microscopy images of cell nuclei in thick tissue sections. J Microsc-Oxford. 1999;193:212–226. PubMed

Cliffe A, Doupé DP, Sung H, Lim IKH, Ong KH, Cheng L, Yu W. Quantitative 3D analysis of complex single border cell behaviors in coordinated collective cell migration. Nat Commun. 2017;8:14905. PubMed PMC

Ronneberger O, Fisher P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Proc MICCAI 2015 LCNS. 2015;9351:234–241.

Schiegg M, Hanslovsky P, Haubold C, Koethe U, Hufnagel L, Hampretch FA. Graphical model for joint segmentation and tracking of multiple dividing cells. Bioinformatics. 2015;31:948–56. PubMed

Zimmer C, Labruyere E, Meas-Yedid V, Guillen N, Olivo-Marin J-C. Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: a tool for cell-based drug testing. IEEE Trans Med Imag. 2002;21:1212–1221. PubMed

Dufour A, Thibeaux R, Labruyere E, Guillen N, Olivo-Marin JC. 3D active meshes: fast discrete deformable models for cell tracking in 3D time-lapse microscopy. IEEE Trans Image Process. 2011;20:1925–37. PubMed

Maška M, Daněk O, Garasa S, Rouzaut A, Muñoz-Barrutia A, Ortiz-de-Solorzano C. Segmentation and shape tracking of whole fluorescent cells based on the Chan-Vese model. IEEE Trans Med Imag. 2013;32:995–1005. PubMed

Ortiz-de-Solorzano C, Malladi R, Lelievre SA, Lockett SJ. Segmentation of nuclei and cells using membrane related protein markers. J Microsc-Oxford. 2001;201:404–415. PubMed

Dzyubachyk O, van Cappellen WA, Essers J, Niessen WJ, Meijering E. Advanced level-set-based cell tracking in time-lapse fluorescence microscopy. IEEE Trans Med Imag. 2010;29:852–867. PubMed

Dufour A, Shinin V, Tajbakhsh S, Guillen-Aghion N, Olivo-Marin JC, Zimmer C. Segmenting and tracking fluorescent cells in dynamic 3D microscopy with coupled active surfaces. IEEE Trans Image Process. 2005;14:1396–1410. PubMed

Bensch R, Ronneberger O. Cell segmentation and tracking in phase contrast images using graph cut with asymmetric boundary costs. Proc 2015 IEEE Int Symp Biomed Imaging (ISBI) 2015:1120–1123.

Harder N, Mora-Bermúdez F, Godinez WJ, Wünsche A, Elis R, Ellenberg J, Rohr K. Automatic analysis of dividing cells in live cell movies to detect mitotic delays and correlate phenotypes in time. Genome Res. 2009;19:2113–2124. PubMed PMC

Bise R, Yin Z, Kanade T. Reliable cell tracking by global data association. Proc 2011 IEEE Int Symp Biomed Imaging (ISBI) 2011:1004–1010.

Magnusson KEG, Jaldén J, Gilbert PM, Blau HM. Global linking of cell tracks using the Viterbi algorithm. IEEE Trans Med Imag. 2015;34:1–19. PubMed PMC

Maška M, Ulman V, Svoboda D, Matula Pt, Matula Pv, Ederra C, Urbiola A, España T, Venkatesan S, Balak DMW, Karas P, Bolcková T, Štreitová M, Carthel C, Coraluppi S, Harder N, Rohr K, Magnusson KEG, Jaldén J, Blau HM, Dzyubachyk O, Křížek P, Hagen GM, Pastor-Escuredo D, Jimenez-Carretero D, Ledesma-Carbayo MJ, Muñoz-Barrutia A, Meijering E, Kozubek M, Ortiz-de-Solorzano C. A benchmark for comparison of cell tracking algorithms. Bioinformatics. 2014;30:1609–1617. PubMed PMC

Svoboda D, Ulman V. MitoGen: A framework for generating 3D synthetic time-lapse sequences of cell populations in fluorescence microscopy. IEEE Trans Med Imaging. 2017;36:310–321. PubMed

Murray JI, Bao Z, Boule TJ, Boeck ME, Mericle BL, Nicholas TJ, Zhao Z, Sandel MJ, Waterston RH. Automated analysis of embryonic gene expression with cellular resolution in C. elegans. Nat Methods. 2008;5:703–9. PubMed PMC

Amat F, Lemon W, Mossing DP, McDole K, Wan Y, Branson K, Myers EW, Keller PJ. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat Methods. 2014;11:951–8. PubMed

Chenouard N, Smal I, de Chaumont F, Maška M, Sbalzarini IF, Gong Y, et al. Objective comparison of particle tracking methods. Nat Methods. 2014;11:281–289. PubMed PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Rueden C, Saafeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Elliceri K, Tomancak P, Cardona A. Fiji: an open source platform for biological-image analysis. Nat Methods. 2012;9:676–82. PubMed PMC

Klette R, Zamperoni P. Handbook of image processing operators. In: Klette Reinhard, Zamperoni Piero., editors. Handbook of image processing operators. Chichester; New York: Wiley; 1996.

Lin CL, Miller JD. 3D characterization and analysis of particle shape using X-ray microtomography (XMT) Powder Technology. 2005;154:61–69.

Matula Pa, Maška M, Sorokin DV, Matula Pe, Ortiz-de-Solorzano C, Kozubek M. Cell Tracking Accuracy Measurement Based on Comparison of Acyclic Oriented Graphs. PLoS One. 2015;10:e0144959. PubMed PMC

Li K, Miller ED, Chen M, Kanade T, Weiss LE, Campbell PG. Cell population tracking and lineage construction with spatiotemporal context. Med Image Anal. 2008;12:546–566. PubMed PMC

Brown MR, Summers HD, Rees P, Smith PJ, Chappell SC, Errington RJ. Flow-based cytometric analysis of cell cycle via simulated cell populations. PLoS Comput Biol. 2010;6:e10000741. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Topology-preserving contourwise shape fusion

. 2025 Mar 28 ; 15 (1) : 10713. [epub] 20250328

Metrics reloaded: recommendations for image analysis validation

. 2024 Feb ; 21 (2) : 195-212. [epub] 20240212

The Cell Tracking Challenge: 10 years of objective benchmarking

. 2023 Jul ; 20 (7) : 1010-1020. [epub] 20230518

DeepFoci: Deep learning-based algorithm for fast automatic analysis of DNA double-strand break ionizing radiation-induced foci

. 2021 ; 19 () : 6465-6480. [epub] 20211118

Self-supervised pretraining for transferable quantitative phase image cell segmentation

. 2021 Oct 01 ; 12 (10) : 6514-6528. [epub] 20210924

BIAFLOWS: A Collaborative Framework to Reproducibly Deploy and Benchmark Bioimage Analysis Workflows

. 2020 Jun 12 ; 1 (3) : 100040. [epub] 20200603

The Quantitative-Phase Dynamics of Apoptosis and Lytic Cell Death

. 2020 Jan 31 ; 10 (1) : 1566. [epub] 20200131

CytoPacq: a web-interface for simulating multi-dimensional cell imaging

. 2019 Nov 01 ; 35 (21) : 4531-4533.

Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images

. 2019 Sep 13 ; 9 (1) : 13211. [epub] 20190913

Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison

. 2019 Jun 28 ; 20 (1) : 360. [epub] 20190628

Why rankings of biomedical image analysis competitions should be interpreted with care

. 2018 Dec 06 ; 9 (1) : 5217. [epub] 20181206

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...