Synthesis, Properties, and Selected Technical Applications of Magnesium Oxide Nanoparticles: A Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
. SGS-2021-003
Student Grant Agency of the University of West Bohemia in Pilsen
PubMed
34884556
PubMed Central
PMC8657440
DOI
10.3390/ijms222312752
PII: ijms222312752
Knihovny.cz E-zdroje
- Klíčová slova
- bottom-up, crystallite size, dielectric properties, electrotechnical applications, magnesium oxide, nanomaterials, structural properties, synthesis,
- MeSH
- adsorpce MeSH
- chemické modely MeSH
- nanočástice chemie MeSH
- oxid hořečnatý chemie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- oxid hořečnatý MeSH
In the last few decades, there has been a trend involving the use of nanoscale fillers in a variety of applications. Significant improvements have been achieved in the areas of their preparation and further applications (e.g., in industry, agriculture, and medicine). One of these promising materials is magnesium oxide (MgO), the unique properties of which make it a suitable candidate for use in a wide range of applications. Generally, MgO is a white, hygroscopic solid mineral, and its lattice consists of Mg2+ ions and O2- ions. Nanostructured MgO can be prepared through different chemical (bottom-up approach) or physical (top-down approach) routes. The required resultant properties (e.g., bandgap, crystallite size, and shape) can be achieved depending on the reaction conditions, basic starting materials, or their concentrations. In addition to its unique material properties, MgO is also potentially of interest due to its nontoxicity and environmental friendliness, which allow it to be widely used in medicine and biotechnological applications.
Zobrazit více v PubMed
Trotta F., Mele A. Nanosponges. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2019. Nanomaterials: Classification and Properties; pp. 142–149.
Hannah W., Thompson P.B. Nanotechnology, Risk and the Environment: A Review. J. Environ. Monit. 2008;10:291–300. doi: 10.1039/b718127m. PubMed DOI
Jeevanandam J., Barhoum A., Chan Y.S., Dufresne A., Danquah M.K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018;9:1050–1074. doi: 10.3762/bjnano.9.98. PubMed DOI PMC
Mitra S.B. Chapter 2-Nanoparticles for dental materials: Synthesis, analysis, and applications. In: Subramani K., Ahmed W., editors. Emerging Nanotechnologies in Dentistry. 2nd ed. William Andrew Publishing; Norwich, NY, USA: 2018. pp. 17–39. Micro and Nano Technologies.
Baig N., Kammakakam I., Falath W. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021;2:1821–1871. doi: 10.1039/D0MA00807A. DOI
Saleh T.A. Nanomaterials: Classification, Properties, and Environmental Toxicities. Environ. Technol. Innov. 2020;20:101067. doi: 10.1016/j.eti.2020.101067. DOI
Malhotra B.D., Ali M.A. Chapter 1-Nanomaterials in Biosensors: Fundamentals and Applications. In: Malhotra B.D., Ali M.D.A., editors. Nanomaterials for Biosensors. William Andrew Publishing; Norwich, NY, USA: 2018. pp. 1–74. Micro and Nano Technologies.
Khalid K., Tan X., Mohd Zaid H.F., Tao Y., Lye Chew C., Chu D.-T., Lam M.K., Ho Y.-C., Lim J.W., Chin Wei L. Advanced in Developmental Organic and Inorganic Nanomaterial: A Review. Bioengineered. 2020;11:328–355. doi: 10.1080/21655979.2020.1736240. PubMed DOI PMC
Ealia S.A.M., Saravanakumar M.P. A Review on the Classification, Characterisation, Synthesis of Nanoparticles and Their Application. IOP Conf. Ser. Mater. Sci. Eng. 2017;263:032019. doi: 10.1088/1757-899X/263/3/032019. DOI
Cartwright A., Jackson K., Morgan C., Anderson A., Britt D.W. A Review of Metal and Metal-Oxide Nanoparticle Coating Technologies to Inhibit Agglomeration and Increase Bioactivity for Agricultural Applications. Agronomy. 2020;10:1018. doi: 10.3390/agronomy10071018. DOI
Sánchez-López E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A.L., Galindo R., Cano A., Espina M., Ettcheto M., Camins A., et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials. 2020;10:292. doi: 10.3390/nano10020292. PubMed DOI PMC
Yaqoob A.A., Ahmad H., Parveen T., Ahmad A., Oves M., Ismail I.M.I., Qari H.A., Umar K., Mohamad Ibrahim M.N. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front. Chem. 2020;8:341. doi: 10.3389/fchem.2020.00341. PubMed DOI PMC
Cousin P., Ross R.A. Preparation of Mixed Oxides: A Review. Mater. Sci. Eng. A. 1990;130:119–125. doi: 10.1016/0921-5093(90)90087-J. DOI
Danish M.S.S., Bhattacharya A., Stepanova D., Mikhaylov A., Grilli M.L., Khosravy M., Senjyu T. A Systematic Review of Metal Oxide Applications for Energy and Environmental Sustainability. Metals. 2020;10:1604. doi: 10.3390/met10121604. DOI
Chavali M.S., Nikolova M.P. Metal Oxide Nanoparticles and Their Applications in Nanotechnology. SN Appl. Sci. 2019;1:607. doi: 10.1007/s42452-019-0592-3. DOI
Ahamed M., Akhtar M.J., Alhadlaq H.A. Co-Exposure to SiO2 Nanoparticles and Arsenic Induced Augmentation of Oxidative Stress and Mitochondria-Dependent Apoptosis in Human Cells. Int. J. Environ. Res. Public Health. 2019;16:3199. doi: 10.3390/ijerph16173199. PubMed DOI PMC
Yang C., Chen H., Guan C. Hybrid CoO Nanowires Coated with Uniform Polypyrrole Nanolayers for High-Performance Energy Storage Devices. Nanomaterials. 2019;9:586. doi: 10.3390/nano9040586. PubMed DOI PMC
Liang Y.-C., Chang Y.-C., Zhao W.-C. Design and Synthesis of Novel 2D Porous Zinc Oxide-Nickel Oxide Composite Nanosheets for Detecting Ethanol Vapor. Nanomaterials. 2020;10:1989. doi: 10.3390/nano10101989. PubMed DOI PMC
Monteserín C., Blanco M., Murillo N., Pérez-Márquez A., Maudes J., Gayoso J., Laza J.M., Aranzabe E., Vilas J.L. Effect of Different Types of Electrospun Polyamide 6 Nanofibres on the Mechanical Properties of Carbon Fibre/Epoxy Composites. Polymers. 2018;10:1190. doi: 10.3390/polym10111190. PubMed DOI PMC
Duffy T., Madhusudhan N., Lee K.K.M. 2.07-Mineralogy of Super-Earth Planets. In: Schubert G., editor. Treatise on Geophysics. 2nd ed. Elsevier; Oxford, UK: 2015. pp. 149–178.
Cheremisinoff N.P.V. In: Condensed Encyclopedia of Polymer Engineering Terms. Cheremisinoff N.P., editor. Butterworth-Heinemann; Boston, MA, USA: 2001. pp. 340–347.
Akinwekomi A.D., Tang C.-Y., Tsui G.C.-P., Law W.-C., Chen L., Yang X.-S., Hamdi M. Synthesis and Characterisation of Floatable Magnesium Alloy Syntactic Foams with Hybridised Cell Morphology. Mater. Des. 2018;160:591–600. doi: 10.1016/j.matdes.2018.10.004. DOI
Singh J.P., Chae K.H. D° Ferromagnetism of Magnesium Oxide. Condens. Matter. 2017;2:36. doi: 10.3390/condmat2040036. DOI
Madelung O., Rössler U., Schulz M., editors. II-VI and I-VII Compounds; Semimagnetic Compounds. Volume 41b. Springer; Berlin/Heidelberg, Germany: 1999. Collaboration: Authors and editors of the volumes III/17B-22A-41B Magnesium oxide (MgO) crystal structure, lattice parameters, thermal expansion; pp. 1–6. Landolt-Börnstein-Group III Condensed Matter.
Green J. Calcination of Precipitated Mg(OH)2 to Active MgO in the Production of Refractory and Chemical Grade MgO. J. Mater. Sci. 1983;18:637–651. doi: 10.1007/BF00745561. DOI
Diachenko O.V., Opanasuyk A.S., Kurbatov D.I., Opanasuyk N.M., Kononov O.K., Nam D., Cheong H. Surface Morphology, Structural and Optical Properties of MgO Films Obtained by Spray Pyrolysis Technique. Acta Phys. Pol. A. 2016;130:805–810. doi: 10.12693/APhysPolA.130.805. DOI
Ashok C.H., Venkateswara R.K., Shilpa-Chakra C.H. Synthesis and Characterization of MgO/TiO2 Nanocomposites. J. Nanomed Nanotechnol. 2015;6 doi: 10.4172/2157-7439.1000329. DOI
Almontasser A., Parveen A., Azam A. Synthesis, Characterization and Antibacterial Activity of Magnesium Oxide (MgO) Nanoparticles. IOP Conf. Ser. Mater. Sci. Eng. 2019;577:012051. doi: 10.1088/1757-899X/577/1/012051. DOI
Nemade K.R., Waghuley S.A. Synthesis of MgO Nanoparticles by Solvent Mixed Spray Pyrolysis Technique for Optical Investigation. Int. J. Met. 2014;2014:e389416. doi: 10.1155/2014/389416. DOI
Dobrucka R. Synthesis of MgO Nanoparticles Using Artemisia Abrotanum Herba Extract and Their Antioxidant and Photocatalytic Properties. Iran. J. Sci. Technol. Trans. Sci. 2018;42:547–555. doi: 10.1007/s40995-016-0076-x. DOI
Alexander L., Klug H.P. Determination of Crystallite Size with the X-Ray Spectrometer. J. Appl. Phys. 1950;21:137–142. doi: 10.1063/1.1699612. DOI
Holzwarth U., Gibson N. The Scherrer Equation versus the “Debye-Scherrer Equation”. Nat. Nanotech. 2011;6:534. doi: 10.1038/nnano.2011.145. PubMed DOI
Al-Tabbakh A.A., Karatepe N., Al-Zubaidi A.B., Benchaabane A., Mahmood N.B. Crystallite Size and Lattice Strain of Lithiated Spinel Material for Rechargeable Battery by X-Ray Diffraction Peak-Broadening Analysis. Int. J. Energy Res. 2019;43:1903–1911. doi: 10.1002/er.4390. DOI
Nath D., Singh F., Das R. X-Ray Diffraction Analysis by Williamson-Hall, Halder-Wagner and Size-Strain Plot Methods of CdSe Nanoparticles- a Comparative Study. Mater. Chem. Phys. 2020;239:122021. doi: 10.1016/j.matchemphys.2019.122021. DOI
Canchanya-Huaman Y., Mayta-Armas A.F., Pomalaya-Velasco J., Bendezú-Roca Y., Guerra J.A., Ramos-Guivar J.A. Strain and Grain Size Determination of CeO2 and TiO2 Nanoparticles: Comparing Integral Breadth Methods versus Rietveld, μ-Raman, and TEM. Nanomaterials. 2021;11:2311. doi: 10.3390/nano11092311. PubMed DOI PMC
Mote V., Purushotham Y., Dole B. Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles. J. Theor. Appl. Phys. 2012;6 doi: 10.1186/2251-7235-6-6. DOI
Selvam N.C.S., Kumar R.T., Kennedy L.J., Vijaya J.J. Comparative Study of Microwave and Conventional Methods for the Preparation and Optical Properties of Novel MgO-Micro and Nano-Structures. J. Alloy. Compd. 2011;509:9809–9815. doi: 10.1016/j.jallcom.2011.08.032. DOI
Balakrishnan G., Velavan R., Mujasam Batoo K., Raslan E.H. Microstructure, Optical and Photocatalytic Properties of MgO Nanoparticles. Results Phys. 2020;16:103013. doi: 10.1016/j.rinp.2020.103013. DOI
Chizallet C., Costentin G., Lauron-Pernot H., Krafft J.M., Bazin P., Saussey J., Delbecq F., Sautet P., Che M. Role of Hydroxyl Groups in the Basic Reactivity of MgO: A Theoretical and Experimental Study. Oil Gas Sci.-Technol.-Rev. Ifp. 2006;61:479–488. doi: 10.2516/ogst:2006023a. DOI
Kumar A., Kumar J. On the Synthesis and Optical Absorption Studies of Nano-Size Magnesium Oxide Powder. J. Phys. Chem. Solids. 2008;69:2764–2772. doi: 10.1016/j.jpcs.2008.06.143. DOI
Sutradhar N., Sinhamahapatra A., Roy B., Bajaj H.C., Mukhopadhyay I., Panda A.B. Preparation of MgO Nano-Rods with Strong Catalytic Activity via Hydrated Basic Magnesium Carbonates. Mater. Res. Bull. 2011;46:2163–2167. doi: 10.1016/j.materresbull.2011.02.024. DOI
Kimiagar S., Abrinaei F. Effect of Temperature on the Structural, Linear, and Nonlinear Optical Properties of MgO-Doped Graphene Oxide Nanocomposites. Nanophotonics. 2018;7:243–251. doi: 10.1515/nanoph-2017-0030. DOI
Verma R., Naik K.K., Gangwar J., Srivastava A.K. Morphology, Mechanism and Optical Properties of Nanometer-Sized MgO Synthesized via Facile Wet Chemical Method. Mater. Chem. Phys. 2014;148:1064–1070. doi: 10.1016/j.matchemphys.2014.09.018. DOI
Soma H., Uchino T. Blue and Orange Photoluminescence and Surface Band-Gap Narrowing in Lithium-Doped MgO Microcrystals. J. Phys. Chem. C. 2017;121:1884–1892. doi: 10.1021/acs.jpcc.6b12177. DOI
Li J., Khalid A., Verma R., Abraham A., Qazi F., Dong X., Liang G., Tomljenovic-Hanic S. Silk Fibroin Coated Magnesium Oxide Nanospheres: A Biocompatible and Biodegradable Tool for Noninvasive Bioimaging Applications. Nanomaterials. 2021;11:695. doi: 10.3390/nano11030695. PubMed DOI PMC
Hornak J., Trnka P., Kadlec P., Michal O., Mentlík V., Šutta P., Csányi G.M., Tamus Z.Á. Magnesium Oxide Nanoparticles: Dielectric Properties, Surface Functionalization and Improvement of Epoxy-Based Composites Insulating Properties. Nanomaterials. 2018;8:381. doi: 10.3390/nano8060381. PubMed DOI PMC
Polanský R., Kadlec P., Kolská Z., Švorčík V. Influence of Dehydration on the Dielectric and Structural Properties of Organically Modified Montmorillonite and Halloysite Nanotubes. Appl. Clay Sci. 2017;147:19–27. doi: 10.1016/j.clay.2017.07.027. DOI
Hornak J. Ph.D. Thesis. University of West Bohemia; Pilsen, Czech Republic: 2018. Interaction of Inhomogeneous Dielectric with an Electric Field.
Fernandes M., RB Singh K., Sarkar T., Singh P., Pratap Singh R. Recent Applications of Magnesium Oxide (MgO) Nanoparticles in Various Domains. Adv. Mater. Lett. 2020;11:1–10. doi: 10.5185/amlett.2020.081543. DOI
Pilarska A.A., Klapiszewski Ł., Jesionowski T. Recent Development in the Synthesis, Modification and Application of Mg(OH)2 and MgO: A Review. Powder Technol. 2017;319:373–407. doi: 10.1016/j.powtec.2017.07.009. DOI
Balducci G., Diaz L.B., Gregory D.H. Recent Progress in the Synthesis of Nanostructured Magnesium Hydroxide. CrystEngComm. 2017;19:6067–6084. doi: 10.1039/C7CE01570D. DOI
Abinaya S., Kavitha H.P., Prakash M., Muthukrishnaraj A. Green Synthesis of Magnesium Oxide Nanoparticles and Its Applications: A Review. Sustain. Chem. Pharm. 2021;19:100368. doi: 10.1016/j.scp.2020.100368. DOI
Praveen Kumar P., Laxmi Deepak Bhatlu M., Sukanya K., Karthikeyan S., Jayan N. Synthesis of Magnesium Oxide Nanoparticle by Eco Friendly Method (Green Synthesis)—A Review. Mater. Today Proc. 2021;37:3028–3030. doi: 10.1016/j.matpr.2020.08.726. DOI
Ruhaimi A.H., Aziz M.A.A., Jalil A.A. Magnesium Oxide-Based Adsorbents for Carbon Dioxide Capture: Current Progress and Future Opportunities. J. Co2 Util. 2021;43:101357. doi: 10.1016/j.jcou.2020.101357. DOI
Ngo C., Voorde M. van de Nanotechnology in a Nutshell: From Simple to Complex Systems. Atlantis Press; Paris, France: 2014.
Baraket L., Ghorbel A. Control preparation of aluminium chromium mixed oxides by Sol-Gel process. In: Delmon B., Jacobs P.A., Maggi R., Martens J.A., Grange P., Poncelet G., editors. Studies in Surface Science and Catalysis. Volume 118. Elsevier; Amsterdam, The Netherlands: 1998. pp. 657–667. Preparation of Catalysts VII.
Feng S.-H., Li G.-H. Chapter 4-Hydrothermal and Solvothermal Syntheses. In: Xu R., Xu Y., editors. Modern Inorganic Synthetic Chemistry. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2017. pp. 73–104.
Yeh C.-L. Reference Module in Materials Science and Materials Engineering. Elsevier; Amsterdam, The Netherlands: 2016. Combustion Synthesis: Principles and Applications.
Rane A.V., Kanny K., Abitha V.K., Thomas S. Chapter 5-Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. In: Mohan Bhagyaraj S., Oluwafemi O.S., Kalarikkal N., Thomas S., editors. Synthesis of Inorganic Nanomaterials. Woodhead Publishing; Cambridge, UK: 2018. pp. 121–139. Micro and Nano Technologies.
Pal G., Rai P., Pandey A. Chapter 1-Green synthesis of nanoparticles: A greener approach for a cleaner future. In: Shukla A.K., Iravani S., editors. Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier; Amsterdam, The Netherlands: 2019. pp. 1–26. Micro and Nano Technologies.
Escudero A., Carrillo-Carrión C., Romero-Ben E., Franco A., Rosales-Barrios C., Castillejos M.C., Khiar N. Molecular Bottom-Up Approaches for the Synthesis of Inorganic and Hybrid Nanostructures. Inorganics. 2021;9:58. doi: 10.3390/inorganics9070058. DOI
Burlakov V.M., Goriely A. Reverse Coarsening and the Control of Particle Size Distribution through Surfactant. Appl. Sci. 2020;10:5359. doi: 10.3390/app10155359. DOI
Antúnez-García J., Mejía-Rosales S., Pérez-Tijerina E., Montejano-Carrizales J.M., José-Yacamán M. Coalescence and Collisions of Gold Nanoparticles. Materials. 2011;4:368–379. doi: 10.3390/ma4020368. PubMed DOI PMC
Whitehead C.B., Özkar S., Finke R.G. LaMer’s 1950 Model for Particle Formation of Instantaneous Nucleation and Diffusion-Controlled Growth: A Historical Look at the Model’s Origins, Assumptions, Equations, and Underlying Sulfur Sol Formation Kinetics Data. Chem. Mater. 2019;31:7116–7132. doi: 10.1021/acs.chemmater.9b01273. DOI
Hemery G. Ph.D. Thesis. Université de Bordeaux; Bordeaux, France: 2017. Synthesis of Magnetic and Thermosensitive Iron Oxide Based Nanoparticles for Biomedical Applications.
Zhang B., Jin H., Liu X., Guo X., He G., Yang S. The Formation and Application of Submicron Spherical BaTiO3 Particles for the Diffusion Layer of Medical Dry Films. Crystals. 2019;9:594. doi: 10.3390/cryst9110594. DOI
Mantzaris N.V. Liquid-Phase Synthesis of Nanoparticles: Particle Size Distribution Dynamics and Control. Chem. Eng. Sci. 2005;60:4749–4770. doi: 10.1016/j.ces.2005.04.012. DOI
Swihart M.T. Vapor-Phase Synthesis of Nanoparticles. Curr. Opin. Colloid Interface Sci. 2003;8:127–133. doi: 10.1016/S1359-0294(03)00007-4. DOI
Benrabaa R., Boukhlouf H., Bordes-Richard E., Vannier R.N., Barama A. Nanosized nickel ferrite catalysts for CO2 reforming of methane at low temperature: Effect of preparation method and acid-base properties. In: Gaigneaux E.M., Devillers M., Hermans S., Jacobs P.A., Martens J.A., Ruiz P., editors. Studies in Surface Science and Catalysis. Volume 175. Elsevier; Amsterdam, The Netherlands: 2010. pp. 301–304. Scientific Bases for the Preparation of Heterogeneous Catalysts.
Huang G., Lu C.-H., Yang H.-H. Chapter 3-Magnetic Nanomaterials for Magnetic Bioanalysis. In: Wang X., Chen X., editors. Novel Nanomaterials for Biomedical, Environmental and Energy Applications. Elsevier; Amsterdam, The Netherlands: 2019. pp. 89–109. Micro and Nano Technologies.
Rashid H., Manson A.M., Haider B., Nasir R., Hamid S.B.A., Abdulrahman A. Synthesis and Characterization of Magnetite Nano Particles with High Selectivity Using in-Situ Precipitation Method. Sep. Sci. Technol. 2020;6:1207–1215. doi: 10.1080/01496395.2019.1585876. DOI
Tartaj P., del Puerto Morales M., Veintemillas-Verdaguer S., González-Carreño T., Serna C.J. The Preparation of Magnetic Nanoparticles for Applications in Biomedicine. J. Phys. D Appl. Phys. 2003;36:R182–R197. doi: 10.1088/0022-3727/36/13/202. DOI
Mahshad A., Mona J., Alimorad R. Simple and Economical Method for the Preparation of MgO Nanostructures with Suitable Surface Area. Iran. J. Chem. Chem. Eng. 2014;33:21–28.
Kumar R., Sharma A., Kishore N. Preparation and Characterization of MgO Nanoparticles by Co-Precipitation Method. [(accessed on 14 October 2021)]. Available online: https://www.semanticscholar.org/paper/Preparation-and-Characterization-of-MgO-by-Method-Kumar-Sharma/e3c8ca1d9a9b4b8b06c4cd74a138d11904d631ae.
Karthikeyan V., Dhanapandian S., Manoharan C. Characterization and Antibacterial Behavior of MgO-PEG Nanoparticles Synthesized via Co-Precipitation Method. Int. Lett. Chem. Phys. Astron. 2016;70:33–41. doi: 10.18052/www.scipress.com/ILCPA.70.33. DOI
Frantina Y.I., Fajaroh F., Nazriati, Yahmin, Sumari Synthesis of MgO/CoFe2O4 Nanoparticles with Coprecipitation Method and Its Characterization. AIP Conf. Proc. 2021;2330:070003. doi: 10.1063/5.0043377. DOI
Kushwaha A., Bagchi T. MgO NPs Synthesis, Capping and Enhanced Free Radical Effect on the Bacteria and Its Cell Morphology. AIP Conf. Proc. 2018;1961:030010. doi: 10.1063/1.5035212. DOI
Surfactant Free Synthesis of Magnesium Oxide Nanotubes by Simple Chemical Co-Precipitation Method. IJITEE. 2020;9:2504–2506. doi: 10.35940/ijitee.D1765.029420. DOI
Soytaş S.H., Oğuz O., Menceloğlu Y.Z. 9-Polymer Nanocomposites With Decorated Metal Oxides. In: Pielichowski K., Majka T.M., editors. Polymer Composites with Functionalized Nanoparticles. Elsevier; Amsterdam, The Netherlands: 2019. pp. 287–323. Micro and Nano Technologies.
Ebelmen J.J. Recherches sur les Combinaisons des Acides Borique et Silicique Avec les éthers. s.n.; Paris, France: 1846.
Sham E.L., Murgia V., Gottifredi J.C., Farfán-Torres E.M. V2O5-SiO2 Catalyst Prepared by the sol–gel Process in the Oxidative Dehydrogenation of n-butane. In: Delmon B., Jacobs P.A., Maggi R., Martens J.A., Grange P., Poncelet G., editors. Studies in Surface Science and Catalysis. Volume 118. Elsevier; Amsterdam, The Netherlands: 1998. pp. 669–678. Preparation of Catalysts VII.
Mastuli M.S., Ansari N.S., Nawawi M.A., Mahat A.M. Effects of Cationic Surfactant in Sol-Gel Synthesis of Nano Sized Magnesium Oxide. APCBEE Procedia. 2012;3:93–98. doi: 10.1016/j.apcbee.2012.06.052. DOI
Sutapa I.W., Wahab A.W., Taba P., Nafie N.L. Dislocation, Crystallite Size Distribution and Lattice Strain of Magnesium Oxide Nanoparticles. J. Phys. Conf. Ser. 2018;979:012021. doi: 10.1088/1742-6596/979/1/012021. DOI
Wahab R., Ansari S.G., Dar M.A., Kim Y.S., Shin H.S. Synthesis of Magnesium Oxide Nanoparticles by Sol-Gel Process. Mater. Sci. Forum. 2007;558–559:983–986. doi: 10.4028/www.scientific.net/MSF.558-559.983. DOI
Boddu V.M., Viswanath D.S., Maloney S.W. Synthesis and Characterization of Coralline Magnesium Oxide Nanoparticles. J. Am. Ceram. Soc. 2008;91:1718–1720. doi: 10.1111/j.1551-2916.2008.02344.x. DOI
Dercz G., Prusik K., Pajak L., Pielaszek R., Malinowski J.J., Pudło W. Structure Studies on Nanocrystalline Powder of MgO Xerogel Prepared by the Sol-Gel Method. Mater. Sci. 2009;27:201–207.
Rani N., Chahal S., Chauhan A.S., Kumar P., Shukla R., Singh S.K. X-Ray Analysis of MgO Nanoparticles by Modified Scherer’s Williamson-Hall and Size-Strain Method. Mater. Today Proc. 2019;12:543–548. doi: 10.1016/j.matpr.2019.03.096. DOI
Nassar M.Y., Mohamed T.Y., Ahmed I.S., Samir I. MgO Nanostructure via a Sol-Gel Combustion Synthesis Method Using Different Fuels: An Efficient Nano-Adsorbent for the Removal of Some Anionic Textile Dyes. J. Mol. Liq. 2017;225:730–740. doi: 10.1016/j.molliq.2016.10.135. DOI
Ng J.J., Leong K.H., Sim L.C., Oh W.-D., Dai C., Saravanan P. Chapter 10-Environmental remediation using nano-photocatalyst under visible light irradiation: The case of bismuth phosphate. In: Abdeltif A., Assadi A.A., Nguyen-Tri P., Nguyen T.A., Rtimi S., editors. Nanomaterials for Air Remediation. Elsevier; Amsterdam, The Netherlands: 2020. pp. 193–207. Micro and Nano Technologies.
Williams M.J., Corr S.A. Chapter 2-Magnetic Nanoparticles for Targeted Cancer Diagnosis and Therapy. In: Summers H., editor. Frontiers of Nanoscience. Volume 5. Elsevier; Amsterdam, The Netherlands: 2013. pp. 29–63. Nanomedicine.
Devaraja P.B., Avadhani D.N., Prashantha S.C., Nagabhushana H., Sharma S.C., Nagabhushana B.M., Nagaswarupa H.P. Synthesis, Structural and Luminescence Studies of Magnesium Oxide Nanopowder. Spectrochim. Acta Part Mol. Biomol. Spectrosc. 2014;118:847–851. doi: 10.1016/j.saa.2013.08.050. PubMed DOI
Al-Hazmi F., Alnowaiser F., Al-Ghamdi A.A., Al-Ghamdi A.A., Aly M.M., Al-Tuwirqi R.M., El-Tantawy F. A New Large—Scale Synthesis of Magnesium Oxide Nanowires: Structural and Antibacterial Properties. Superlattices Microstruct. 2012;52:200–209. doi: 10.1016/j.spmi.2012.04.013. PubMed DOI PMC
Ding Y., Zhang G., Wu H., Hai B., Wang L., Qian Y. Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control over Size, Shape, and Structure via Hydrothermal Synthesis. Chem. Mater. 2001;13:435–440. doi: 10.1021/cm000607e. DOI
Rukh S., Sofi A.H., Shah M.A., Yousuf S. Antibacterial Activity of Magnesium Oxide Nanostructures Prepared by Hydrothermal Method. Asian J. Nanosci. Mater. 1999;2:425–430. doi: 10.26655/AJNANOMAT.2019.4.6. DOI
Duong T.H.Y., Nguyen T.N., Oanh H.T., Dang Thi T.A., Giang L.N.T., Phuong H.T., Anh N.T., Nguyen B.M., Tran Quang V., Le G.T., et al. Synthesis of Magnesium Oxide Nanoplates and Their Application in Nitrogen Dioxide and Sulfur Dioxide Adsorption. J. Chem. 2019;2019:e4376429. doi: 10.1155/2019/4376429. DOI
Varma A.V.; Mukasyan, A.S.; Rogachev, A.S.; Manukyan, K.V. Solution Combustion Synthesis of Nanoscale Materials. Chem. Rev. 2016;116:14493–14586. doi: 10.1021/acs.chemrev.6b00279. PubMed DOI
Mukasyan A.S., Manukyan K.V. Chapter 4-One- and Two-Dimensional Nanostructures Prepared by Combustion Synthesis. In: Beeran Pottathara Y., Thomas S., Kalarikkal N., Grohens Y., Kokol V., editors. Nanomaterials Synthesis. Elsevier; Amsterdam, The Netherlands: 2019. pp. 85–120. Micro and Nano Technologies.
Stojanovic B.D., Dzunuzovic A.S., Ilic N.I. 17-Review of methods for the preparation of magnetic metal oxides. In: Stojanovic B.D., editor. Magnetic, Ferroelectric, and Multiferroic Metal Oxides. Elsevier; Amsterdam, The Netherlands: 2018. pp. 333–359. Metal Oxides.
Mukasyan A.S., Dinka P. Novel Approaches to Solution-Combustion Synthesis of Nanomaterials. Int. J Self-Propag. High-Temp. Synth. 2007;16:23–35. doi: 10.3103/S1061386207010049. DOI
Rao K.V., Sunandana C.S. Structure and Microstructure of Combustion Synthesized MgO Nanoparticles and Nanocrystalline MgO Thin Films Synthesized by Solution Growth Route. J. Mater. Sci. 2008;43:146–154. doi: 10.1007/s10853-007-2131-7. DOI
Ranjan A., Dawn S.S., Jayaprabakar J., Nirmala N., Saikiran K., Sai Sriram S. Experimental Investigation on Effect of MgO Nanoparticles on Cold Flow Properties, Performance, Emission and Combustion Characteristics of Waste Cooking Oil Biodiesel. Fuel. 2018;220:780–791. doi: 10.1016/j.fuel.2018.02.057. DOI
Tharani K., Jegatha Christy A., Sagadevan S., Nehru L.C. Fabrication of Magnesium Oxide Nanoparticles Using Combustion Method for a Biological and Environmental Cause. Chem. Phys. Lett. 2021;763:138216. doi: 10.1016/j.cplett.2020.138216. DOI
Kumar D., Yadav L.S.R., Lingaraju K., Manjunath K., Suresh D., Prasad D., Nagabhushana H., Sharma S.C., Naika H.R., Chikkahanumantharayappa et al. Combustion Synthesis of MgO Nanoparticles Using Plant Extract: Structural Characterization and Photoluminescence Studies. AIP Conf. Proc. 2015;1665:050145. doi: 10.1063/1.4917786. DOI
Devatha C.P., Thalla A.K. Chapter 7-Green Synthesis of Nanomaterials. In: Mohan Bhagyaraj S., Oluwafemi O.S., Kalarikkal N., Thomas S., editors. Synthesis of Inorganic Nanomaterials. Woodhead Publishing; Cambridge, UK: 2018. pp. 169–184. Micro and Nano Technologies.
Verma R., Pathak S., Srivastava A.K., Prawer S., Tomljenovic-Hanic S. ZnO Nanomaterials: Green Synthesis, Toxicity Evaluation and New Insights in Biomedical Applications. J. Alloy. Compd. 2021;876:160175. doi: 10.1016/j.jallcom.2021.160175. DOI
Zhu X., Pathakoti K., Hwang H.-M. Chapter 10-Green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation. In: Shukla A.K., Iravani S., editors. Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier; Amsterdam, The Netherlands: 2019. pp. 223–263. Micro and Nano Technologies.
Bhardwaj K., Dhanjal D.S., Sharma A., Nepovimova E., Kalia A., Thakur S., Bhardwaj S., Chopra C., Singh R., Verma R., et al. Conifer-Derived Metallic Nanoparticles: Green Synthesis and Biological Applications. Int. J. Mol. Sci. 2020;21:9028. doi: 10.3390/ijms21239028. PubMed DOI PMC
Kumar H., Bhardwaj K., Kuča K., Kalia A., Nepovimova E., Verma R., Kumar D. Flower-Based Green Synthesis of Metallic Nanoparticles: Applications beyond Fragrance. Nanomaterials. 2020;10:766. doi: 10.3390/nano10040766. PubMed DOI PMC
Suresh J., Yuvakkumar R., Sundrarajan M., Hong S.I. Green Synthesis of Magnesium Oxide Nanoparticles. Adv. Mater. Res. 2014;952:141–144. doi: 10.4028/www.scientific.net/AMR.952.141. DOI
Vergheese M., Vishal S.K. Green Synthesis of Magnesium Oxide Nanoparticles Using Trigonella Foenum-Graecum Leaf Extract and Its Antibacterial Activity. J. Pharmacogn Phytochem. 2018;7:1193–1200.
Younis I.Y., El-Hawary S.S., Eldahshan O.A., Abdel-Aziz M.M., Ali Z.Y. Green Synthesis of Magnesium Nanoparticles Mediated from Rosa Floribunda Charisma Extract and Its Antioxidant, Antiaging and Antibiofilm Activities. Sci. Rep. 2021;11:16868. doi: 10.1038/s41598-021-96377-6. PubMed DOI PMC
Abdallah Y., Ogunyemi S.O., Abdelazez A., Zhang M., Hong X., Ibrahim E., Hossain A., Fouad H., Li B., Chen J. The Green Synthesis of MgO Nano-Flowers Using Rosmarinus Officinalis L. (Rosemary) and the Antibacterial Activities against Xanthomonas Oryzae Pv. Oryzae. BioMed Res. Int. 2019:e5620989. doi: 10.1155/2019/5620989. PubMed DOI PMC
Khan M.I., Akhtar M.N., Ashraf N., Najeeb J., Munir H., Awan T.I., Tahir M.B., Kabli M.R. Green Synthesis of Magnesium Oxide Nanoparticles Using Dalbergia Sissoo Extract for Photocatalytic Activity and Antibacterial Efficacy. Appl. Nanosci. 2020;10:2351–2364. doi: 10.1007/s13204-020-01414-x. DOI
Amina M., Musayeib N.M.A., Alarfaj N.A., El-Tohamy M.F., Oraby H.F., Hamoud G.A.A., Bukhari S.I., Moubayed N.M.S. Biogenic Green Synthesis of MgO Nanoparticles Using Saussurea Costus Biomasses for a Comprehensive Detection of Their Antimicrobial, Cytotoxicity against MCF-7 Breast Cancer Cells and Photocatalysis Potentials. PLoS ONE. 2020;15:e0237567. doi: 10.1371/journal.pone.0237567. PubMed DOI PMC
Sharma G., Soni R., Jasuja N.D. Phytoassisted Synthesis of Magnesium Oxide Nanoparticles with Swertia Chirayaita. J. Taibah Univ. Sci. 2017;11:471–477. doi: 10.1016/j.jtusci.2016.09.004. DOI
Fatiqin A., Amrulloh H., Simanjuntak W. Green Synthesis of MgO Nanoparticles Using Moringa Oleifera Leaf Aqueous Extract for Antibacterial Activity. Bull. Chem. Soc. Ethiop. 2021;35:161–170. doi: 10.4314/bcse.v35i1.14. DOI
Nguyen D.T.C., Dang H.H., Vo D.-V.N., Bach L.G., Nguyen T.D., Tran T.V. Biogenic Synthesis of MgO Nanoparticles from Different Extracts (Flower, Bark, Leaf) of Tecoma Stans (L.) and Their Utilization in Selected Organic Dyes Treatment. J. Hazard. Mater. 2021;404:124146. doi: 10.1016/j.jhazmat.2020.124146. PubMed DOI
Polte J. Fundamental Growth Principles of Colloidal Metal Nanoparticles—A New Perspective. CrystEngComm. 2015;17:6809–6830. doi: 10.1039/C5CE01014D. DOI
Mitra A., De G. Chapter 6-Sol-Gel Synthesis of Metal Nanoparticle Incorporated Oxide Films on Glass. In: Karmakar B., Rademann K., Stepanov A.L., editors. Glass Nanocomposites. William Andrew Publishing; Boston, MA, USA: 2016. pp. 145–163.
Tao X.-Y., Ma J., Hou R.-L., Song X.-Z., Guo L., Zhou S.-X., Guo L.-T., Liu Z.-S., Fan H.-L., Zhu Y.-B. Template-Free Synthesis of Star-Like ZrO2 Nanostructures and Their Application in Photocatalysis. Adv. Mater. Sci. Eng. 2018:e8191095. doi: 10.1155/2018/8191095. DOI
Deganello F., Tyagi A.K. Solution Combustion Synthesis, Energy and Environment: Best Parameters for Better Materials. Prog. Cryst. Growth Charact. Mater. 2018;64:23–61. doi: 10.1016/j.pcrysgrow.2018.03.001. DOI
Singh A., Gautam P.K., Verma A., Singh V., Shivapriya P.M., Shivalkar S., Sahoo A.K., Samanta S.K. Green Synthesis of Metallic Nanoparticles as Effective Alternatives to Treat Antibiotics Resistant Bacterial Infections: A Review. Biotechnol. Rep. 2020;25:e00427. doi: 10.1016/j.btre.2020.e00427. PubMed DOI PMC
Wen N., Zhang L., Jiang D., Wu Z., Li B., Sun C., Guo Z. Emerging Flexible Sensors Based on Nanomaterials: Recent Status and Applications. J. Mater. Chem. A. 2020;8:25499–25527. doi: 10.1039/D0TA09556G. DOI
Murkute P., Ghadi H., Patil S., Rawool H., Pandey S., Chakrabarti S. Emerging Material Zinc Magnesium Oxide Based Nanorods: Growth Process Optimization and Sensor Application towards Humidity Detection. Sens. Actuators Chem. 2018;256:204–216. doi: 10.1016/j.snb.2017.10.078. DOI
Shukla S.K., Parashar G.K., Mishra A.P., Misra P., Yadav B.C., Shukla R.K., Bali L.M., Dubey G.C. Nano-like Magnesium Oxide Films and Its Significance in Optical Fiber Humidity Sensor. Sensors Actuators Chem. 2004;98:5–11. doi: 10.1016/j.snb.2003.05.001. DOI
Pandey S.K., Kim K.-H., Tang K.-T. A Review of Sensor-Based Methods for Monitoring Hydrogen Sulfide. TrAC Trends Anal. Chem. 2012;32:87–99. doi: 10.1016/j.trac.2011.08.008. DOI
El-Shamy A.G. New Nano-Composite Based on Carbon Dots (CDots) Decorated Magnesium Oxide (MgO) Nano-Particles (CDots@MgO) Sensor for High H2S Gas Sensitivity Performance. Sens. Actuators Chem. 2021;329:129154. doi: 10.1016/j.snb.2020.129154. DOI
Trávníček P., Kotek L., Nejtek V., Koutný T., Junga P., Vítěz T. Flare Stacks on Agricultural Biogas Plants–Safety and Operational Requirements. Res. Agric. Eng. 2019;65:98–104. doi: 10.17221/1/2019-RAE. DOI
Sertel B.C., Sonmez N.A., Kaya M.D., Ozcelik S. Development of MgO:TiO2 Thin Films for Gas Sensor Applications. Ceram. Int. 2019;45:2917–2921. doi: 10.1016/j.ceramint.2018.11.079. DOI
Tao Y., Cao X., Peng Y., Liu Y. A Novel Cataluminescence Gas Sensor Based on MgO Thin Film. Sens. Actuators Chem. 2010;148:292–297. doi: 10.1016/j.snb.2010.04.043. DOI
Kokulnathan T., Jothi A.I., Chen S.-M., Almutairi G., Ahmed F., Arshi N., AlOtaibi B. Integrating Graphene Oxide with Magnesium Oxide Nanoparticles for Electrochemical Detection of Nitrobenzene. J. Environ. Chem. Eng. 2021;9:106310. doi: 10.1016/j.jece.2021.106310. DOI
Pallon L.K.H., Hoang A.T., Pourrahimi A.M., Hedenqvist M.S., Nilsson F., Gubanski S., Gedde U.W., Olsson R.T. The Impact of MgO Nanoparticle Interface in Ultra-Insulating Polyethylene Nanocomposites for High Voltage DC Cables. J. Mater. Chem. A. 2016;4:8590–8601. doi: 10.1039/C6TA02041K. DOI
Paramane A., Chen X., Dai C., Guan H., Yu L., Tanaka Y. Electrical Insulation Performance of Cross-Linked Polyethylene/MgO Nanocomposite Material for ±320 KV High-Voltage Direct-Current Cables. Polym. Compos. 2020;41:1936–1949. doi: 10.1002/pc.25509. DOI
Lin X., Siew W.H., Given M., Liggat J., He J. Nanocomposites Based on Magnesium-Oxide/Aluminum-Nitride/Polypropylene for HVDC Cable Insulation; Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE); Beijing, China. 6–10 September 2020; pp. 1–4.
Hu S., Zhou Y., Yuan C., Wang W., Hu J., Li Q., He J. Surface-Modification Effect of MgO Nanoparticles on the Electrical Properties of Polypropylene Nanocomposite. High Volt. 2020;5:249–255. doi: 10.1049/hve.2019.0159. DOI
Zhu X., Wu J., Wang Y., Yin Y. Characteristics of Partial Discharge and AC Electrical Tree in XLPE and MgO/XLPE Nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2020;27:450–458. doi: 10.1109/TDEI.2019.008497. DOI
Kiaei M., Moghdam Y.R., Kord B., Samariha A., Kiaei M., Moghdam Y.R., Kord B., Samariha A. The Effect of Nano-MgO on the Mechanical and Flammability Properties of Hybrid Nano Composites from Wood Flour-Polyethylene. Maderas. Cienc. Tecnol. 2017;19:471–480. doi: 10.4067/S0718-221X2017005000701. DOI
Hornak J., Kubes T., Trnka P. Effect of Nanometric Oxides on Dielectric and Mechanical Properties of Epoxy Resin; Proceedings of the 2020 International Conference on Diagnostics in Electrical Engineering (Diagnostika); Pilsen, Czech Republic. 1–4 September 2020; pp. 1–4.
Hornak J., Mentlík V., Trnka P., Šutta P. Synthesis and Diagnostics of Nanostructured Micaless Microcomposite as a Prospective Insulation Material for Rotating Machines. Appl. Sci. 2019;9:2926. doi: 10.3390/app9142926. DOI
Hornak J., Prosr P., Trnka P., Kadlec P., Michal O., Hardon S. Effect of MgO Nanoparticles on Material Properties of Cold-Curing Epoxy and Polyurethane Mixtures. AIP Conf. Proc. 2021;2411:050005. doi: 10.1063/5.0067364. DOI
Hornak J., Mentlík V., Trnka P., Gutten M. Vliv funkcionalizace povrchu oxidu hořečnatého na dielektrické vlastnosti kompozitního dielektrika. Chem. Listy. 2018;112:246–249.
Peddamallu N., Nagaraju G., Sridharan K., Velmurugan R., Vasa N.J., Nakayama T., Sarathi R. Understanding the Electrical, Thermal, and Mechanical Properties of Epoxy Magnesium Oxide Nanocomposites. IET Sci. Meas. Technol. 2019;13:632–639. doi: 10.1049/iet-smt.2018.5514. DOI
Ge G., Tang Y., Li Y., Huang L. Effect of Environmental Temperature on the Insulating Performance of Epoxy/MgO Nanocomposites. Appl. Sci. 2020;10:7018. doi: 10.3390/app10207018. DOI
Wereszczak A.A., Morrissey T.G., Volante C.N., Farris P.J., Groele R.J., Wiles R.H., Wang H. Thermally Conductive MgO-Filled Epoxy Molding Compounds. IEEE Trans. Components Packag. Manuf. Technol. 2013;3:1994–2005. doi: 10.1109/TCPMT.2013.2281212. DOI
Zhang Q., Liu K., Ding F., Liu X. Recent Advances in Solid Polymer Electrolytes for Lithium Batteries. Nano Res. 2017;10:4139–4174. doi: 10.1007/s12274-017-1763-4. DOI
Jaschin P.W., Gao Y., Li Y., Bo S.-H. A Materials Perspective on Magnesium-Ion-Based Solid-State Electrolytes. J. Mater. Chem. A. 2020;8:2875–2897. doi: 10.1039/C9TA11729F. DOI
Masoud E.M., El-Bellihi A.-A., Bayoumy W.A., Mohamed E.A. Polymer Composite Containing Nano Magnesium Oxide Filler and Lithiumtriflate Salt: An Efficient Polymer Electrolyte for Lithium Ion Batteries Application. J. Mol. Liq. 2018;260:237–244. doi: 10.1016/j.molliq.2018.03.084. DOI
Wu N., Wang W., Wei Y., Li T. Studies on the Effect of Nano-Sized MgO in Magnesium-Ion Conducting Gel Polymer Electrolyte for Rechargeable Magnesium Batteries. Energies. 2017;10:1215. doi: 10.3390/en10081215. DOI
Zaky M.M., Eyssa H.M., Sadek R.F. Improvement of the Magnesium Battery Electrolyte Properties through Gamma Irradiation of Nano Polymer Electrolytes Doped with Magnesium Oxide Nanoparticles. J. Vinyl Addit. Technol. 2019;25:243–254. doi: 10.1002/vnl.21683. DOI