Cell Tracking Accuracy Measurement Based on Comparison of Acyclic Oriented Graphs

. 2015 ; 10 (12) : e0144959. [epub] 20151218

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26683608

Tracking motile cells in time-lapse series is challenging and is required in many biomedical applications. Cell tracks can be mathematically represented as acyclic oriented graphs. Their vertices describe the spatio-temporal locations of individual cells, whereas the edges represent temporal relationships between them. Such a representation maintains the knowledge of all important cellular events within a captured field of view, such as migration, division, death, and transit through the field of view. The increasing number of cell tracking algorithms calls for comparison of their performance. However, the lack of a standardized cell tracking accuracy measure makes the comparison impracticable. This paper defines and evaluates an accuracy measure for objective and systematic benchmarking of cell tracking algorithms. The measure assumes the existence of a ground-truth reference, and assesses how difficult it is to transform a computed graph into the reference one. The difficulty is measured as a weighted sum of the lowest number of graph operations, such as split, delete, and add a vertex and delete, add, and alter the semantics of an edge, needed to make the graphs identical. The measure behavior is extensively analyzed based on the tracking results provided by the participants of the first Cell Tracking Challenge hosted by the 2013 IEEE International Symposium on Biomedical Imaging. We demonstrate the robustness and stability of the measure against small changes in the choice of weights for diverse cell tracking algorithms and fluorescence microscopy datasets. As the measure penalizes all possible errors in the tracking results and is easy to compute, it may especially help developers and analysts to tune their algorithms according to their needs.

Zobrazit více v PubMed

Meijering E, Dzyubachyk O, Smal I, Cappellen WA. Tracking in Cell and Developmental Biology. Seminars in Cell and Developmental Biology. 2009;20(8):894–902. 10.1016/j.semcdb.2009.07.004 PubMed DOI

Zimmer C, Zhang B, Dufour A, Thébaud A, Berlemont S, Meas-Yedid V, et al. On the Digital Trail of Mobile Cells. IEEE Signal Processing Magazine. 2006;23(3):54–62. 10.1109/MSP.2006.1628878 DOI

Ananthakrishnan R, Ehrlicher A. The Forces Behind Cell Movement. International Journal of Biological Sciences. 2007;3(5):303–317. 10.7150/ijbs.3.303 PubMed DOI PMC

Li K, Chen M, Kanade T, Miller ED, Weiss LE, Campbella PG. Cell Population Tracking and Lineage Construction with Spatiotemporal Context. Medical Image Analysis. 2008;12(5):546–566. 10.1016/j.media.2008.06.001 PubMed DOI PMC

Al-Kofahi O, Radke RJ, Goderie SK, Shen Q, Temple S, Roysam B. Automated Cell Lineage Construction: A Rapid Method to Analyze Clonal Development Established with Murine Neural Progenitor Cells. Cell Cycle. 2006;5(3):327–335. 10.4161/cc.5.3.2426 PubMed DOI

Harder N, Batra R, Diessl N, Gogolin S, Eils R, Westermann F, et al. Large-Scale Tracking and Classification for Automatic Analysis of Cell Migration and Proliferation, and Experimental Optimization of High-Throughput Screens of Neuroblastoma Cells. Cytometry Part A. 2015;87(6):524–540. 10.1002/cyto.a.22632 PubMed DOI

Li F, Zhou X, Ma J, Wong STC. Multiple Nuclei Tracking Using Integer Programming for Quantitative Cancer Cell Cycle Analysis. IEEE Transactions on Medical Imaging. 2010;29(1):96–105. 10.1109/TMI.2009.2027813 PubMed DOI PMC

Magnusson KEG, Jaldén J, Gilbert PM, Blau HM. Global Linking of Cell Tracks Using the Viterbi Algorithm. IEEE Transactions on Medical Imaging. 2015;34(4):911–929. 10.1109/TMI.2014.2370951 PubMed DOI PMC

Padfield D, Rittscher J, Roysam B. Coupled Minimum-Cost Flow Cell Tracking for High-Throughput Quantitative Analysis. Medical Image Analysis. 2011;15(1):650–668. 10.1016/j.media.2010.07.006 PubMed DOI

Dufour A, Thibeaux R, Labruyère E, Guillén N, Olivo-Marin JC. 3-D Active Meshes: Fast Discrete Deformable Models for Cell Tracking in 3-D Time-Lapse Microscopy. IEEE Transactions on Image Processing. 2011;20(7):1925–1937. 10.1109/TIP.2010.2099125 PubMed DOI

Dzyubachyk O, van Cappellen WA, Essers J, Niessen WJ, Meijering E. Advanced Level-Set-Based Cell Tracking in Time-Lapse Fluorescence Microscopy. IEEE Transactions on Medical Imaging. 2010;29(3):852–867. 10.1109/TMI.2009.2038693 PubMed DOI

Maška M, Daněk O, Garasa S, Rouzaut A, Muñoz-Barrutia A, Ortiz-de-Solórzano C. Segmentation and Shape Tracking of Whole Fluorescent Cells Based on the Chan-Vese Model. IEEE Transactions on Medical Imaging. 2013;32(6):995–1006. 10.1109/TMI.2013.2243463 PubMed DOI

Padfield D, Rittscher J, Thomas N, Roysam B. Spatio-Temporal Cell Cycle Phase Analysis Using Level Sets and Fast Marching Methods. Medical Image Analysis. 2009;13(1):143–155. 10.1016/j.media.2008.06.018 PubMed DOI

Bergeest JP, Rohr K. Efficient Globally Optimal Segmentation of Cells in Fluorescence Microscopy Images Using Level Sets and Convex Energy Functionals. Medical Image Analysis. 2012;16(7):1436–1444. 10.1016/j.media.2012.05.012 PubMed DOI

Stegmaier J, Otte JC, Kobitski A, Bartschat A, Garcia A, Nienhaus GU, et al. Fast Segmentation of Stained Nuclei in Terabyte-Scale, Time Resolved 3D Microscopy Image Stacks. PLoS ONE. 2014;9(2):e90036 10.1371/journal.pone.0090036 PubMed DOI PMC

Kan A, Chakravorty R, Bailey J, Leckie C, Markhami J, Dowling MR. Automated and Semi-Automated Cell Tracking: Addressing Portability Challenges. Journal of Microscopy. 2011;244(2):194–213. 10.1111/j.1365-2818.2011.03529.x PubMed DOI

Degerman J, Thorlin T, Faijerson J, Althoff K, Eriksson PS, Put RVD, et al. An Automatic System for in vitro Cell Migration Studies. Journal of Microscopy. 2009;233(1):178–191. 10.1111/j.1365-2818.2008.03108.x PubMed DOI

Kasturi R, Goldgof D, Soundararajan P, Manohar V, Garofolo J, Bowers R, et al. Framework for Performance Evaluation of Face, Text, and Vehicle Detection and Tracking in Video: Data, Metrics, and Protocol. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2009;31(2):319–336. 10.1109/TPAMI.2008.57 PubMed DOI

Chenouard N, Smal I, de Chaumont F, Maška M, Sbalzarini IF, Gong Y, et al. Objective Comparison of Particle Tracking Methods. Nature Methods. 2014;11(3):281–289. 10.1038/nmeth.2808 PubMed DOI PMC

Kan A, Leckie C, Bailey J, Markham J, Chakravorty R. Measures for Ranking Cell Trackers Without Manual Validation. Pattern Recognition. 2013;46(11):2849–2859. 10.1016/j.patcog.2013.04.007 DOI

Kan A, Markham J, Chakravorty R, Bailey J, Leckie C. Ranking Cell Tracking Systems Without Manual Validation. Pattern Recognition Letters. 2015;53(1):38–43. 10.1016/j.patrec.2014.11.005 DOI

Maška M, Ulman V, Svoboda D, Matula P, Matula P, Ederra C, et al. A Benchmark for Comparison of Cell Tracking Algorithms. Bioinformatics. 2014;30(11):1609–1617. 10.1093/bioinformatics/btu080 PubMed DOI PMC

Winter M, Wait E, Roysam B, Goderie SK, Ali RAN, Kokovay E, et al. Vertebrate Neural Stem Cell Segmentation, Tracking and Lineaging with Validation and Editing. Nature Protocols. 2011;6(12):1942–1952. 10.1038/nprot.2011.422 PubMed DOI PMC

Svoboda D, Kozubek M, Stejskal S. Generation of Digital Phantoms of Cell Nuclei and Simulation of Image Formation in 3D Image Cytometry. Cytometry Part A. 2009;75A(6):494–509. 10.1002/cyto.a.20714 PubMed DOI

Svoboda D, Ulman V. Generation of Synthetic Image Datasets for Time-Lapse Fluorescence Microscopy. In: Proceedings of the 9th International Conference on Image Analysis and Recognition; 2012. p. 473–482.

Smal I, Draegestein K, Galjart N, Niessen W, Meijering E. Particle Filtering for Multiple Object Tracking in Dynamic Fluorescence Microscopy Images: Application to Microtubule Growth Analysis. IEEE Transactions on Medical Imaging. 2008;27(6):789–804. 10.1109/TMI.2008.916964 PubMed DOI

Huth J, Buchholz M, Kraus JM, Schmucker M, von Wichert G, Krndija D, et al. Significantly Improved Precision of Cell Migration Analysis in Time-Lapse Video Microscopy Through Use of a Fully Automated Tracking System. BMC Cell Biology. 2010;11:24 10.1186/1471-2121-11-24 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...