TEM ExosomeAnalyzer: a computer-assisted software tool for quantitative evaluation of extracellular vesicles in transmission electron microscopy images
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30719239
PubMed Central
PMC6346710
DOI
10.1080/20013078.2018.1560808
PII: 1560808
Knihovny.cz E-zdroje
- Klíčová slova
- Exosome, cryo-electron microscopy, extracellular vesicles, image analysis, morphological seeded watershed, negative staining, segmentation, semi-automatic detection, size distribution profile, transmission electron microscopy,
- Publikační typ
- časopisecké články MeSH
Extracellular vesicles (EVs) function as important conveyers of information between cells and thus can be exploited as drug delivery systems or disease biomarkers. Transmission electron microscopy (TEM) remains the gold standard method for visualisation of EVs, however the analysis of individual EVs in TEM images is time-consuming if performed manually. Therefore, we present here a software tool for computer-assisted evaluation of EVs in TEM images. TEM ExosomeAnalyzer detects EVs based on their shape and edge contrast criteria and subsequently analyses their size and roundness. The software tool is compatible with common negative staining protocols and isolation methods used in the field of EV research; even with challenging TEM images (EVs both lighter and darker than the background, images containing artefacts or precipitated stain, etc.). If the fully-automatic analysis fails to produce correct results, users can promptly adjust the detected seeds of EVs as well as their boundaries manually. The performance of our tool was evaluated for three different modes with variable levels of human interaction, using two datasets with various heterogeneity. The semi-automatic mode analyses EVs with high success rate in the homogenous dataset (F1 score 0.9094, Jaccard coefficient 0.8218) as well as in the highly heterogeneous dataset containing EVs isolated from cell culture medium and patient samples (F1 score 0.7619, Jaccard coefficient 0.7553). Moreover, the extracted size distribution profiles of EVs isolated from malignant ascites of ovarian cancer patients overlap with those derived by cryo-EM and are comparable to NTA- and TRPS-derived data. In summary, TEM ExosomeAnalyzer is an easy-to-use software tool for evaluation of many types of vesicular microparticles and is available at http://cbia.fi.muni.cz/exosome-analyzer free of charge for non-commercial and research purposes. The web page contains also detailed description how to use the software tool including a video tutorial.
Centre for Biomedical Image Analysis Faculty of Informatics Masaryk University Brno Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Pharmacology and Immunotherapy Veterinary Research Institute vvi Brno Czech Republic
Zobrazit více v PubMed
Yanez-Mo M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066 PubMed PMID: 25979354; PubMed Central PMCID: PMC4433489. PubMed PMC
Steinbichler TB, Dudas J, Riechelmann H, et al. The role of exosomes in cancer metastasis. Semin Cancer Biol. 2017. June;44:170–13. PubMed PMID: 28215970. PubMed
Raposo G, Stoorvogel W.. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013. February 18;200(4):373–383. . PubMed PMID: 23420871; PubMed Central PMCID: PMC3575529. PubMed PMC
Mirzaei H, Sahebkar A, Jaafari MR, et al. Diagnostic and therapeutic potential of exosomes in cancer: the beginning of a new tale? J Cell Physiol. 2017. December;232(12):3251–3260. PubMed PMID: 27966794. PubMed
Pospichalova V, Svoboda J, Dave Z, et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles. 2015;4:25530 PubMed PMID: 25833224; PubMed Central PMCID: PMC4382613. PubMed PMC
Traikia M, Warschawski DE, Recouvreur M, et al. Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and 31P-nuclear magnetic resonance. Eur Biophys J. 2000;29(3):184–195. PubMed PMID: 10968210. PubMed
Maas SL, de Vrij J, van der Vlist EJ, et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release. 2015. February 28;200:87–96. PubMed PMID: 25555362; PubMed Central PMCID: PMC4324667. PubMed PMC
Maas SL, De Vrij J, Broekman ML.. Quantification and size-profiling of extracellular vesicles using tunable resistive pulse sensing. J vis exp. 2014. October 19;(92):e51623 PubMed PMID: 25350417; PubMed Central PMCID: PMC4335984 Doi:10.3791/51623 PubMed DOI PMC
Štěpka K, Maška M, Pálenik JJ et al. Automatic detection and segmentation of exosomes in transmission electron microscopy In: Hua G, Jégou H editors. Computer vision – ECCV 2016 workshops. Amsterdam, The Netherlands: Springer International Publishing, 2016:318–325. October 8-10 and 15-16, 2016, Proceedings, Part I. Cham.
Soille P. Morphological Image Analysis. Vol. 2 Heidelberg, Germany: Springer-Verlag Berlin Heidelberg; 2004.
Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomed. 2011. December;7(6):780–788. PubMed PMID: 21601655; PubMed Central PMCID: PMC3280380. PubMed PMC
Coumans FA, van der Pol E, Boing AN, et al. Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. J Extracell Vesicles. 2014;3:25922 PubMed PMID: 25498889; PubMed Central PMCID: PMC4263901. PubMed PMC
Cizmar P, Yuana Y. Detection and characterization of extracellular vesicles by transmission and cryo-transmission electron microscopy. Methods Mol Biol. 2017;1660:221–232. PubMed PMID: 28828660. PubMed
Scarff CA, Fuller MJG, Thompson RF, et al. Variations on negative stain electron microscopy methods: tools for tackling challenging systems. J vis exp. 2018. February 6; 132: PubMed PMID: 29443097; PubMed Central PMCID: PMC5912373. doi: 10.3791/57199. PubMed DOI PMC
van der Pol E, Coumans FA, Grootemaat AE, et al. Particle size distribution of exosomes and microvesicles by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014. May 13 PubMed PMID: 24818656 DOI:10.1111/jth.12602. PubMed DOI
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018. April;19(4):213–228. . PubMed PMID: 29339798. PubMed
Seyedhosseini M, Ellisman MH, Tasdizen T. Segmentation of mitochondria in electron microscopy images using algebraic curves. Proc IEEE Int Symp Biomed Imaging. 2013;2013: 860–863. PubMed PMID: 25132915; eng. PubMed PMC
Sommer C, Straehle C, Köthe U, et al, editors. Ilastik: interactive learning and segmentation toolkit. 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro; 2011. March 30, 2011-April 2; Chicago, IL, USA; 2011.
Arganda-Carreras I, Kaynig V, Rueden C, et al. Trainable Weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics. 2017. August 1;33(15):2424–2426. PubMed PMID: 28369169. PubMed
Goodfellow I, Bengio. Y, Courville A. Deep Learning. Cambridge, MA: MIT Press; 2016.
Thery C, Amigorena S, Raposo G et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. Juan S Bonifacino [et al] 2006. April; Chapter 3: Unit3 22. doi: 10.1002/0471143030.cb0322s30 PubMed PMID: 18228490 PubMed DOI
Jensen OA, Prause JU, Laursen H. Shrinkage in preparatory steps for SEM. A study on rabbit corneal endothelium. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1981;215(4): 233–242. PubMed PMID: 6164307. PubMed
Yuana Y, Koning RI, Kuil ME, et al. Cryo-electron microscopy of extracellular vesicles in fresh plasma. J Extracell Vesicles. 2013. December;31:2 PubMed PMID: 24455109; PubMed Central PMCID: PMC3895263. PubMed PMC
Thompson RF, Walker M, Siebert CA, et al. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods. 2016. May 1;100:3–15. PubMed PMID: 26931652; PubMed Central PMCID: PMC4854231. PubMed PMC
Sodar BW, Kittel A, Paloczi K, et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep. 2016. April 18;6:24316 PubMed PMID: 27087061; PubMed Central PMCID: PMC4834552. PubMed PMC
Simonsen JB. What are we looking at? Extracellular vesicles, lipoproteins, or both? Circ Res. 2017. September 29;121(8):920–922. PubMed PMID: 28963190. PubMed
Kipps E, Tan DS, Kaye SB. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer. 2013. April;13(4):273–282. . PubMed PMID: 23426401. PubMed PMC
Karimi N, Cvjetkovic A, Jang SC, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci. 2018. August;75(15):2873–2886. 10.1007/s00018-018-2773-4. PubMed PMID: 29441425; PubMed Central PMCID: PMC6021463. PubMed PMC