Flower-Based Green Synthesis of Metallic Nanoparticles: Applications beyond Fragrance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Excelence project
UHK
CEP - Centrální evidence projektů
PubMed
32316212
PubMed Central
PMC7254411
DOI
10.3390/nano10040766
PII: nano10040766
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial, antioxidants, catalytic, flower extract, green synthesis, insecticidal, nanoparticles, phytochemicals,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Green synthesis has gained wide attention as a sustainable, reliable, and eco-friendly approach to the synthesis of a variety of nanomaterials, including hybrid materials, metal/metal oxide nanoparticles, and bioinspired materials. Plant flowers contain diverse secondary compounds, including pigments, volatile substances contributing to fragrance, and other phenolics that have a profound ethnobotanical relevance, particularly in relation to the curing of diseases by 'Pushpa Ayurveda' or floral therapy. These compounds can be utilized as potent reducing agents for the synthesis of a variety of metal/metal oxide nanoparticles (NPs), such as gold, silver, copper, zinc, iron, and cadmium. Phytochemicals from flowers can act both as reducing and stabilizing agents, besides having a role as precursor molecules for the formation of NPs. Furthermore, the synthesis is mostly performed at ambient room temperatures and is eco-friendly, as no toxic derivatives are formed. The NPs obtained exhibit unique and diverse properties, which can be harnessed for a variety of applications in different fields. This review reports the use of a variety of flower extracts for the green synthesis of several types of metallic nanoparticles and their applications. This review shows that flower extract was mainly used to design gold and silver nanoparticles, while other metals and metal oxides were less explored in relation to this synthesis. Flower-derived silver nanoparticles show good antibacterial, antioxidant, and insecticidal activities and can be used in different applications.
Zobrazit více v PubMed
Bhattacharyya D., Singh S., Satnalika N. Nanotechnology, big things from a tiny world: A review. Int. J. u- e- Serv. Sci. Technol. 2009;2:29–38.
Goddard W.A., III, Brenner D., Lyshevski S.E., Iafrate G.J. Handbook of Nanoscience, Engineering, and Technology. 2nd ed. CRC Press; Boca Raton, FL, USA: 2007.
Khandel P., Shahi S.K. Mycogenic nanoparticles and their bio-prospective applications: Current status and future challenges. J. Nanostruct. Chem. 2018;8:369–391. doi: 10.1007/s40097-018-0285-2. DOI
Bogunia-Kubik K., Sugisaka M. From molecular biology to nanotechnology and nanomedicine. BioSystem. 2002;65:123–138. doi: 10.1016/S0303-2647(02)00010-2. PubMed DOI
Daniel M.C., Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004;104:293–306. doi: 10.1021/cr030698+. PubMed DOI
Zharov V.P., Kim J.W., Curiel D.T., Everts M. Self-assembling nanoclusters in living systems: Application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine. 2005;1:326–345. doi: 10.1016/j.nano.2005.10.006. PubMed DOI
Shah M., Fawcett D., Sharma S., Tripathy S.K., Poinern G.E.J. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015;8:7278–7308. doi: 10.3390/ma8115377. PubMed DOI PMC
Singh J., Dutta T., Kim K.H., Rawat M., Samddar P., Kumar P. ‘Green’ synthesis of metals and their oxidenanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018;16:84. doi: 10.1186/s12951-018-0408-4. PubMed DOI PMC
Cao G. Nanastructures and Nanomaterials-Synthesis, Properties and Applications. 2nd ed. World Scientific; Singapore: 2004.
Varma R.S. Greener approach to nanomaterials and their sustainable applications. Curr. Opin. Chem. Eng. 2012;1:123–128. doi: 10.1016/j.coche.2011.12.002. DOI
Nadagouda M.N., Varma R.S. Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: Density assisted self-assembly of nanospheres, wires and rods. Green Chem. 2006;8:516–518. doi: 10.1039/b601271j. DOI
Comba L., Corbet S.A., Barron A., Bird A., Collinge S., Miyazaki C., Powell M. Garden flowers: Insect visits and the floral reward of horticulturally-modified variants. Ann. Bot. 1999;83:73–86. doi: 10.1006/anbo.1998.0798. DOI
Huss E., Yosef K.B., Zaccai Z. Humans’ relationship to flowers as an example of the multiple components of embodied aesthetics. Behav. Sci. 2018;8:E32. doi: 10.3390/bs8030032. PubMed DOI PMC
Varela F.J., Thompson E., Rosch E. The Embodied Mind: Cognitive Science and Human Experience. MIT Press; Cambridge, MA, USA: 1991.
Baron R.A. The sweet smell of … helping: Effects of pleasant ambient fragrance on prosocial behavior in shopping malls. Pers. Soc. Psychol. Bull. 1997;23:498–503. doi: 10.1177/0146167297235005. DOI
Sarid O., Zaccai M. Changes in mood states are induced by smelling familiar and exotic fragrances. Front. Psychol. 2016;7:1–7. doi: 10.3389/fpsyg.2016.01724. PubMed DOI PMC
Shubhashree M.N., Shantha T.R., Ramarao V., Prathapa Reddy M.P., Venkateshawarulu G. A review on therapeutic uses of flowers as depicted in classical texts of Ayurveda and Siddha. J. Res. Educ. Indian Med. 2015;21:1–14.
Varadhan K.P. Introduction to pushpaayurveda. Anc. Sci. Life. 1985;4:153–157. PubMed PMC
Nishteswar K. Pushpayurveda (flowers of medicinal plants) delineated in Kaiyadevanighantu. Punarna V. 2015;2:1–10.
Puckhaber L.S., Stipanovic R.D., Bost G.A. Analyses for flavonoid aglycones in fresh and preserved Hibiscus flowers. In: Jules J., Anna W., editors. Trends in New Crops and New Uses. ASHS Press; Alexandria, VA, USA: 2002. pp. 56–563.
Khan Z.S., Shinde V.N., Bhosle N.O., Nasreen S. Chemical composition and antimicrobial activity of angiospermic plants. Middle-East J. Sci. Res. 2010;6:56–61.
Arullappan S., Zakaria Z., Basri D.F. Preliminary screening of antibacterial activity using crude extracts of Hibiscus rosa-sinensis. Trol. Life Sci. Res. 2009;20:109–118. PubMed PMC
Ruban P., Gajalakshmi K. In vitro antibacterial activity of Hibiscus rosa-sinensis flower extract against human pathogens. Asian Pac. J. Trop. Biomed. 2012;2:399–403. doi: 10.1016/S2221-1691(12)60064-1. PubMed DOI PMC
Khan Z.A., Naqvi S.A., Mukhtar A., Hussain Z., Shahzad S.A., Mansha A., Mahmood N. Antioxidant and antibacterial activities of Hibiscus Rosa-sinensis Linn flower extracts. Pak. J. Pharm. Sci. 2014;27:469–474. PubMed
Meena A.K., Patidar D., Singh R.K. Ameliorative effect of Hibiscus rosa-sinensis on phenylhydrazine induced haematotoxicity. Int. J. Innov. Res. Sci. Eng. Technol. 2014;3:8678–8683.
Wong K.C., Teng Y.E. Volatile components of Mimusops elengi L. flowers. J. Essent. Oil. Res. 1994;6:453–458. doi: 10.1080/10412905.1994.9698425. DOI
Rout P.K., Sahoo D., Misra L.N. Comparison of extraction methods of Mimusops elengi L. flowers. Ind. Crops. Prod. 2010;32:678–680. doi: 10.1016/j.indcrop.2010.05.019. DOI
Sundari U.T., Rekha S., Parvathi A. Phytochemical analysis of some therapeutic medicinal flowers. Int. J. Pharm. 2012;2:583–585.
Koppula S.B. Antimicrobial activity of floral extracts on selected human pathogens. Int. J. Bio-Pharm. Res. 2013;2:141–143.
Reddy L.J., Jose B. Evaluation of antibacterial activity of Mimusops elengi L. flowers and Trichosanthes cucumerina L. fruits from South India. Int. J. Pharm. Pharm. Sci. 2013;5:362–364.
Tuntiwachwuttikul P., Rayanil K., Taylor W.C. Chemical constituents from the flowers of Nyctanthes arbortristis. Sci. Asia. 2003;29:21–30. doi: 10.2306/scienceasia1513-1874.2003.29.021. DOI
Khatune N.A., Mossadik M.A., Rahman M.M., Khondkar P., Haque M.E., Gray A.I. A benzofuranone from the flowers of Nyctanthes arbortristis and its antibacterial and cytotoxic activities. Dhaka Univ. J. Pharm. Sci. 2005;4:33–37. doi: 10.3329/dujps.v4i1.191. DOI
Nanu R., Raghuveer I., Chitme H., Chandra R. Antidiabetic activity of Nyctanthes arbortristis. Pharmacogn. Mag. 2008;4:335–340.
Kim M.R., Lee J.Y., Lee H.H., Aryal D.K., Kim Y.G., Kim S.K., Woo E.R., Kang K.W. Antioxidative effects of quercetin-glycosides isolated from the flower buds of Tussilago farfara L. Food Chem. Toxicol. 2006;44:1299–1307. doi: 10.1016/j.fct.2006.02.007. PubMed DOI
Maurya S., Bhardwaj A.K., Gupta K.K., Agarwal S., Kushwaha A., Chaturvedi V.K., Pathak R.K., Gopal R., Uttam K.N., Soingh A.K., et al. Green synthesis of silver nanoparticles using Pleurotus and bactericidal activity. Cell Mol. Biol. 2016;62:131.
Baruwati B., Varma R.S. High value products from waste: Grape pomace extract- a three-in-one package for the synthesis of metal nanoparticles. ChemSusChem. 2009;2:1041–1044. doi: 10.1002/cssc.200900220. PubMed DOI
Nadagouda M.N., Varma R.S. A greener synthesis of core (Fe, Cu)-shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. Cryst. Growth Des. 2007;7:2582–2587. doi: 10.1021/cg070554e. DOI
Nadagouda M.N., Varma R.S. Microwave-assisted shape-controlled bulk synthesis of noble nanocrystals and their catalytic properties. Cryst. Growth Des. 2007;7:686–690.
Baruwati B., Polshettiwara V., Varma R.S. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem. 2009;11:926–930. doi: 10.1039/b902184a. DOI
Polshettiwar V., Baruwati B., Varma R.S. Self-assembly of metal oxides into three-dimensional nanostructures: Synthesis and application in catalysis. ACS Nano. 2009;3:728–736. doi: 10.1021/nn800903p. PubMed DOI
Baruwati B., Nadagouda M.N., Varma R.S. Bulk synthesis of monodisperse ferrite nanoparticles at water−organic interfaces under conventional and microwave hydrothermal treatment and their surface functionalization. J. Phys. Chem. C. 2008;112:18399–18404. doi: 10.1021/jp807245g. DOI
Nadagouda M.N., Varma R.S. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008;10:859–862. doi: 10.1039/b804703k. DOI
Klaus T., Joerger R., Olsson E., Granqvist C. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA. 1999;96:13611–13614. doi: 10.1073/pnas.96.24.13611. PubMed DOI PMC
Ahmad A., Senapati S., Khan M.I., Kumar R., Ramani R., Srinivas V., Sastry M. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology. 2003;14:824–828. doi: 10.1088/0957-4484/14/7/323. DOI
Jha A.K., Prasad K., Kulkarni A.R. Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf. B Biointerfaces. 2009;71:226–229. doi: 10.1016/j.colsurfb.2009.02.007. PubMed DOI
Saifuddin N., Wong C.W., Yasumira A.A.N. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E J. Chem. 2009;6:61–70. doi: 10.1155/2009/734264. DOI
Prasad K., Jha A.K. Biosynthesis of CdS nanoparticles: An improved green and rapid procedure. J. Colloid. Interface Sci. 2010;342:68–72. doi: 10.1016/j.jcis.2009.10.003. PubMed DOI
Dhoondia Z.H., Chakraborty H. Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomater. Nanotechno. 2012;2:1–7. doi: 10.5772/55741. DOI
Wadhwani S.A., Shedbalkar U.U., Singh R., Karve M.S., Chopade B.A. Novel polyhedral gold nanoparticles: Green synthesis, optimization and characterization by environmental isolate of Acinetobacter sp. SW30. World J. Microbiol. Biotechnol. 2014;30:2723–2731. doi: 10.1007/s11274-014-1696-y. PubMed DOI
Kowshik M., Ashtaputre S., Kharrazi S., Vogel W., Urban J., Kulkarni S.K., Paknikar K.M. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology. 2003;14:95–100. doi: 10.1088/0957-4484/14/1/321. DOI
Li G., He D., Qian Y., Guan B., Gao S., Cui Y., Yokoyama K., Wang L. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int. J. Mol Sci. 2012;13:466–476. doi: 10.3390/ijms13010466. PubMed DOI PMC
Korbekandi H., Ashari Z., Iravani S., Abbasi S. Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. Iran. J. Pharm. Res. 2013;12:289–298. PubMed PMC
Gholami-Shabani M., Akbarzadeh A., Norouzian D., Amini A., Gholami-Shabani Z., Imani A., Chiani M., Riazi G., Shams-Ghahfarokhi M., Razzaqhi-Abyaneh M. Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl. Biochem. Biotechnol. 2014;172:4084–4098. doi: 10.1007/s12010-014-0809-2. PubMed DOI
Singaravelu G., Arockiamary J.S., Kumar V.G., Govindaraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf. B Biointerfaces. 2007;57:97–101. doi: 10.1016/j.colsurfb.2007.01.010. PubMed DOI
Venkatpurwar V., Pokharkar V. Green synthesis of silver nanoparticles using marine polysaccharide: Study of in-vitro antibacterial activity. Mater. Lett. 2011;65:999–1002. doi: 10.1016/j.matlet.2010.12.057. DOI
Rajeshkumar S., Kannan C., Annadurai G. Green synthesis of silver nanoparticles using marine brown algae Turbinaria conoides and its antibacterial activity. Int. J. Pharm. Bio Sci. 2012;3:502–510.
El-Rafie H.M., El-Rafie M.H., Zahran M.K. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr. Polym. 2013;96:403–410. doi: 10.1016/j.carbpol.2013.03.071. PubMed DOI
Mahdavi M., Namvar F., Ahmad M.B., Mohamad R. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules. 2013;18:5954. doi: 10.3390/molecules18055954. PubMed DOI PMC
Azizi S., Ahmad M.B., Namvar F., Mohamad R. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater. Lett. 2014;116:275–277. doi: 10.1016/j.matlet.2013.11.038. PubMed DOI PMC
Shankar S.S., Ahmad A., Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Program. 2003;19:1627–1631. doi: 10.1021/bp034070w. PubMed DOI
Chandran S.P., Chaudhary M., Pasricha R., Ahmad A., Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 2006;22:577–583. doi: 10.1021/bp0501423. PubMed DOI
Bar H., Bhui D.K., Sahoo G.P., Sarkar P., Pyne S., Misra A. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp. 2009;348:212–216. doi: 10.1016/j.colsurfa.2009.07.021. DOI
Bar H., Bhui D.K., Sahoo G.P., Sarkar P., De S.P., Misra A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp. 2009;339:134–139. doi: 10.1016/j.colsurfa.2009.02.008. DOI
Dubey S.P., Lahtinen M., Sillanpää M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf. A Physicochem. Eng. Asp. 2010;364:34–41. doi: 10.1016/j.colsurfa.2010.04.023. DOI
Krishnaraj C., Jagan E.G., Rajasekar S., Selvakumar P., Kalaichelvan P.T., Mohan N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces. 2010;76:50–56. doi: 10.1016/j.colsurfb.2009.10.008. PubMed DOI
Singh A., Jain D., Upadhyay M.K., Khandelwal N., Verma H.N. Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig. J. Nanomater. Biost. 2010;5:483–489.
Yang X., Li Q., Wang H., Huang J., Lin L., Wang W., Sun D., Su Y., Opiyo J.B., Hong L., et al. Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J. Nanopart Res. 2010;12:1589–1598. doi: 10.1007/s11051-009-9675-1. DOI
Kumar V.G., Gokavarapu S.D., Rajeswari A., Dhas T.S., Karthick V., Kapadia Z., Shrestha T., Barathy I.A., Roy A., Sinha S. Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids Surf. B Biointerfaces. 2011;87:159–163. doi: 10.1016/j.colsurfb.2011.05.016. PubMed DOI
Zargar M., Hamid A.A., Bakar F.A., Shamsudin M.N., Shameli K., Jahanshiri F., Farahani F. Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules. 2011;16:6667. doi: 10.3390/molecules16086667. PubMed DOI PMC
Philip D. Honey mediated green synthesis of gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009;73:650–653. doi: 10.1016/j.saa.2009.03.007. PubMed DOI
Venu R., Ramulu T.S., Anandakumar S., Rani V.S., Kim C.G. Bio-directed synthesis of platinum nanoparticles using aqueous honey solutions and their catalytic applications. Colloids Surf. A Physicochem. Eng. Asp. 2011;384:733–738. doi: 10.1016/j.colsurfa.2011.05.045. DOI
Reddy S.M., Datta K.K.R., Sreelakshmi C., Eswaramoorthy M., Reddy B.V.S. Honey mediated green synthesis of Pd nanoparticles for suzuki coupling and hydrogenation of conjugated olefins. Nanosci. Nanotechnol. Lett. 2012;4:420–425. doi: 10.1166/nnl.2012.1331. DOI
Haiza H., Azizan A., Mohidin A.H., Halin D.S.C. Green synthesis of silver nanoparticles using local honey. Nano Hybrids. 2013;4:87–98. doi: 10.4028/www.scientific.net/NH.4.87. DOI
Wu L., Cai X., Nelson K., Xing W., Xia J., Zhang R., Stacy A.J., Luderer M., Lanza G.M., Wang L.V., et al. A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging. Nano Res. 2013;6:312–325. doi: 10.1007/s12274-013-0308-8. PubMed DOI PMC
Chidambaram J., Saritha K., Maheshwari R., Muzammil M.S. Efficacy of green synthesis of silver nanoparticles using flowers of Calendula officinalis. Chem. Sci. Trans. 2014;3:773–777.
Esfanddarani H.M., Kajani A.A., Bordbar A.K. Green synthesis of silver nanoparticles using flower extract of Malva sylvestris and investigation of their antibacterial activity. IET Nanobiotechnol. 2018;12:412–416. doi: 10.1049/iet-nbt.2017.0166. PubMed DOI PMC
Surya S., Kumar G.D., Rajakumar R. Green synthesis of silver nanoparticles from flower extract of Hibiscus rosa-sinensis and its antibacterial activity. Int. J. Innov Res. Sci. Eng. Technol. 2016;5:5242–5247.
Patil M.P., Singh R.D., Koli P.B., Patil K.T., Jagdale B.S., Tipare A.R., Kim G.D. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Micro Pathog. 2018;121:184–189. doi: 10.1016/j.micpath.2018.05.040. PubMed DOI
Manisha D.R., Alwala J., Kudle K.R., Rudra M.P.P. Biosynthesis of silver nanoparticles using flower extracts of Catharanthus roseus and evaluation of its antibacterial efficacy. World J. Pharm. Pharm. Sci. 2014;3:877–885.
Lee Y.J., Song K., Cha S.H., Cho S., Kim Y.S., Park Y. Sesquiterpenoids from Tussilago farfara flower bud extract for the eco-friendly synthesis of silver and gold nanoparticles possessing antibacterial and anticancer activities. Nanomaterials. 2019;9:E819. doi: 10.3390/nano9060819. PubMed DOI PMC
Ghosh S., Patil S., Ahire M., Kitture R., Gurav D.D., Jabgunde A.M., Kale S., Pardesi K., Shinde V., Bellare J., et al. Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. J. Nanobiotechnol. 2012;10:17. doi: 10.1186/1477-3155-10-17. PubMed DOI PMC
Nayan V., Onteru S.K., Singh D. Mangifera indica flower extract mediated biogenic green gold nanoparticles: Efficient nanocatalyst for reduction of 4-nitrophenol. Environ. Prog. Sustain. Energy. 2018;37:283–294. doi: 10.1002/ep.12669. DOI
Sharma D., Sabela M.I., Kanchi S., Mdluli P.S., Singh G., Stenström T.A., Bisetty K. Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: Synergistic antibacterial activity and molecular simulated facet specific adsorption studies. J. Photoc. Photobiol. B Biol. 2016;162:199–207. doi: 10.1016/j.jphotobiol.2016.06.043. PubMed DOI
Hajra A., Dutta S., Mondal N.K. Mosquito larvicidal activity of cadmium nanoparticles synthesized from petal extracts of marigold (Tagetes sp.) and rose (Rosa sp.) flower. J. Parasit Dis. 2016;40:1519–1527. doi: 10.1007/s12639-015-0719-4. PubMed DOI PMC
Marimuthu S., Rahuman A.A., Jayaseelan C., Kirthi A.V., Santhoshkumar T., Velayutham K., Bagavan A., Kamaraj C., Elango G., Iyappan M., et al. Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropisgigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian J. Trop. Med. 2013;6:682–688. doi: 10.1016/S1995-7645(13)60118-2. PubMed DOI
Abdallah Y., Ogunyemi S.O., Abdelazez A., Zhang M., Hong X., Ibrahim E., Hossain A., Fouad H., Li B., Chen J. The green synthesis of MgO nano-flowers using Rosmarinus officinalis L. (Rosemary) and the antibacterial activities against Xanthomonas oryzae pv. Oryzae. BioMed. Res. Int. 2019;2019:5620989. doi: 10.1155/2019/5620989. PubMed DOI PMC
Igwe O.U., Nwamezie F. Green synthesis of iron nanoparticles using flower extract of Piliostigma thonningii and their antibacterial activity evaluation. Chem. Int. 2018;4:60–66.
Xu Z.P., Zeng Q.H., Lu G.Q., Yu A.B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 2006;61:1027–1040. doi: 10.1016/j.ces.2005.06.019. DOI
Mashwani Z.R., Khan M.A., Khan T., Nadhman A. Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv. Colloid Interface Sci. 2016;234:132–141. doi: 10.1016/j.cis.2016.04.008. PubMed DOI
Muruganantham N., Govindharaju R., Anitha P., Anusuya V. Synthesis and Characterization of silver nanoparticles using Lablab purpureus flowers (Purple colour) and its anti-microbial activities. Int. J. Sci. Res. Biol. Sci. 2018;5:1–7. doi: 10.26438/ijsrbs/v5i6.17. DOI
Mandal P. Biosynthesis of silver nanoparticles by Plumeria rubra flower extract: Characterization and their antimicrobial activities. Int. J. Eng. Sci. Inv. 2018;7:1–6.
Bharathi D., Bhuvaneshwari V. Evaluation of the cytotoxic and antioxidant activity of phyto-synthesized silver nanoparticles using Cassia angustifolia flowers. BioNanoScience. 2018;9:155–163. doi: 10.1007/s12668-018-0577-5. DOI
Karnuakaran G., Jagathambal M., Gusev A., Kloesnikov E., Mandal A.R., Kuznestov D. Allamanda cathartica flower’s aqueous extract-mediated green synthesis of silver nanoparticles with excellent antioxidant and antibacterial potential for biomedical application. MRS Commun. 2016;6:41–46. doi: 10.1557/mrc.2016.2. PubMed DOI PMC
Moteriya P., Chanda S. Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities. Artif. Cells Nanomed. Biotechnol. 2016;45:1556–1567. doi: 10.1080/21691401.2016.1261871. PubMed DOI
Padalia H., Moteriya P., Chanda S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab. J. Chem. 2014;8:732–741. doi: 10.1016/j.arabjc.2014.11.015. DOI
Varadavenkatesan T., Selvaraj R., Vinayagam R. Dye degradation and antibacterial activity of green synthesized silver nanoparticles using Ipomoea digitata Linn. flower extract. Int. J. Environ. Sci. Te. 2019;16:2395–2404. doi: 10.1007/s13762-018-1850-4. DOI
Arokiyaraj S., Kumar V.D., Elakya V., Kamala T., Park S.K., Saravanan M., Bououdina M., Arasu M.V., Kovendan K., Vincent S. Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.-potential for malaria vector control. Environ. Sci. Pollut. Res. 2015;22:9759–9765. doi: 10.1007/s11356-015-4148-9. PubMed DOI
Elia P., Zach R., Hazan S., Kolusheva S., Porat Z., Zeiri Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int. J. Nanomed. 2014;9:4007–4021. PubMed PMC
Hainfeld J.F., Slatkin D.N., Smilowitz H.M. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 2004;49:N309–N315. doi: 10.1088/0031-9155/49/18/N03. PubMed DOI
Gibson J.D., Khanal B.P., Zubarev E.R. Paclitaxel-functionalized gold nanoparticles. J. Am. Chem. Soc. 2007;129:11653–11661. doi: 10.1021/ja075181k. PubMed DOI
Qian X., Peng X.H., Ansari D.O., Yin-Goen Q., Chen G.Z., Shin D.M., Yang L., Young A.N., Wang M.D., Nie S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 2008;26:83–90. doi: 10.1038/nbt1377. PubMed DOI
Hainfeld J.F., Dilmanian F.A., Zhong Z., Slatkin D.N., Kalef-Ezra J.A., Smilowitz H.M. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys. Med. Biol. 2010;55:3045–3059. doi: 10.1088/0031-9155/55/11/004. PubMed DOI
McMahon S.J., Hyland W.B., Muir M.F., Coulter J.A., Jain S., Butterworth K.T., Schettino G., Dickson G.R., Hounsell A.R., O’Sullivan J.M., et al. Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci. Rep. 2011;1:18. doi: 10.1038/srep00018. PubMed DOI PMC
Nagaraj B., Malakar B., Divya T.K., Krishnamurthy N.B., Liny P., Dinesh R. Environmental benign synthesis of gold nanoparticles from the flower extracts of Plumeria alba Linn. (Frangipani) and evaluation of their biological activities. Int. J. Drug Dev. Res. 2012;4:144–150.
Lakshmeesha T.R., Kalagatur N.K., Mudili V., Mohan C.D., Rangappa S., Prasad B.D., Ashwini B.S., Hashem A., Alqarawi A.A., Malik J.A., et al. Biofabrication of zinc oxide nanoparticles with Syzygium aromaticum flower buds extract and finding its novel application in controlling the growth and mycotoxins of Fusarium graminearum. Front. Microbiol. 2019;10:1244. doi: 10.3389/fmicb.2019.01244. PubMed DOI PMC
Sarah S.L.R., Iyer P.R. Green synthesis of copper nanoparticles from the flowers of Mimusops elengi. Int. J. Recent. Sci. Res. 2019;10:32956–32963.
Jamdagni P., Khatri P., Rana J.S. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King Saud. Univ. Sci. 2016;30:168–175. doi: 10.1016/j.jksus.2016.10.002. DOI
Mishra A., Tripathy S.K., Yun S.I. Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia coli and Staphylococcus aureus. Process. Biochem. 2012;47:701–711. doi: 10.1016/j.procbio.2012.01.017. DOI
Jiang J., Oberdörster G., Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticles dispersions for toxicological studies. J. Nanopart Res. 2009;11:77–89. doi: 10.1007/s11051-008-9446-4. DOI
Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC
Lesniak A., Salvati A., Santos-Martinez M.J., Radomski M.W., Dawson K.A., Åberg C. Nanoparticle adhesion to the cell membrane and its effect on nano particle uptake efficiency. J. Am. Chem. Soc. 2013;135:1438–1444. doi: 10.1021/ja309812z. PubMed DOI
Panigrahi S., Basu S., Praharaj S., Pande S., Jana S., Pal A., Ghosh S.K., Pal T. Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic process. J. Phys. Chem. C. 2007;111:4596–4605. doi: 10.1021/jp067554u. DOI
Woo Y., Lai D.Y. Aromatic amino and nitro-amino compounds and their halogenated derivatives. In: Bingham E., Cohrssen B., Powell C.H., editors. Patty’s Toxicology. Wiley; Hoboken, NJ, USA: 2012.
Sharma J.K., Akhtar M.S., Ameen S., Srivastva P., Singh G. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J. Alloys Compd. 2015;632:321–325. doi: 10.1016/j.jallcom.2015.01.172. DOI
Lim S.H., Ahn E.Y., Park Y. Green synthesis and catalytic activity of gold nanoparticles synthesized by Artemisia capillaries water extract. Nanoscale Res. Lett. 2016;11:474. doi: 10.1186/s11671-016-1694-0. PubMed DOI PMC
Rostami-Vartooni A., Nasrollahzadeh M., Alizadeh M. Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo red. J. Alloys Compd. 2016;680:309–314. doi: 10.1016/j.jallcom.2016.04.008. DOI
Gopalakrishnan R., Loganathan B., Dinesh S., Raghu K. Strategic green synthesis, characterization and catalytic application to 4-nitrophenol reduction of palladium nanoparticles. J. Clust. Sci. 2017;28:2123–2131. doi: 10.1007/s10876-017-1207-z. DOI
Senobari S., Nezamzadeh-Ejhieh A. A comprehensive study on the enhanced photocatalytic activity of CuO-NiO nanoparticles: Designing the experiments. J. Mol. Liq. 2018;261:208–217. doi: 10.1016/j.molliq.2018.04.028. DOI
Chen A., Chen W., Latham P. 10 Fatal Cholangiocarcinoma in the setting of treatment-resistant hepatitis C virus infection. Am. J. ClinPathol. 2018;149:S4. doi: 10.1093/ajcp/aqx114.009. DOI
Sultan M., Waheed A., Bibi I., Islam A. Ecofriendly reduction of methylene blue with polyurethane catalyst. Int. J. Polym Sci. 2019;2019:3168618. doi: 10.1155/2019/3168618. DOI
Begum R., Najeeb J., Sattar A., Naseem K., Irfan A., Al-Sehemi A.G., Farooqi Z.H. Chemical reduction of methylene blue in the presence of nanocatalysts: A critical review. Rev. Chem. Eng. 2019 doi: 10.1515/revce-2018-0047. DOI
Matus K.J.M., Hutchison J.E., Peoples R., Rung S., Tanguay R.L. Green Nanotechnology Challenges and Opportunities. [(accessed on 2 November 2019)]; Available online: https://greennano.org/sites/greennano2.uoregon.edu/files/GCI_WP_GN10.pdf.
Balasooriya E.R., Jayasinghe C.D., Jayawardena U.A., Ruwanthika R.W.D., de Silva R.M., Udagama P.V. Honey mediated green synthesis of nanoparticles: New era of safe nanotechnology. J. Nanomater. 2017;2017:5919876. doi: 10.1155/2017/5919836. DOI
Green Synthesis of Gold Nanoparticles Using Polianthes tuberosa L. Floral Extract
Pleurotus Macrofungi-Assisted Nanoparticle Synthesis and Its Potential Applications: A Review
Conifer-Derived Metallic Nanoparticles: Green Synthesis and Biological Applications
Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress