Cell Tracking Accuracy Measurement Based on Comparison of Acyclic Oriented Graphs
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
26683608
PubMed Central
PMC4686175
DOI
10.1371/journal.pone.0144959
PII: PONE-D-15-22640
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- buněčné linie MeSH
- buněčný tracking metody MeSH
- časosběrné zobrazování metody MeSH
- fluorescenční mikroskopie MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Tracking motile cells in time-lapse series is challenging and is required in many biomedical applications. Cell tracks can be mathematically represented as acyclic oriented graphs. Their vertices describe the spatio-temporal locations of individual cells, whereas the edges represent temporal relationships between them. Such a representation maintains the knowledge of all important cellular events within a captured field of view, such as migration, division, death, and transit through the field of view. The increasing number of cell tracking algorithms calls for comparison of their performance. However, the lack of a standardized cell tracking accuracy measure makes the comparison impracticable. This paper defines and evaluates an accuracy measure for objective and systematic benchmarking of cell tracking algorithms. The measure assumes the existence of a ground-truth reference, and assesses how difficult it is to transform a computed graph into the reference one. The difficulty is measured as a weighted sum of the lowest number of graph operations, such as split, delete, and add a vertex and delete, add, and alter the semantics of an edge, needed to make the graphs identical. The measure behavior is extensively analyzed based on the tracking results provided by the participants of the first Cell Tracking Challenge hosted by the 2013 IEEE International Symposium on Biomedical Imaging. We demonstrate the robustness and stability of the measure against small changes in the choice of weights for diverse cell tracking algorithms and fluorescence microscopy datasets. As the measure penalizes all possible errors in the tracking results and is easy to compute, it may especially help developers and analysts to tune their algorithms according to their needs.
Cancer Imaging Laboratory Center for Applied Medical Research University of Navarra Pamplona Spain
Centre for Biomedical Image Analysis Faculty of Informatics Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Meijering E, Dzyubachyk O, Smal I, Cappellen WA. Tracking in Cell and Developmental Biology. Seminars in Cell and Developmental Biology. 2009;20(8):894–902. 10.1016/j.semcdb.2009.07.004 PubMed DOI
Zimmer C, Zhang B, Dufour A, Thébaud A, Berlemont S, Meas-Yedid V, et al. On the Digital Trail of Mobile Cells. IEEE Signal Processing Magazine. 2006;23(3):54–62. 10.1109/MSP.2006.1628878 DOI
Ananthakrishnan R, Ehrlicher A. The Forces Behind Cell Movement. International Journal of Biological Sciences. 2007;3(5):303–317. 10.7150/ijbs.3.303 PubMed DOI PMC
Li K, Chen M, Kanade T, Miller ED, Weiss LE, Campbella PG. Cell Population Tracking and Lineage Construction with Spatiotemporal Context. Medical Image Analysis. 2008;12(5):546–566. 10.1016/j.media.2008.06.001 PubMed DOI PMC
Al-Kofahi O, Radke RJ, Goderie SK, Shen Q, Temple S, Roysam B. Automated Cell Lineage Construction: A Rapid Method to Analyze Clonal Development Established with Murine Neural Progenitor Cells. Cell Cycle. 2006;5(3):327–335. 10.4161/cc.5.3.2426 PubMed DOI
Harder N, Batra R, Diessl N, Gogolin S, Eils R, Westermann F, et al. Large-Scale Tracking and Classification for Automatic Analysis of Cell Migration and Proliferation, and Experimental Optimization of High-Throughput Screens of Neuroblastoma Cells. Cytometry Part A. 2015;87(6):524–540. 10.1002/cyto.a.22632 PubMed DOI
Li F, Zhou X, Ma J, Wong STC. Multiple Nuclei Tracking Using Integer Programming for Quantitative Cancer Cell Cycle Analysis. IEEE Transactions on Medical Imaging. 2010;29(1):96–105. 10.1109/TMI.2009.2027813 PubMed DOI PMC
Magnusson KEG, Jaldén J, Gilbert PM, Blau HM. Global Linking of Cell Tracks Using the Viterbi Algorithm. IEEE Transactions on Medical Imaging. 2015;34(4):911–929. 10.1109/TMI.2014.2370951 PubMed DOI PMC
Padfield D, Rittscher J, Roysam B. Coupled Minimum-Cost Flow Cell Tracking for High-Throughput Quantitative Analysis. Medical Image Analysis. 2011;15(1):650–668. 10.1016/j.media.2010.07.006 PubMed DOI
Dufour A, Thibeaux R, Labruyère E, Guillén N, Olivo-Marin JC. 3-D Active Meshes: Fast Discrete Deformable Models for Cell Tracking in 3-D Time-Lapse Microscopy. IEEE Transactions on Image Processing. 2011;20(7):1925–1937. 10.1109/TIP.2010.2099125 PubMed DOI
Dzyubachyk O, van Cappellen WA, Essers J, Niessen WJ, Meijering E. Advanced Level-Set-Based Cell Tracking in Time-Lapse Fluorescence Microscopy. IEEE Transactions on Medical Imaging. 2010;29(3):852–867. 10.1109/TMI.2009.2038693 PubMed DOI
Maška M, Daněk O, Garasa S, Rouzaut A, Muñoz-Barrutia A, Ortiz-de-Solórzano C. Segmentation and Shape Tracking of Whole Fluorescent Cells Based on the Chan-Vese Model. IEEE Transactions on Medical Imaging. 2013;32(6):995–1006. 10.1109/TMI.2013.2243463 PubMed DOI
Padfield D, Rittscher J, Thomas N, Roysam B. Spatio-Temporal Cell Cycle Phase Analysis Using Level Sets and Fast Marching Methods. Medical Image Analysis. 2009;13(1):143–155. 10.1016/j.media.2008.06.018 PubMed DOI
Bergeest JP, Rohr K. Efficient Globally Optimal Segmentation of Cells in Fluorescence Microscopy Images Using Level Sets and Convex Energy Functionals. Medical Image Analysis. 2012;16(7):1436–1444. 10.1016/j.media.2012.05.012 PubMed DOI
Stegmaier J, Otte JC, Kobitski A, Bartschat A, Garcia A, Nienhaus GU, et al. Fast Segmentation of Stained Nuclei in Terabyte-Scale, Time Resolved 3D Microscopy Image Stacks. PLoS ONE. 2014;9(2):e90036 10.1371/journal.pone.0090036 PubMed DOI PMC
Kan A, Chakravorty R, Bailey J, Leckie C, Markhami J, Dowling MR. Automated and Semi-Automated Cell Tracking: Addressing Portability Challenges. Journal of Microscopy. 2011;244(2):194–213. 10.1111/j.1365-2818.2011.03529.x PubMed DOI
Degerman J, Thorlin T, Faijerson J, Althoff K, Eriksson PS, Put RVD, et al. An Automatic System for in vitro Cell Migration Studies. Journal of Microscopy. 2009;233(1):178–191. 10.1111/j.1365-2818.2008.03108.x PubMed DOI
Kasturi R, Goldgof D, Soundararajan P, Manohar V, Garofolo J, Bowers R, et al. Framework for Performance Evaluation of Face, Text, and Vehicle Detection and Tracking in Video: Data, Metrics, and Protocol. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2009;31(2):319–336. 10.1109/TPAMI.2008.57 PubMed DOI
Chenouard N, Smal I, de Chaumont F, Maška M, Sbalzarini IF, Gong Y, et al. Objective Comparison of Particle Tracking Methods. Nature Methods. 2014;11(3):281–289. 10.1038/nmeth.2808 PubMed DOI PMC
Kan A, Leckie C, Bailey J, Markham J, Chakravorty R. Measures for Ranking Cell Trackers Without Manual Validation. Pattern Recognition. 2013;46(11):2849–2859. 10.1016/j.patcog.2013.04.007 DOI
Kan A, Markham J, Chakravorty R, Bailey J, Leckie C. Ranking Cell Tracking Systems Without Manual Validation. Pattern Recognition Letters. 2015;53(1):38–43. 10.1016/j.patrec.2014.11.005 DOI
Maška M, Ulman V, Svoboda D, Matula P, Matula P, Ederra C, et al. A Benchmark for Comparison of Cell Tracking Algorithms. Bioinformatics. 2014;30(11):1609–1617. 10.1093/bioinformatics/btu080 PubMed DOI PMC
Winter M, Wait E, Roysam B, Goderie SK, Ali RAN, Kokovay E, et al. Vertebrate Neural Stem Cell Segmentation, Tracking and Lineaging with Validation and Editing. Nature Protocols. 2011;6(12):1942–1952. 10.1038/nprot.2011.422 PubMed DOI PMC
Svoboda D, Kozubek M, Stejskal S. Generation of Digital Phantoms of Cell Nuclei and Simulation of Image Formation in 3D Image Cytometry. Cytometry Part A. 2009;75A(6):494–509. 10.1002/cyto.a.20714 PubMed DOI
Svoboda D, Ulman V. Generation of Synthetic Image Datasets for Time-Lapse Fluorescence Microscopy. In: Proceedings of the 9th International Conference on Image Analysis and Recognition; 2012. p. 473–482.
Smal I, Draegestein K, Galjart N, Niessen W, Meijering E. Particle Filtering for Multiple Object Tracking in Dynamic Fluorescence Microscopy Images: Application to Microtubule Growth Analysis. IEEE Transactions on Medical Imaging. 2008;27(6):789–804. 10.1109/TMI.2008.916964 PubMed DOI
Huth J, Buchholz M, Kraus JM, Schmucker M, von Wichert G, Krndija D, et al. Significantly Improved Precision of Cell Migration Analysis in Time-Lapse Video Microscopy Through Use of a Fully Automated Tracking System. BMC Cell Biology. 2010;11:24 10.1186/1471-2121-11-24 PubMed DOI PMC
The Cell Tracking Challenge: 10 years of objective benchmarking
An objective comparison of cell-tracking algorithms