Self-supervised pretraining for transferable quantitative phase image cell segmentation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34745753
PubMed Central
PMC8547997
DOI
10.1364/boe.433212
PII: 433212
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this paper, a novel U-Net-based method for robust adherent cell segmentation for quantitative phase microscopy image is designed and optimised. We designed and evaluated four specific post-processing pipelines. To increase the transferability to different cell types, non-deep learning transfer with adjustable parameters is used in the post-processing step. Additionally, we proposed a self-supervised pretraining technique using nonlabelled data, which is trained to reconstruct multiple image distortions and improved the segmentation performance from 0.67 to 0.70 of object-wise intersection over union. Moreover, we publish a new dataset of manually labelled images suitable for this task together with the unlabelled data for self-supervised pretraining.
Zobrazit více v PubMed
Vicar T., Balvan J., Jaros J., Jug F., Kolar R., Masarik M., Gumulec J., “Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison,” BMC Bioinf. 20(1), 360–425 (2019).10.1186/s12859-019-2880-8 PubMed DOI PMC
Kim M. K., “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 1–51 (2010).
Roitshtain D., Wolbromsky L., Bal E., Greenspan H., Satterwhite L. L., Shaked N. T., “Quantitative phase microscopy spatial signatures of cancer cells,” Cytom. Part A 91(5), 482–493 (2017).10.1002/cyto.a.23100 PubMed DOI
Vicar T., Raudenska M., Gumulec J., Balvan J., “The quantitative-phase dynamics of apoptosis and lytic cell death,” Sci. Rep. 10(1), 1566–1612 (2020).10.1038/s41598-020-58474-w PubMed DOI PMC
Blasi T., Hennig H., Summers H. D., Theis F. J., Cerveira J., Patterson J. O., Davies D., Filby A., Carpenter A. E., Rees P., “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. Commun. 7(1), 10256 (2016).10.1038/ncomms10256 PubMed DOI PMC
Kastl L., Isbach M., Dirksen D., Schnekenburger J., Kemper B., “Quantitative phase imaging for cell culture quality control,” Cytom. Part A 91(5), 470–481 (2017).10.1002/cyto.a.23082 PubMed DOI
Alanazi H., Canul A. J., Garman A., Quimby J., Vasdekis A. E., “Robust microbial cell segmentation by optical-phase thresholding with minimal processing requirements,” Cytom. Part A 91(5), 443–449 (2017).10.1002/cyto.a.23099 PubMed DOI PMC
Calin V. L., Mihailescu M., Tarba N., Sandu A. M., Scarlat E., Moisescu M. G., Savopol T., “Digital holographic microscopy evaluation of dynamic cell response to electroporation,” Biomed. Opt. Express 12(4), 2519–2530 (2021).10.1364/BOE.421959 PubMed DOI PMC
Kemper B., Eilers H., Klein T., Brinker K., Ketelhut S., “Quantitative phase imaging-based machine learning approaches for the analysis of adherent and suspended cells,” Proc. SPIE 11649, 116490B (2021).10.1117/12.2577825 DOI
Loewke N. O., Pai S., Cordeiro C., Black D., King B. L., Contag C. H., Chen B., Baer T. M., Solgaard O., “Automated cell segmentation for quantitative phase microscopy,” IEEE Transactions on Med. Imaging 37(4), 929–940 (2018).10.1109/TMI.2017.2775604 PubMed DOI PMC
Vicar T., Chmelik J., Kolar R., “Cell segmentation in quantitative phase images with improved iterative thresholding method,” in 8th European Medical and Biological Engineering Conference, (Springer International Publishing, 2021), pp. 233–239.
Ronneberger O., Fischer P., Brox T., “U-Net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention 2015 (MICCAI 2015), vol. 9351 of Lecture Notes in Computer Science, Navab N., Hornegger J., Wells W., Frangi A., eds. (Springer, 2015), pp. 234–241.
Caicedo J. C., Roth J., Goodman A., Becker T., Karhohs K. W., Broisin M., Molnar C., McQuin C., Singh S., Theis F. J., Carpenter A. E., “Evaluation of deep learning strategies for nucleus segmentation in fluorescence images,” Cytom. Part A 95(9), 952–965 (2019).10.1002/cyto.a.23863 PubMed DOI PMC
Lux F., Matula P., “Cell segmentation by combining marker-controlled watershed and deep learning,” https://arxiv.org/abs/2004.01607.
Scherr T., Löffler K., Böhland M., Mikut R., “Cell segmentation and tracking using distance transform predictions and movement estimation with graph-based matching,” https://arxiv.org/abs/2004.01486 (2020). PubMed PMC
Schmidt U., Weigert M., Broaddus C., Myers G., “Cell detection with star-convex polygons,” in Medical Image Computing and Computer-Assisted Intervention 2018, vol. 11071 of Lecture Notes in Computer Science, Frangi A. F., Schnabel J. A., Davatzikos C., Alberola-López C., Fichtinger G., eds. (Springer, 2018), pp. 265–273.
Stringer C., Wang T., Michaelos M., Pachitariu M., “Cellpose: a generalist algorithm for cellular segmentation,” Nat. Methods 18(1), 100–106 (2021).10.1038/s41592-020-01018-x PubMed DOI
He K., Gkioxari G., Dollár P., Girshick R., “Mask r-cnn,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2017), pp. 2961–2969.
Eder K., Kutscher T., Marzi A., Barroso Álvaro, Schnekenburger J., Kemper B., “Automated detection of macrophages in quantitative phase images by deep learning using a mask region-based convolutional neural network,” Proc. SPIE 11655, 54 (2021).10.1117/12.2577232 DOI
Lin Y.-H., Liao K. Y.-K., Sung K.-B., “Automatic detection and characterization of quantitative phase images of thalassemic red blood cells using a mask region-based convolutional neural network,” J. Biomed. Opt. 25(11), 1–14 (2020).10.1117/1.JBO.25.11.116502 PubMed DOI PMC
Yi F., Moon I., Javidi B., “Automated red blood cells extraction from holographic images using fully convolutional neural networks,” Biomed. Opt. Express 8(10), 4466–4479 (2017).10.1364/BOE.8.004466 PubMed DOI PMC
Zhang Z., Leong K. W., Vliet K. V., Barbastathis G., Ravasio A., “Deep learning for label-free nuclei detection from implicit phase information of mesenchymal stem cells,” Biomed. Opt. Express 12(3), 1683–1706 (2021).10.1364/BOE.420266 PubMed DOI PMC
Chen T., Kornblith S., Swersky K., Norouzi M., Hinton G., “Big self-supervised models are strong semi-supervised learners,” https://arxiv.org/abs/2006.10029.
Gidaris S., Singh P., Komodakis N., “Unsupervised representation learning by predicting image rotations,” https://arxiv.org/abs/1803.07728.
Doersch C., Gupta A., Efros A. A., “Unsupervised visual representation learning by context prediction,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2015), pp. 1422–1430.
Pathak D., Krahenbuhl P., Donahue J., Darrell T., Efros A. A., “Context encoders: feature learning by inpainting,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2016), pp. 2536–2544.
Prakash M., Buchholz T.-O., Lalit M., Tomancak P., Jug F., Krull A., “Leveraging self-supervised denoising for image segmentation,” in Proceedings of IEEE 17th International Symposium on Biomedical Imaging (IEEE, 2020), pp. 428–432.
Zeng Z., Xulei Y., Qiyun Y., Meng Y., Le Z., “Sese-net: Self-supervised deep learning for segmentation,” Pattern Recognit. Lett. 128, 23–29 (2019).10.1016/j.patrec.2019.08.002 DOI
Slaby T., Kolman P., Dostal Z., Antos M., Lostak M., Chmelik R., “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt. Express 21(12), 14747–14762 (2013).10.1364/OE.21.014747 PubMed DOI
Tan M., Le Q., “Efficientnet: Rethinking model scaling for convolutional neural networks,” in International Conference on Machine Learning (PMLR, 2019), pp. 6105–6114.
Meyer F., “Topographic distance and watershed lines,” Signal Proc. 38(1), 113–125 (1994).10.1016/0165-1684(94)90060-4 DOI
Snoek J., Larochelle H., Adams R. P., “Practical Bayesian optimization of machine learning algorithms,” in Advances in Neural Information Processing Systems (2012), pp. 2951–2959.
Thirusittampalam K., Hossain M. J., Ghita O., Whelan P. F., “A novel framework for cellular tracking and mitosis detection in dense phase contrast microscopy images,” IEEE J. Biomed. Heal. Informatics 17(3), 642–653 (2013).10.1109/TITB.2012.2228663 PubMed DOI
Nogueira F., “Bayesian optimization: open source constrained global optimization tool for python,” Github, 2014, https://github.com/fmfn/BayesianOptimization.
Maurer C. R., Qi R., Raghavan V., “A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions,” IEEE Transactions on Pattern Analysis Mach. Intell. 25(2), 265–270 (2003).10.1109/TPAMI.2003.1177156 DOI
Ulman V., Maška M., Magnusson K. E., Ronneberger O., Haubold C., Harder N., Matula P., Matula P., Svoboda D., Radojevic M., Smal I., Rohr K., Jalden J., Blau H., Dzyubachyk O., Lelieveldt B., Xiao P., Li Y., Cho S.-Y., J.-C. Olivo-Marin D. A. C, Reyes-Aldasoro C. C., Solis-Lemus J. A., Bensch R., Brox T., Stegmaier J., Mikut R., Wolf S., Hamprecht F. A., Esteves T., Quelhas P., Demirel Ö., Malmström L., Jug F., Tomancak P., Meijering E., Muñoz-Barrutia A., Kozubek M., Ortiz-de Solorzano C., “An objective comparison of cell-tracking algorithms,” Nat. Methods 14(12), 1141–1152 (2017).10.1038/nmeth.4473 PubMed DOI PMC
Reiß S., Seibold C., Freytag A., Rodner E., Stiefelhagen R., “Every annotation counts: multi-label deep supervision for medical image segmentation,” in Conference on Computer Vision and Pattern Recognition (2021), pp. 9532–9542.
Schwartz R., Dodge J., Smith N. A., Etzioni O., “Green AI,” Commun. ACM 63(12), 54–63 (2020).10.1145/3381831 DOI
Vicar T., Chmelik J., Jakubicek R., Chmelikova L., Gumulec J., Balvan J., Provaznik I., Kolar R., “Annotated quantitative phase microscopy cell dataset of various adherent cell lines for segmentation purposes,” Zenodo, 2021, 10.5281/zenodo.5153251 . DOI
Vicar T., Chmelik J., Jakubicek R., Chmelikova L., Gumulec J., Balvan J., Provaznik I., Kolar R., “Deep-qpi-cell-segmentation: self-supervised pretraining for transferable quantitative phase image cell segmentation,” Github, 2021, https://github.com/tomasvicar/Deep-QPI-Cell-Segmentation. PubMed PMC
Self-supervised pretraining for transferable quantitative phase image cell segmentation