Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Intelligent cardiovascular disease diagnosis using deep learning enhanced neural network with ant colony optimization

B. Xia, N. Innab, V. Kandasamy, A. Ahmadian, M. Ferrara

. 2024 ; 14 (1) : 21777. [pub] 20240918

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24018890

To identify patterns in big medical datasets and use Deep Learning and Machine Learning (ML) to reliably diagnose Cardio Vascular Disease (CVD), researchers are currently delving deeply into these fields. Training on large datasets and producing highly accurate validation results is exceedingly difficult. Furthermore, early and precise diagnosis is necessary due to the increased global prevalence of cardiovascular disease (CVD). However, the increasing complexity of healthcare datasets makes it challenging to detect feature connections and produce precise predictions. To address these issues, the Intelligent Cardiovascular Disease Diagnosis based on Ant Colony Optimisation with Enhanced Deep Learning (ICVD-ACOEDL) model was developed. This model employs feature selection (FS) and hyperparameter optimization to diagnose CVD. Applying a min-max scaler, medical data is first consistently prepared. The key feature that sets ICVD-ACOEDL apart is the use of Ant Colony Optimisation (ACO) to select an optimal feature subset, which in turn helps to upgrade the performance of the ensuring deep learning enhanced neural network (DLENN) classifier. The model reforms the hyperparameters of DLENN for CVD classification using Bayesian optimization. Comprehensive evaluations on benchmark medical datasets show that ICVD-ACOEDL exceeds existing techniques, indicating that it could have a significant impact on CVD diagnosis. The model furnishes a workable way to increase CVD classification efficiency and accuracy in real-world medical situations by incorporating ACO for feature selection, min-max scaling for data pre-processing, and Bayesian optimization for hyperparameter tweaking.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24018890
003      
CZ-PrNML
005      
20241024111057.0
007      
ta
008      
241015s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-024-71932-z $2 doi
035    __
$a (PubMed)39294203
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Xia, Biao $u Medical Equipment Department, Changzhou No2 Hospital Nanjing Medical University, Changzhou, 213164, Jiangsu, China. stephenxiabiao@sina.com
245    10
$a Intelligent cardiovascular disease diagnosis using deep learning enhanced neural network with ant colony optimization / $c B. Xia, N. Innab, V. Kandasamy, A. Ahmadian, M. Ferrara
520    9_
$a To identify patterns in big medical datasets and use Deep Learning and Machine Learning (ML) to reliably diagnose Cardio Vascular Disease (CVD), researchers are currently delving deeply into these fields. Training on large datasets and producing highly accurate validation results is exceedingly difficult. Furthermore, early and precise diagnosis is necessary due to the increased global prevalence of cardiovascular disease (CVD). However, the increasing complexity of healthcare datasets makes it challenging to detect feature connections and produce precise predictions. To address these issues, the Intelligent Cardiovascular Disease Diagnosis based on Ant Colony Optimisation with Enhanced Deep Learning (ICVD-ACOEDL) model was developed. This model employs feature selection (FS) and hyperparameter optimization to diagnose CVD. Applying a min-max scaler, medical data is first consistently prepared. The key feature that sets ICVD-ACOEDL apart is the use of Ant Colony Optimisation (ACO) to select an optimal feature subset, which in turn helps to upgrade the performance of the ensuring deep learning enhanced neural network (DLENN) classifier. The model reforms the hyperparameters of DLENN for CVD classification using Bayesian optimization. Comprehensive evaluations on benchmark medical datasets show that ICVD-ACOEDL exceeds existing techniques, indicating that it could have a significant impact on CVD diagnosis. The model furnishes a workable way to increase CVD classification efficiency and accuracy in real-world medical situations by incorporating ACO for feature selection, min-max scaling for data pre-processing, and Bayesian optimization for hyperparameter tweaking.
650    12
$a deep learning $7 D000077321
650    12
$a kardiovaskulární nemoci $x diagnóza $7 D002318
650    _2
$a lidé $7 D006801
650    12
$a neuronové sítě $7 D016571
650    _2
$a Bayesova věta $7 D001499
650    _2
$a Formicidae $7 D001000
650    _2
$a diagnóza počítačová $x metody $7 D003936
655    _2
$a časopisecké články $7 D016428
700    1_
$a Innab, Nisreen $u Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, 13713, Diriyah, Riyadh, Saudi Arabia
700    1_
$a Kandasamy, Venkatachalam $u Department of Mathematics, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
700    1_
$a Ahmadian, Ali $u Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey $1 https://orcid.org/0000000201067050
700    1_
$a Ferrara, Massimiliano $u ICRIOS, University Bocconi, Via Röntgen no 1, 20136, Milan, Italy. massimiliano.ferrara@unibocconi.it
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 14, č. 1 (2024), s. 21777
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39294203 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024111051 $b ABA008
999    __
$a ok $b bmc $g 2201636 $s 1230863
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 14 $c 1 $d 21777 $e 20240918 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...