Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31519998
PubMed Central
PMC6744556
DOI
10.1038/s41598-019-49431-3
PII: 10.1038/s41598-019-49431-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Small extracellular vesicles (sEVs) are cell-derived vesicles of nanoscale size (~30-200 nm) that function as conveyors of information between cells, reflecting the cell of their origin and its physiological condition in their content. Valuable information on the shape and even on the composition of individual sEVs can be recorded using transmission electron microscopy (TEM). Unfortunately, sample preparation for TEM image acquisition is a complex procedure, which often leads to noisy images and renders automatic quantification of sEVs an extremely difficult task. We present a completely deep-learning-based pipeline for the segmentation of sEVs in TEM images. Our method applies a residual convolutional neural network to obtain fine masks and use the Radon transform for splitting clustered sEVs. Using three manually annotated datasets that cover a natural variability typical for sEV studies, we show that the proposed method outperforms two different state-of-the-art approaches in terms of detection and segmentation performance. Furthermore, the diameter and roundness of the segmented vesicles are estimated with an error of less than 10%, which supports the high potential of our method in biological applications.
Department of Experimental Biology Faculty of Science Masaryk University Brno 611 37 Czech Republic
Instituto de Investigación Sanitaria Gregorio Marañón Madrid 28007 Spain
Zobrazit více v PubMed
Raposo G. B lymphocytes secrete antigen-presenting vesicles. Journal of Experimental Medicine. 1996;183(3):1161–1172. doi: 10.1084/jem.183.3.1161. PubMed DOI PMC
Andreola G, et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J. Exp. Med. 2002;195:1303–16. doi: 10.1084/jem.20011624. PubMed DOI PMC
Skog J, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 2008;10:1470–1476. doi: 10.1038/ncb1800. PubMed DOI PMC
Wang W, Lotze MT. Good things come in small packages: exosomes, immunity and cancer. Cancer Gene Ther. 2014;21:139–141. doi: 10.1038/cgt.2014.14. PubMed DOI
Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 2014;14:195–208. doi: 10.1038/nri3622. PubMed DOI PMC
Bellingham SA, Guo BB, Coleman BM, Hill AF. Exosomes: Vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front. Physiol. 2012;3:124. doi: 10.3389/fphys.2012.00124. PubMed DOI PMC
Alipoor SD, et al. Exosomes and exosomal miRNA in respiratory diseases. Mediators Inflamm. 2016;2016:1–11. doi: 10.1155/2016/5628404. PubMed DOI PMC
Ojha C, et al. Interplay between autophagy, exosomes and HIV-1 associated neurological disorders: New insights for diagnosis and therapeutic applications. Viruses. 2017;9:176. doi: 10.3390/v9070176. PubMed DOI PMC
De Toro J, Herschlik L, Waldner C, Mongini C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front. Immunol. 2015;6:203. doi: 10.3389/fimmu.2015.00203. PubMed DOI PMC
Naderi-Meshkin Hojjat, Lai Xin, Amirkhah Raheleh, Vera Julio, Rasko John E J, Schmitz Ulf. Exosomal lncRNAs and cancer: connecting the missing links. Bioinformatics. 2018;35(2):352–360. doi: 10.1093/bioinformatics/bty527. PubMed DOI
Théry C, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018;7:1535750. doi: 10.1080/20013078.2018.1535750. PubMed DOI PMC
Van der Pol E, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. 2014;12:1182–1192. doi: 10.1111/jth.12602. PubMed DOI
Lötvall Jan, Hill Andrew F., Hochberg Fred, Buzás Edit I., Di Vizio Dolores, Gardiner Christopher, Gho Yong Song, Kurochkin Igor V., Mathivanan Suresh, Quesenberry Peter, Sahoo Susmita, Tahara Hidetoshi, Wauben Marca H., Witwer Kenneth W., Théry Clotilde. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles. 2014;3(1):26913. doi: 10.3402/jev.v3.26913. PubMed DOI PMC
Ko Jina, Carpenter Erica, Issadore David. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. The Analyst. 2016;141(2):450–460. doi: 10.1039/C5AN01610J. PubMed DOI PMC
Soo CY, et al. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology. 2012;136:192–197. doi: 10.1111/j.1365-2567.2012.03569.x. PubMed DOI PMC
Lane RE, Korbie D, Anderson W, Vaidyanathan R, Trau M. Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci. Rep. 2015;5:7639. doi: 10.1038/srep07639. PubMed DOI PMC
van der Vlist Els J, Nolte-'t Hoen Esther N M, Stoorvogel Willem, Arkesteijn Ger J A, Wauben Marca H M. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nature Protocols. 2012;7(7):1311–1326. doi: 10.1038/nprot.2012.065. PubMed DOI
Kotrbová A, et al. TEM ExosomeAnalyzer: a computer-assisted software tool for quantitative evaluation of extracellular vesicles in transmission electron microscopy images. J. Extracell. Vesicles. 2019;8:1560808. doi: 10.1080/20013078.2018.1560808. PubMed DOI PMC
Crescitelli R, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles. 2013;2:20677. doi: 10.3402/jev.v2i0.20677. PubMed DOI PMC
Willms E, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep. 2016;6:22519. doi: 10.1038/srep22519. PubMed DOI PMC
Zabeo D, et al. Exosomes purified from a single cell type have diverse morphology. J. Extracell. Vesicles. 2017;6:1329476. doi: 10.1080/20013078.2017.1329476. PubMed DOI PMC
Mehdiani, A. et al. An innovative method for exosome quantification and size measurement. J. Vis. Exp. 50974, 10.3791/50974 (2015). PubMed PMC
Litjens Geert, Kooi Thijs, Bejnordi Babak Ehteshami, Setio Arnaud Arindra Adiyoso, Ciompi Francesco, Ghafoorian Mohsen, van der Laak Jeroen A.W.M., van Ginneken Bram, Sánchez Clara I. A survey on deep learning in medical image analysis. Medical Image Analysis. 2017;42:60–88. doi: 10.1016/j.media.2017.07.005. PubMed DOI
Xing Fuyong, Xie Yuanpu, Su Hai, Liu Fujun, Yang Lin. Deep Learning in Microscopy Image Analysis: A Survey. IEEE Transactions on Neural Networks and Learning Systems. 2018;29(10):4550–4568. doi: 10.1109/TNNLS.2017.2766168. PubMed DOI
Kremer JR, Mastronarde DN, McIntosh J. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 1996;116:71–76. doi: 10.1006/jsbi.1996.0013. PubMed DOI
Niethammer M, Zach C. Segmentation with area constraints. Med. Image Anal. 2013;17:101–112. doi: 10.1016/j.media.2012.09.002. PubMed DOI PMC
Nam D, Mantell J, Bull D, Verkade P, Achim A. A Novel Framework for Segmentation of Secretory Granules in Electron Micrographs. Med. Image Anal. 2014;18:411–424. doi: 10.1016/j.media.2013.12.008. PubMed DOI
Kaltdorf KV, et al. FIJI Macro 3D ART VeSElecT: 3D Automated Reconstruction Tool for Vesicle Structures of Electron Tomograms. PLoS Comput. Biol. 2017;13:e1005317. doi: 10.1371/journal.pcbi.1005317. PubMed DOI PMC
Oztel, I., Yolcu, G., Ersoy, I., White, T. & Bunyak, F. Mitochondria segmentation in electron microscopy volumes using deep convolutional neural network. Proc. - 2017 IEEE Int. Conf. Bioinforma. Biomed. BIBM 20172017-Janua, 1195–1200, 10.1109/BIBM.2017.8217827 (2017).
Roels, J., Hennies, J., Saeys, Y., Philips, W. & Kreshuk, A. Domain Adaptive Segmentation in Volume Electron Microscopy Imaging. arXiv Prepr. 1810.09734 (2018).
Zhang Xiaoya, Peng Xiaohong, Han Chengsheng, Zhu Wenzhen, Wei Lisi, Zhang Yulin, Wang Yi, Zhang Xiuqin, Tang Hao, Zhang Jianshe, Xu Xiaojun, Feng Fengping, Xue Yanhong, Yao Erlin, Tan Guangming, Xu Tao, Chen Liangyi. A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies. Protein & Cell. 2018;10(4):306–311. doi: 10.1007/s13238-018-0575-y. PubMed DOI PMC
Cirean, D. C., Giusti, A. & Gambardella, L. M. Deep neural networks segment neuronal membranes in electron microscopy images. Adv. Neural Inf. Process. Syst. 25 (NIPS 2012) 2843–2851 (2012).
Zeng T, Wu B, Ji S. DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics. 2017;33:2555–2562. doi: 10.1093/bioinformatics/btx188. PubMed DOI PMC
Bermudez-Chacon, R., Marquez-Neila, P., Salzmann, M. & Fua, P. A domain-adaptive two-stream U-Net for electron microscopy image segmentation. In 2018 IEEE 15th Int. Symp. Biomed. Imaging (ISBI 2018), 400–404, 10.1109/ISBI.2018.8363602 (IEEE, 2018).
Xiao, C. et al. Deep contextual residual network for electron microscopy image segmentation in connectomics. 2018 IEEE 15th Int. Symp. Biomed. Imaging (ISBI 2018) 378–381, 10.1109/ISBI.2018.8363597 (2018).
Ulman V, et al. An objective comparison of cell-tracking algorithms. Nat. Methods. 2017;14:1141–1152. doi: 10.1038/nmeth.4473. PubMed DOI PMC
Štěpka Karel, Maška Martin, Pálenik Jakub Jozef, Pospíchalová Vendula, Kotrbová Anna, Ilkovics Ladislav, Klemová Dobromila, Hampl Aleš, Bryja Vítězslav, Matula Pavel. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2016. Automatic Detection and Segmentation of Exosomes in Transmission Electron Microscopy; pp. 318–325.
Ronneberger Olaf, Fischer Philipp, Brox Thomas. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation; pp. 234–241.
Falk T, et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods. 2019;16:67–70. doi: 10.1038/s41592-018-0261-2. PubMed DOI
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conf. Comput. Vis. Pattern Recognit., 770–778, 10.1109/CVPR.2016.90 (IEEE, 2016).
Radon, J. Uber die bestimmung von funktionen durch ihre integralwerte langs gewissez mannigfaltigheiten, ber. Verh. Sachs. Akad. Wiss. Leipzig, Math Phys Klass69 (1917).
Xie Y, et al. Efficient and robust cell detection: A structured regression approach. Med. Image Anal. 2017;44:245–254. doi: 10.1016/j.media.2017.07.003. PubMed DOI PMC
Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Adv. Neural Inf. Process. Syst. 25 (NIPS 2012) (2012).
Clevert, D.-A., Unterthiner, T. & Hochreiter, S. Fast and accurate deep network learning by exponential linear units (ELUs). arXiv Prepr. arXiv:1511, 1–14, 10.3233/978-1-61499-672-9-1760, 1511.07289 (2015).
Dosovitskiy, A., Springenberg, J. T., Riedmiller, M. & Brox, T. Discriminative unsupervised feature learning with convolutional neural networks. In Adv. Neural Inf. Process. Syst. 27 (NIPS 2014), 766–774 (2014). PubMed
Han Ju, Chang Hang, Yang Qing, Barcellos-Hoff Mary Helen, Parvin Bahram. Advances in Visual Computing. Berlin, Heidelberg: Springer Berlin Heidelberg; 2006. 3D Segmentation of Mammospheres for Localization Studies; pp. 518–527.
Dzyubachyk O, van Cappellen W, Essers J, Niessen W, Meijering E. Advanced level-set-based cell tracking in time-lapse fluorescence microscopy. IEEE Trans. Med. Imaging. 2010;29:852–867. doi: 10.1109/TMI.2009.2038693. PubMed DOI
Hodneland E, Kögel T, Frei DM, Gerdes HH, Lundervold A. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation. Source Code Biol. Med. 2013;8:1–10. doi: 10.1186/1751-0473-8-16. PubMed DOI PMC
González-Betancourt A, et al. Automated marker identification using the Radon transform for watershed segmentation. IET Image Process. 2017;11:183–189. doi: 10.1049/iet-ipr.2016.0525. DOI
Matula P, et al. Cell tracking accuracy measurement based on comparison of acyclic oriented graphs. PLoS One. 2015;10:e0144959. doi: 10.1371/journal.pone.0144959. PubMed DOI PMC
Jaccard P. Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines. Bull Soc Vaudoise Sci Nat. 1901;37:241–272.
Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bull. 1945;1:80. doi: 10.2307/3001968. PubMed DOI
Xu Q-S, Liang Y-Z. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 2001;56:1–11. doi: 10.1016/S0169-7439(00)00122-2. DOI