deep learning
Dotaz
Zobrazit nápovědu
OBJECTIVES: Artificial Intelligence (AI), particularly deep learning, has significantly impacted healthcare, including dentistry, by improving diagnostics, treatment planning, and prognosis prediction. This systematic mapping review explores the current applications of deep learning in dentistry, offering a comprehensive overview of trends, models, and their clinical significance. MATERIALS AND METHODS: Following a structured methodology, relevant studies published from January 2012 to September 2023 were identified through database searches in PubMed, Scopus, and Embase. Key data, including clinical purpose, deep learning tasks, model architectures, and data modalities, were extracted for qualitative synthesis. RESULTS: From 21,242 screened studies, 1,007 were included. Of these, 63.5% targeted diagnostic tasks, primarily with convolutional neural networks (CNNs). Classification (43.7%) and segmentation (22.9%) were the main methods, and imaging data-such as cone-beam computed tomography and orthopantomograms-were used in 84.4% of cases. Most studies (95.2%) applied fully supervised learning, emphasizing the need for annotated data. Pathology (21.5%), radiology (17.5%), and orthodontics (10.2%) were prominent fields, with 24.9% of studies relating to more than one specialty. CONCLUSION: This review explores the advancements in deep learning in dentistry, particulary for diagnostics, and identifies areas for further improvement. While CNNs have been used successfully, it is essential to explore emerging model architectures, learning approaches, and ways to obtain diverse and reliable data. Furthermore, fostering trust among all stakeholders by advancing explainable AI and addressing ethical considerations is crucial for transitioning AI from research to clinical practice. CLINICAL RELEVANCE: This review offers a comprehensive overview of a decade of deep learning in dentistry, showcasing its significant growth in recent years. By mapping its key applications and identifying research trends, it provides a valuable guide for future studies and highlights emerging opportunities for advancing AI-driven dental care.
- MeSH
- deep learning * MeSH
- lidé MeSH
- zubní lékařství * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
Natural products represent a rich reservoir of small molecule drug candidates utilized as antimicrobial drugs, anticancer therapies, and immunomodulatory agents. These molecules are microbial secondary metabolites synthesized by co-localized genes termed Biosynthetic Gene Clusters (BGCs). The increase in full microbial genomes and similar resources has led to development of BGC prediction algorithms, although their precision and ability to identify novel BGC classes could be improved. Here we present a deep learning strategy (DeepBGC) that offers reduced false positive rates in BGC identification and an improved ability to extrapolate and identify novel BGC classes compared to existing machine-learning tools. We supplemented this with random forest classifiers that accurately predicted BGC product classes and potential chemical activity. Application of DeepBGC to bacterial genomes uncovered previously undetectable putative BGCs that may code for natural products with novel biologic activities. The improved accuracy and classification ability of DeepBGC represents a major addition to in-silico BGC identification.
PURPOSE: A supervised deep learning (DL) approach for frequency and phase correction (FPC) of MRS data recently showed encouraging results, but obtaining transients with labels for supervised learning is challenging. This work investigates the feasibility and efficiency of unsupervised deep learning-based FPC. METHODS: Two novel deep learning-based FPC methods (deep learning-based Cr referencing and deep learning-based spectral registration), which use a priori physics domain knowledge, are presented. The proposed networks were trained, validated, and evaluated using simulated, phantom, and publicly accessible in vivo MEGA-edited MRS data. The performance of our proposed FPC methods was compared with other generally used FPC methods, in terms of precision and time efficiency. A new measure was proposed in this study to evaluate the FPC method performance. The ability of each of our methods to carry out FPC at varying SNR levels was evaluated. A Monte Carlo study was carried out to investigate the performance of our proposed methods. RESULTS: The validation using low-SNR manipulated simulated data demonstrated that the proposed methods could perform FPC comparably with other methods. The evaluation showed that the deep learning-based spectral registration over a limited frequency range method achieved the highest performance in phantom data. The applicability of the proposed method for FPC of GABA-edited in vivo MRS data was demonstrated. Our proposed networks have the potential to reduce computation time significantly. CONCLUSIONS: The proposed physics-informed deep neural networks trained in an unsupervised manner with complex data can offer efficient FPC of large MRS data in a shorter time.
Tým pracovníků Vysokého učení technického v Brně a Masarykovy univerzity vyvíjí webovou aplikaci, jejímž cílem je poskytovat terapeutům zpětnou vazbu na základě automatického zpracování pravidelně získávaných dotazníkových dat a audionahrávek z terapeutických sezení (z projektové zprávy).
An expert team from Brno University of Technology and Masaryk University is developing a web application to provide therapists with feedback based on automatic processing of regularly collected questionnaire data and audio recordings from therapy sessions (from project report).
Telemedicine is an emerging development in the healthcare domain, where the Internet of Things (IoT) fiber optics technology assists telemedicine applications to improve overall digital healthcare performances for society. Telemedicine applications are bowel disease monitoring based on fiber optics laser endoscopy, gastrointestinal disease fiber optics lights, remote doctor-patient communication, and remote surgeries. However, many existing systems are not effective and their approaches based on deep reinforcement learning have not obtained optimal results. This paper presents the fiber optics IoT healthcare system based on deep reinforcement learning combinatorial constraint scheduling for hybrid telemedicine applications. In the proposed system, we propose the adaptive security deep q-learning network (ASDQN) algorithm methodology to execute all telemedicine applications under their given quality of services (deadline, latency, security, and resources) constraints. For the problem solution, we have exploited different fiber optics endoscopy datasets with images, video, and numeric data for telemedicine applications. The objective is to minimize the overall latency of telemedicine applications (e.g., local, communication, and edge nodes) and maximize the overall rewards during offloading and scheduling on different nodes. The simulation results show that ASDQN outperforms all telemedicine applications with their QoS and objectives compared to existing state action reward state (SARSA) and deep q-learning network (DQN) policy during execution and scheduling on different nodes.
- MeSH
- algoritmy MeSH
- deep learning * MeSH
- internet věcí * MeSH
- lidé MeSH
- technologie optických vláken MeSH
- telemedicína * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Radiologists utilize pictures from X-rays, magnetic resonance imaging, or computed tomography scans to diagnose bone cancer. Manual methods are labor-intensive and may need specialized knowledge. As a result, creating an automated process for distinguishing between malignant and healthy bone is essential. Bones that have cancer have a different texture than bones in unaffected areas. Diagnosing hematological illnesses relies on correct labeling and categorizing nucleated cells in the bone marrow. However, timely diagnosis and treatment are hampered by pathologists' need to identify specimens, which can be sensitive and time-consuming manually. Humanity's ability to evaluate and identify these more complicated illnesses has significantly been bolstered by the development of artificial intelligence, particularly machine, and deep learning. Conversely, much research and development is needed to enhance cancer cell identification-and lower false alarm rates. We built a deep learning model for morphological analysis to solve this problem. This paper introduces a novel deep convolutional neural network architecture in which hybrid multi-objective and category-based optimization algorithms are used to optimize the hyperparameters adaptively. Using the processed cell pictures as input, the proposed model is then trained with an optimized attention-based multi-scale convolutional neural network to identify the kind of cancer cells in the bone marrow. Extensive experiments are run on publicly available datasets, with the results being measured and evaluated using a wide range of performance indicators. In contrast to deep learning models that have already been trained, the total accuracy of 99.7% was determined to be superior.
To identify patterns in big medical datasets and use Deep Learning and Machine Learning (ML) to reliably diagnose Cardio Vascular Disease (CVD), researchers are currently delving deeply into these fields. Training on large datasets and producing highly accurate validation results is exceedingly difficult. Furthermore, early and precise diagnosis is necessary due to the increased global prevalence of cardiovascular disease (CVD). However, the increasing complexity of healthcare datasets makes it challenging to detect feature connections and produce precise predictions. To address these issues, the Intelligent Cardiovascular Disease Diagnosis based on Ant Colony Optimisation with Enhanced Deep Learning (ICVD-ACOEDL) model was developed. This model employs feature selection (FS) and hyperparameter optimization to diagnose CVD. Applying a min-max scaler, medical data is first consistently prepared. The key feature that sets ICVD-ACOEDL apart is the use of Ant Colony Optimisation (ACO) to select an optimal feature subset, which in turn helps to upgrade the performance of the ensuring deep learning enhanced neural network (DLENN) classifier. The model reforms the hyperparameters of DLENN for CVD classification using Bayesian optimization. Comprehensive evaluations on benchmark medical datasets show that ICVD-ACOEDL exceeds existing techniques, indicating that it could have a significant impact on CVD diagnosis. The model furnishes a workable way to increase CVD classification efficiency and accuracy in real-world medical situations by incorporating ACO for feature selection, min-max scaling for data pre-processing, and Bayesian optimization for hyperparameter tweaking.
- MeSH
- Bayesova věta MeSH
- deep learning * MeSH
- diagnóza počítačová metody MeSH
- Formicidae MeSH
- kardiovaskulární nemoci * diagnóza MeSH
- lidé MeSH
- neuronové sítě * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
... reálný svět 453 -- Kapitola 14 Závěry 474 -- Příloha A Terminologický slovník 512 -- Rejstřík 523 -- Deep ... ... Learning v jazyku Python — Knihovny Keras, TensorFlow -- Podrobný obsah -- Stručný obsah 5 -- Podrobný ... ... -- Automatické odvozování tvaru: vytváření vrstev za běhu 112 -- 3.6.2 Od vrstev k modelům 113 -- Deep ... ... Learning v jazyku Python — Knihovny Keras, TensorFlow -- 7.3.2 Použití zpětných volání 217 -- Zpětná ... ... Learning v jazyku Python — Knihovny Keras, TensorFlow -- 12.1.2 Jak generujete sekvenční data? ...
1. elektronické vydání 1 online zdroj (528 stran)
Strojové učení zaznamenalo v posledních letech pozoruhodný pokrok od téměř nepoužitelného rozpoznávání řeči a obrazu k nadlidské přesnosti. Od programů, které nedokázaly porazit jen trochu zkušenějšího hráče go, jsme dospěli k přemožiteli mistra světa. Za pokrokem ve vývoji učících se programů stojí tzv. hluboké učení - deep learning.; Strojové učení zaznamenalo v posledních letech pozoruhodný pokrok od téměř nepoužitelného rozpoznávání řeči a obrazu k nadlidské přesnosti. Od programů, které nedokázaly porazit jen trochu zkušenějšího hráče go, jsme dospěli k přemožiteli mistra světa. Za pokrokem ve vývoji učících se programů stojí tzv. hluboké učení – deep learning.
OBJECTIVE: The aim of this work was to assemble a large annotated dataset of bitewing radiographs and to use convolutional neural networks to automate the detection of dental caries in bitewing radiographs with human-level performance. MATERIALS AND METHODS: A dataset of 3989 bitewing radiographs was created, and 7257 carious lesions were annotated using minimal bounding boxes. The dataset was then divided into 3 parts for the training (70%), validation (15%), and testing (15%) of multiple object detection convolutional neural networks (CNN). The tested CNN architectures included YOLOv5, Faster R-CNN, RetinaNet, and EfficientDet. To further improve the detection performance, model ensembling was used, and nested predictions were removed during post-processing. The models were compared in terms of the [Formula: see text] score and average precision (AP) with various thresholds of the intersection over union (IoU). RESULTS: The twelve tested architectures had [Formula: see text] scores of 0.72-0.76. Their performance was improved by ensembling which increased the [Formula: see text] score to 0.79-0.80. The best-performing ensemble detected caries with the precision of 0.83, recall of 0.77, [Formula: see text], and AP of 0.86 at IoU=0.5. Small carious lesions were predicted with slightly lower accuracy (AP 0.82) than medium or large lesions (AP 0.88). CONCLUSIONS: The trained ensemble of object detection CNNs detected caries with satisfactory accuracy and performed at least as well as experienced dentists (see companion paper, Part II). The performance on small lesions was likely limited by inconsistencies in the training dataset. CLINICAL SIGNIFICANCE: Caries can be automatically detected using convolutional neural networks. However, detecting incipient carious lesions remains challenging.
- MeSH
- deep learning * MeSH
- lidé MeSH
- náchylnost k zubnímu kazu MeSH
- neuronové sítě MeSH
- zubní kaz * diagnostické zobrazování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Microglial cells mediate diverse homeostatic, inflammatory, and immune processes during normal development and in response to cytotoxic challenges. During these functional activities, microglial cells undergo distinct numerical and morphological changes in different tissue volumes in both rodent and human brains. However, it remains unclear how these cytostructural changes in microglia correlate with region-specific neurochemical functions. To better understand these relationships, neuroscientists need accurate, reproducible, and efficient methods for quantifying microglial cell number and morphologies in histological sections. To address this deficit, we developed a novel deep learning (DL)-based classification, stereology approach that links the appearance of Iba1 immunostained microglial cells at low magnification (20×) with the total number of cells in the same brain region based on unbiased stereology counts as ground truth. Once DL models are trained, total microglial cell numbers in specific regions of interest can be estimated and treatment groups predicted in a high-throughput manner (<1 min) using only low-power images from test cases, without the need for time and labor-intensive stereology counts or morphology ratings in test cases. Results for this DL-based automatic stereology approach on two datasets (total 39 mouse brains) showed >90% accuracy, 100% percent repeatability (Test-Retest) and 60× greater efficiency than manual stereology (<1 min vs. ∼ 60 min) using the same tissue sections. Ongoing and future work includes use of this DL-based approach to establish clear neurodegeneration profiles in age-related human neurological diseases and related animal models.