Expression of genes associated with BMP signaling pathway in porcine oocytes before and after IVM - a microarray approach

. 2017 Jun 02 ; 15 (1) : 43. [epub] 20170602

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28576120
Odkazy

PubMed 28576120
PubMed Central PMC5457624
DOI 10.1186/s12958-017-0261-6
PII: 10.1186/s12958-017-0261-6
Knihovny.cz E-zdroje

BACKGROUND: The full maturational capability of mammalian oocytes is accompanied by nuclear and cytoplasmic modifications, which are associated with proliferation and differentiation of surrounding cumulus cells. These events are regulated on molecular level by the expression of target genes involved in signal transduction pathways crucial for folliculogenesis and oogenesis. Transforming growth factor beta signaling includes several molecules that are involved in the regulation of oogenesis and embryo growth, including bone morphogenetic protein (BMP). However, the BMP-related gene expression profile in oocytes at different maturational stages requires further investigation. METHODS: Oocytes were isolated from pubertal crossbred Landrace gilts follicles, selected with a use of BCB staining test and analyzed before and after in vitro maturation. Gene expression profiles were examined using an Affymetrix microarray approach and validated by RT-qPCR. Database for Annotation, Visualization, and Integrated Discovery (DAVID) software was used for the extraction of the genes belonging to a BMP-signaling pathway ontology group. RESULTS: The assay revealed 12,258 different transcripts in porcine oocytes, among which 379 genes were down-regulated and 40 were up-regulated. The DAVID database indicated a "BMP signaling pathway" ontology group, which was significantly regulated in both groups of oocytes. We discovered five up-regulated genes in oocytes before versus after in vitro maturation (IVM): chordin-like 1 (CHRDL1), follistatin (FST), transforming growth factor-beta receptor-type III (TGFβR3), decapentaplegic homolog 4 (SMAD4), and inhibitor of DNA binding 1 (ID1). CONCLUSIONS: Increased expression of CHRDL1, FST, TGFβR3, SMAD4, and ID1 transcripts before IVM suggested a subordinate role of the BMP signaling pathway in porcine oocyte maturational competence. Conversely, it is postulated that these genes are involved in early stages of folliculogenesis and oogenesis regulation in pigs, since in oocytes before IVM increased expression was observed.

Zobrazit více v PubMed

Yokoo M, Sato E. Cumulus-oocyte complex interactions during oocyte maturation. Int rev Cytol. 2004;235:251–291. doi: 10.1016/S0074-7696(04)35006-0. PubMed DOI

Kidder GM, Vanderhyden BC. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol. 2010;88:399–413. doi: 10.1139/Y10-009. PubMed DOI PMC

Kempisty B, Ziolkowska A, Ciesiolka S, Piotrowska H, Antosik P, Bukowska D, et al. Study on connexin gene and protein expression and cellular distribution in relation to real-time proliferation of porcine granulosa cells. J Biol Regul Homeost Agents. 2014;28:625–635. PubMed

Uyar A, Torrealday S, Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil Steril. 2013;99:979–997. doi: 10.1016/j.fertnstert.2013.01.129. PubMed DOI PMC

Kempisty B, Piotrowska H, Walczak R, Śniadek P, Dziuban J, Bukowska D, et al. Factors with an influence on mammalian oocytes developmental potential in light of molecular and microfluidic research. Medycyna wet. 2011;67:435–439.

Lei X, Cui K, Cai X, Ren Y, Liu Q, Shi D. Bone morphogenetic protein 1 is expressed in porcine ovarian follicles and promotes oocyte maturation and early embryonic development. J vet med Sci. 2017;79:258–266. doi: 10.1292/jvms.16-0277. PubMed DOI PMC

Zhu G, Guo B, Pan D, Mu Y, Feng S. Expression of bone morphogenetic proteins and receptors in porcine cumulus-oocyte complexes during in vitro maturation. Anim Reprod Sci. 2008;104:275–283. doi: 10.1016/j.anireprosci.2007.02.011. PubMed DOI

Piotrowska H, Kempisty B, Sosinska P, Ciesiolka S, Bukowska D, Antosik P, et al. The role of TGF superfamily gene expression in the regulation of folliculogenesis and oogenesis in mammals: a review. Vet med-Czech. 2013;58:505–515.

Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem. 2002;277:4883–4891. doi: 10.1074/jbc.M111023200. PubMed DOI

Massaque J. TGF-beta signal transduction. Annu rev Biochem. 1998;67:753–791. doi: 10.1146/annurev.biochem.67.1.753. PubMed DOI

Liu KJ, Harland RM. Cloning and characterization of Xenopus Id4 reveals differing roles for id genes. Dev Biol. 2003;264:339–351. doi: 10.1016/j.ydbio.2003.08.017. PubMed DOI

Peng Y, Kang Q, Luo Q, Jiang W, Si W, Liu BA, et al. Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced Osteoblast differentiation of Mesenchymal stem cells. J Biol Chem. 2004;279:32941–9. PubMed

Yu Y, Liang Y, Yin C, Liu X, Su Y, Zhang L, et al. Inhibitor of DNA-binding 1 promotes endothelial progenitor cell proliferation and migration by suppressing E2-2 through the helix-loop-helix domain. Int J Mol med. 2016;38:1549–57. PubMed

Ling F, Kang B, Sun XH. Id proteins: small molecules, mighty regulators. Curr top dev Biol. 2014;110:189–216. doi: 10.1016/B978-0-12-405943-6.00005-1. PubMed DOI

Leddy HA, McNulty AL, Lee SH, Rothfusz NE, Gloss B, Kirby ML, et al. Follistatin in chondrocytes: the link between TRPV4 channelopathies and skeletal malformations. FASEB j. 2014;28:2525–2537. doi: 10.1096/fj.13-245936. PubMed DOI PMC

Taylor SE, Lee J, Smeriglio P, Razzaque A, Smith RL, Dragoo JL. Identification of human juvenile chondrocyte-specific factors that stimulate stemm cell growth. Tissue eng Part a. 2016;22:645–653. doi: 10.1089/ten.tea.2015.0366. PubMed DOI

Balemans W, Van Hul W. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol 2002;250:231–50. PubMed

Shimasaki S, Zachow RJ, Li D, Kim H, Iemura S-I, Ueno N, et al. A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci U S a. 1999;96:7282–7287. doi: 10.1073/pnas.96.13.7282. PubMed DOI PMC

Miyoshi T, Otsuka F, Inagaki K, Otani H, Takeda M, Suzuki J, et al. Differential regulation of Steroidogenesis by bone morphogenetic proteins in Granulosa cells: involvement of Extracellularly regulated Kinase signaling and Oocyte actions in follicle stimulating hormone-induced estrogen production. Endocrinology. 2007;148:337–345. doi: 10.1210/en.2006-0966. PubMed DOI

Ericsson SA, Boice ML, Funahashi H, Day BN. Assessment of porcine oocytes using brilliant cresyl blue. Theriogenology. 1993;39:214. doi: 10.1016/0093-691X(93)90069-H. DOI

Trejter M, Hochol A, Tyczewska M, Ziolkowska A, Jopek K, Szyszka M, et al. Sex-related gene expression profiles in the adrenal cortex in the mature rat: microarray analysis with emphasis on genes involved in steroidogenesis. Int J Mol med. 2015;35:702–714. PubMed PMC

Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids res. 2007;35:W169–W175. doi: 10.1093/nar/gkm415. PubMed DOI PMC

von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, et al. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids res. 2005;33:D433–D437. doi: 10.1093/nar/gki005. PubMed DOI PMC

Eppig JJ. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil dev. 1996;8:485–489. doi: 10.1071/RD9960485. PubMed DOI

Dunning KR, Lane M, Brown HM, Yeo C, Robker RL, Russell DL. Altered composition of the cumulus-oocyte complex matrix during in vitro maturation of oocytes. Hum Reprod. 2007;22:2842–2850. doi: 10.1093/humrep/dem277. PubMed DOI

Kempisty B, Jackowska M, Bukowska D, Antosik P, Woźna M, Jaśkowski JM. Mechanisms regulating oogenesis, folliculogenesis and fertilization in pigs. Medycyna wet. 2011;67:299–303.

Marques MG, Nicacio AC, de Oliveira VP, Nascimento AB, Caetano HV, Mendes CM, et al. In vitro maturation of pig oocytes with different media, hormone and meiosis inhibitors. Anim Reprod Sci. 2007;97(3-4):375–381. PubMed

Nogueira D, Sadeu JC, Montagut J. In vitro oocyte maturation: current status. Semin Reprod med. 2012;30:199–213. doi: 10.1055/s-0032-1311522. PubMed DOI

Yerushalmi GM, Maman E, Yung Y, Kedem A, Hourvitz A. Molecular characterization of the human ovulatory cascade-lesson from the IVF/IVM model. J Assist Reprod Genet. 2011;28:509–515. doi: 10.1007/s10815-011-9594-9. PubMed DOI PMC

Huang X, Hao C, Shen X, Zhang Y, Liu X. RUNX, GPX3 and PTX3 gene expression profiling in cumulus cells are reflective oocyte/embryo competence and potentially reliable predictors of embryo developmental competence in PCOS patients. Reprod Biol Endocrinol. 2013;11:109. doi: 10.1186/1477-7827-11-109. PubMed DOI PMC

Arias-Alvarez M, Garcia-Garcia RM. Lopez-Tello J. Rebollar PG: Gutierezz-Adan A, Lorenzo PL. In vivo and in vitro maturation of rabbit oocytes differently affects the gene expression profile, mitochondrial distribution, apoptosis and early embryo development. Reproduction, fertility, and development; 2016. PubMed

Dieci C, Lodde V, Labreque R, Dufort I, Tessaro I, Sirard MA. At al. Differences in cumulus cell gene expression indicate the benefit of a pre-maturation step to improve in-vitro bovine embryo production. Mol hum Reprod. 2016;22:882–897. PubMed

Kranc W, Budna J, Chachuła A, Borys S, Bryja A, Rybska M, et al. "cell migration" is the ontology group differentially expressed in porcine oocytes before and after in vitro maturation: a microarray approach. DNA Cell Biol. 2017;36:273–282. doi: 10.1089/dna.2016.3425. PubMed DOI

Sakuta H, Suzuki R, Takahashi H, Kato A, Shintani T, Iemura S, et al. Ventroptin: a BMP-4 antagonist expressed in a double-gradient pattern in the retina. Science. 2001;293:111–115. doi: 10.1126/science.1058379. PubMed DOI

Webb TR, Matarin M, Gardner JC, Kelberman D, Hassan H, Ang W, et al. X-linked megalocornea caused by mutations in CHRDL1 identifies an essential role for ventroptin in anterior segment development. Am J hum Genet. 2012;90:247–259. doi: 10.1016/j.ajhg.2011.12.019. PubMed DOI PMC

Allen JM, McGlinn E, Hill A, Warman ML. Autopodial develoment is selectively impaired by misexpression of chordin-like 1 in the chick limb. Dev Biol. 2013;381:159–169. doi: 10.1016/j.ydbio.2013.06.003. PubMed DOI

Bachiller D, Klingensmith J, Shneyder N, Tran U, Anderson R, Rossant J. The role of chordin/bmp signals in mammalian pharyngeal development and DiGeorge syndrome. Development. 2003;130:3567–3578. doi: 10.1242/dev.00581. PubMed DOI

Mullen AC, Wrana JL. TGF-β signaling in embryonic and somatic stem-cell renewal and differentiation. Cold Spring Harb Perspect Biol. 2017; Epub ahead of print PubMed PMC

Inman GJ, Nicolas FJ, Hill CS. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell. 2002;10:283–294. doi: 10.1016/S1097-2765(02)00585-3. PubMed DOI

Yu C, Zhou JJ, Fan HY. Studying functions of TGF-β signaling in the ovary. Methods Mol Biol. 2016;1344:301–311. doi: 10.1007/978-1-4939-2966-5_19. PubMed DOI

Wang Y, Ge W. Spatial expression patterns of activin and its signaling system in the zebrafish ovarian follicle: evidence for paracrine action of activin on the oocytes. Biol Reprod. 2003;69:1998–2006. doi: 10.1095/biolreprod.103.020826. PubMed DOI

Al-Edani T, Assou S, Ferrieres A, Bringer Deutsch S, Gala A, Lecellier CH, et al. Female aging alters expression of human cumulus cells genes that are essential for oocyte quality. Biomed res Int. 2014;2014:964614. doi: 10.1155/2014/964614. PubMed DOI PMC

Rodrigues GQ, Bertoldo MJ, Brito IR, Silva CM, Sales AD, Castro SV, et al. Relative mRNA expression and immunolocalization for transforming growth factor-beta (TGF-β) and their effect on in vitro development of caprine preantral follicles. In vitro cellular & developmental biology. Animal. 2014;50:688–699. PubMed

Knight PG, Glister C. Local roles of GF-beta superfamily members in the control of ovarian follicle development. Aimal Reproduction Science. 2003;78:165–183. doi: 10.1016/S0378-4320(03)00089-7. PubMed DOI

Gueripel X, Benahmed M, Gougeon A. Sequential gonadotropin treatment of immature mice leads to amplification of transforming growth factor beta action, via upregulation of receptor-type 1, Smad 2 and 4, and downregulation of Smad 6. Biol Reprod. 2004;70:640–648. doi: 10.1095/biolreprod.103.021162. PubMed DOI

Chang HM, Qiao J, Leung PC. Oocyte-somatic cell interactions in the human ovary - novel role of bone morphogenetic proteins and growth differentation factors. Hum Reprod Update. 2016;23:1–18. doi: 10.1093/humupd/dmw039. PubMed DOI PMC

Kempisty B, Ziółkowska A, Piotrowska H, Zawierucha P, Antosik P, Bukowska D, et al. Real-time proliferation of porcine cumulus cells is related to the protein levels and cellular distribution of Cdk4 and Cx43. Theriogenology. 2013;80:411–420. doi: 10.1016/j.theriogenology.2013.05.016. PubMed DOI

Appeltant R, Somfai T, Nakai M, Bodo S, Maes D, Kikuchi K, et al. Interactions between oocytes and cumulus cells during in vitro maturation of porcine cumulus - oocyte complexes in a chemically defined medium: effect of denuded oocytes on cumulus expansion and oocyte maturation. Theriogenology. 2015;83:567–576. doi: 10.1016/j.theriogenology.2014.10.026. PubMed DOI

Salhab M, Dhorne-Pollet S, Auclair S, Guyader-Joly C, Brisard D, Dalbies-Tran R, et al. In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells. Mol Reprod dev. 2013;80:166–182. doi: 10.1002/mrd.22148. PubMed DOI

Lee KB, Zhang K, Folger JK, Knott JG, Smith GW. Evidence supporting a functional requirement of SMAD4 for bovine preimplantation embryonic development: a potential link to embryotrophic actions of follistatin. Biol Reprod. 2014;91:62. PubMed PMC

Hogg K, Etherington SL, Young JM, McNeilly AS, Duncan WC. Inhibitor of differentiation (id) genes are expressed in the steroidogenic cells of the ovine ovary and are differentially regulated by members of the transforming growth factor-beta family. Endocrinology. 2010;151:1247–1256. doi: 10.1210/en.2009-0914. PubMed DOI PMC

Blaha M, Nemcova L, Kepkova KV, Vodicka P, Prochazka R. Gene expression analysis of pig cumulus-oocyte complexes stimulated in vitro with follicle stimulating hormone or epidermal growth factor-like peptides. Reprod Biol Endocrinol. 2015;13:113. doi: 10.1186/s12958-015-0112-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...