Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Faculty of Science VT2019-2021
UHK
CEP - Centrální evidence projektů
PubMed
32650608
PubMed Central
PMC7408424
DOI
10.3390/nano10071334
PII: nano10071334
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidants, biological nano-antioxidants, nanoparticles, oxidative stress,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Numerous abiotic stresses trigger the overproduction of reactive oxygen species (ROS) that are highly toxic and reactive. These ROS are known to cause damage to carbohydrates, DNA, lipids and proteins, and build the oxidative stress and results in the induction of various diseases. To resolve this issue, antioxidants molecules have gained significant attention to scavenge these free radicals and ROS. However, poor absorption ability, difficulty in crossing the cell membranes and degradation of these antioxidants during delivery are the few challenges associated with both natural and synthetic antioxidants that limit their bioavailability. Moreover, the use of nanoparticles as an antioxidant is overlooked, and is limited to a few nanomaterials. To address these issues, antioxidant functionalized nanoparticles derived from various biological origin have emerged as an important alternative, because of properties like biocompatibility, high stability and targeted delivery. Algae, bacteria, fungi, lichens and plants are known as the producers of diverse secondary metabolites and phenolic compounds with extraordinary antioxidant properties. Hence, these compounds could be used in amalgamation with biogenic derived nanoparticles (NPs) for better antioxidant potential. This review intends to increase our knowledge about the antioxidant functionalized nanoparticles and the mechanism by which antioxidants empower nanoparticles to combat oxidative stress.
Zobrazit více v PubMed
Dabhade P., Kotwal S. Tackling the aging process with biomolecules: A possible role for caloric restriction, food-derived nutrients, vitamins, amino acids, peptides, and minerals. J. Nutr. Gerontol. Geriatr. 2013;32:24–40. doi: 10.1080/21551197.2012.753777. PubMed DOI
López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039. PubMed DOI PMC
Shokolenko I.N., Wilson G.L., Alexeyev M.F. Aging: A mitochondrial DNA perspective, critical analysis and an update. World J. Exp. Med. 2014;4:46. doi: 10.5493/wjem.v4.i4.46. PubMed DOI PMC
Chang C.H., Lee K.Y., Shim Y.H. Normal aging: Definition and physiologic changes. J. Korean Med. Assoc. 2017;60:358–363. doi: 10.5124/jkma.2017.60.5.358. DOI
Harman D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956;11:298–300. doi: 10.1093/geronj/11.3.298. PubMed DOI
Islam M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res. 2017;39:73–82. doi: 10.1080/01616412.2016.1251711. PubMed DOI
Valentão P., Fernandes E., Carvalho F., Andrade P.B., Seabra R.M., De Lourdes Bastos M. Antioxidant activity of Hypericum androsaemum infusion: Scavenging activity against superoxide radical, hydroxyl radical and hypochlorous acid. Biol. Pharm. Bull. 2002;25:1320–1323. doi: 10.1248/bpb.25.1320. PubMed DOI
Dias V., Junn E., Mouradian M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinson’s Dis. 2013;3:461–491. doi: 10.3233/JPD-130230. PubMed DOI PMC
Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medicine. 4th ed. Clarendon Press; Oxford, UK: 2007.
Bahorun T., Soobrattee M.A., Luximon-Ramma V., Aruoma O.I. Free radicals and antioxidants in cardiovascular health and disease. Internet J. Med. Update. 2006;1:25–41. doi: 10.4314/ijmu.v1i2.39839. DOI
Kumar S., Pandey A.K. Free radicals: Health implications and their mitigation by herbals. Br. J. Med. Med. Res. 2015;7:438–457. doi: 10.9734/BJMMR/2015/16284. DOI
Kumar S., Pandey A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013;2013:162750. doi: 10.1155/2013/162750. PubMed DOI PMC
Valko M., Izakovic M., Mazur M., Rhodes C.J., Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem. 2004;266:37–56. doi: 10.1023/B:MCBI.0000049134.69131.89. PubMed DOI
Valko M., Leibfritz D., Moncola J., Cronin M.D., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001. PubMed DOI
Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI
Willcox J.K., Ash S.L., Catignani G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004;44:275–295. doi: 10.1080/10408690490468489. PubMed DOI
Pacher P., Beckman J.S., Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007;87:315–424. doi: 10.1152/physrev.00029.2006. PubMed DOI PMC
Genestra M. Oxyl radicals, redox-sensitive signaling cascades and antioxidants. Cell. Signal. 2007;19:1807–1819. doi: 10.1016/j.cellsig.2007.04.009. PubMed DOI
Halliwell B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007;35:1147–1150. doi: 10.1042/BST0351147. PubMed DOI
Ricordi C., Garcia-Contreras M., Farnetti S. Diet and inflammation: Possible effects on immunity, chronic diseases, and life span. J. Am. Coll. Nutr. 2015;34:10–13. doi: 10.1080/07315724.2015.1080101. PubMed DOI
Sharma P., Mehta M., Dhanjal D.S., Kaur S., Gupta G., Singh H., Thangavelu L., Rajeshkumar S., Tambuwala M., Bakshi H.A., et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact. 2019;309:108720. doi: 10.1016/j.cbi.2019.06.033. PubMed DOI
Aggarwal V., Tuli H.S., Varol A., Thakral F., Yerer M.B., Sak K., Varol M., Jain A., Khan M., Sethi G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent Advancements. Biomolecules. 2019;9:735. doi: 10.3390/biom9110735. PubMed DOI PMC
Liou G.Y., Storz P. Reactive oxygen species in cancer. Free Radic. Res. 2010;44:479–496. doi: 10.3109/10715761003667554. PubMed DOI PMC
Qian Q., Chen W., Cao Y., Cao Q., Cui Y., Li Y., Wu J. Targeting reactive oxygen species in cancer via Chinese herbal medicine. Oxid. Med. Cell. Longev. 2019;2019:9240426. doi: 10.1155/2019/9240426. PubMed DOI PMC
Kumari S., Badana A.K., Murali M.G., Shailender G., Malla R. Reactive oxygen species: A key constituent in cancer survival. Biomark. Insights. 2018;13:1177271918755391. doi: 10.1177/1177271918755391. PubMed DOI PMC
Yang H., Villani R.M., Wang H., Simpson M.J., Roberts M.S., Tang M., Liang X. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 2018;37:266. doi: 10.1186/s13046-018-0909-x. PubMed DOI PMC
Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034. PubMed DOI PMC
Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta. 2016;1863:2977–2992. doi: 10.1016/j.bbamcr.2016.09.012. PubMed DOI
Mehta M., Dhanjal D.S., Paudel K.R., Singh B., Gupta G., Rajeshkumar S., Thangavelu L., Tambuwala M.M., Bakshi H.A., Chellappan D.K., et al. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: An update. Inflammopharmacology. 2020:1–23. doi: 10.1007/s10787-020-00698-3. PubMed DOI
Kessenbrock K., Plaks V., Werb Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 2010;141:52–67. doi: 10.1016/j.cell.2010.03.015. PubMed DOI PMC
He F., Zuo L. Redox roles of reactive oxygen species in cardiovascular diseases. Int. J. Mol. Sci. 2015;16:27770–27780. doi: 10.3390/ijms161126059. PubMed DOI PMC
Panth N., Paudel K.R., Parajuli K. Reactive oxygen species: A key hallmark of cardiovascular disease. Adv. Med. 2016;2016:9152732. doi: 10.1155/2016/9152732. PubMed DOI PMC
Sag C.M., Santos C.X., Shah A.M. Redox regulation of cardiac hypertrophy. J. Mol. Cell Cardiol. 2014;73:103–111. doi: 10.1016/j.yjmcc.2014.02.002. PubMed DOI
Zhou T., Prather E.R., Garrison D.E., Zuo L. Interplay between ROS and antioxidants during ischemia-reperfusion injuries in cardiac and skeletal muscle. Int. J. Mol. Sci. 2018;19:417. doi: 10.3390/ijms19020417. PubMed DOI PMC
Van der Pol A., Van Gilst W.H., Voors A.A., Van der Meer P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail. 2019;21:425–435. doi: 10.1002/ejhf.1320. PubMed DOI PMC
Uttara B., Singh A.V., Zamboni P., Mahajan R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009;7:65–74. doi: 10.2174/157015909787602823. PubMed DOI PMC
Liu Z., Zhou T., Ziegler A.C., Dimitrion P., Zuo L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev. 2017;2017:2525967. doi: 10.1155/2017/2525967. PubMed DOI PMC
Khaltaev N., Axelrod S. Chronic respiratory diseases global mortality trends, treatment guidelines, life style modifications, and air pollution: Preliminary analysis. J. Thorac. Dis. 2019;11:2643–2655. doi: 10.21037/jtd.2019.06.08. PubMed DOI PMC
Boukhenouna S., Wilson M.A., Bahmed K., Kosmider B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxid. Med. Cell. Longev. 2018;2018:5730395. doi: 10.1155/2018/5730395. PubMed DOI PMC
Thimmulappa R.K., Chattopadhyay I., Rajasekaran S. Oxidative stress mechanisms in the pathogenesis of environmental lung diseases. In: Chakraborti S., Chakraborti T., Ghosh R., Ganguly N.K., Parinandni N.L., editors. Oxidative Stress in Lung Diseases. Volume 2. Springer; Singapore: 2020. pp. 103–137.
Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., Squadrito F., Altavilla D., Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763. PubMed DOI PMC
Young I.S., Woodside J.V. Antioxidants in health and disease. J. Clin. Pathol. 2001;54:176–186. doi: 10.1136/jcp.54.3.176. PubMed DOI PMC
Matill H.A. Antioxidants. Annu. Rev. Biochem. 1947;16:177–192. doi: 10.1146/annurev.bi.16.070147.001141. PubMed DOI
German J. Food processing and lipid oxidation. Adv. Exp. Med. Biol. 1999;459:23–50. PubMed
Jacob R. Three eras of vitamin C discovery. Subcell. Biochem. 1996;25:1–16. PubMed
Knight J. Free radicals: Their history and current status in aging and disease. Ann. Clin. Lab. Sci. 1998;28:331–346. PubMed
Halliwell B. How to characterize an antioxidant- An update. Biochem. Soc. Symp. 1995;61:73–101. PubMed
Shi H.L., Noguchi N., Niki N. Comparative study on dynamics of antioxidative action of α- tocopheryl hydroquinone, ubiquinoland α- tocopherol, against lipid peroxidation. Free Radic. Biol. Med. 1999;27:334–346. doi: 10.1016/S0891-5849(99)00053-2. PubMed DOI
Levine M., Ramsey S.C., Daruwara R. Criteria and recommendation for vitamin C intake. JAMA. 1991;281:1415–1423. doi: 10.1001/jama.281.15.1415. PubMed DOI
Yang X., Sun Z., Wang W., Zhou Q., Shi G., Wei F., Jiang G. Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. Sci. Total. Environ. 2018;643:559–568. doi: 10.1016/j.scitotenv.2018.06.213. PubMed DOI
Aguilera Y., Martin-Cabrejas M.A., González de Mejia E. Phenolic compounds in fruits and beverages consumed as part of the mediterranean diet: Their role in prevention of chronic diseases. Phytochem. Rev. 2016;15:405–423. doi: 10.1007/s11101-015-9443-z. DOI
Faustino M., Veiga M., Sousa P., Costa E.M., Silva S., Pintado M. Agro-food byproducts as a new source of natural food additives. Molecules. 2019;24:1056. doi: 10.3390/molecules24061056. PubMed DOI PMC
Chandra P., Sharma R.K., Arora D.S. Antioxidant compounds from microbial sources: A review. Food Res. Int. 2020;129:108849. doi: 10.1016/j.foodres.2019.108849. PubMed DOI
Dey T.B., Chakraborty S., Jain K.K., Sharma A., Kuhad R.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci. Technol. 2016;53:60–74.
Brewer M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011;10:221–247. doi: 10.1111/j.1541-4337.2011.00156.x. DOI
Kozarski M., Klaus A., Jakovljevic D., Todorovic N., Vunduk J., Petrović P., Niksic M., Niksic M.M., Griensven L.V. Antioxidants of edible mushrooms. Molecules. 2015;20:19489–19525. doi: 10.3390/molecules201019489. PubMed DOI PMC
Ferreira I.C.F.R., Barros L., Abreu R.M.V. Antioxidants in wild mushrooms. Curr. Med. Chem. 2009;16:1543–1560. doi: 10.2174/092986709787909587. PubMed DOI
Munir N., Sharif N., Naz S., Manzoor F. Algae: A potent antioxidant source. Sky J. Microbiol. Res. 2013;1:22–31.
Venkatesan J., Kim S.K., Shim S.K. Antimicrobial, antioxidant, and anticancer activities of biosynthesized silver nanoparticles using marine algae Ecklonia cava. Nanomaterials. 2016;6:235. doi: 10.3390/nano6120235. PubMed DOI PMC
Fernández-Moriano C., Gómez-Serranillos M.P., Crespo A. Antioxidant potential of lichen species and their secondary metabolites. A systematic review. Pharm. Biol. 2015;54:1–17. doi: 10.3109/13880209.2014.1003354. PubMed DOI
Hu B., Liu X., Zhang C., Zeng X. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. J. Food Drug. Anal. 2017;25:3–15. doi: 10.1016/j.jfda.2016.11.004. PubMed DOI PMC
Eftekhari A., Ahmadian E., Panahi-Azar V., Hosseini H., Tabibiazar M., Dizaj S.M. Hepatoprotective and free radical scavenging actions of quercetin nanoparticles on aflatoxin B1-induced liver damage: In vitro/in vivo studies. Artif. Cells Nanomed. Biotechnol. 2017;46:411–420. doi: 10.1080/21691401.2017.1315427. PubMed DOI
Eftekhari A., Dizaj S.M., Chodari L., Sunar S., Hasanzadeh A., Ahmadian E., Hasanzadeh M. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed. Pharmacother. 2018;103:1018–1027. doi: 10.1016/j.biopha.2018.04.126. PubMed DOI
Nelson B.C., Johnson M.E., Walker M.L., Riley K.R., Sims C.M. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants. 2016;5:15. doi: 10.3390/antiox5020015. PubMed DOI PMC
Eriksson P., Tal A.A., Skallberg A., Brommesson C., Hu Z., Boyd R.D., Olovsson W., Fairley N., Abrikosov I.A., Zhang X., et al. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Sci. Rep. 2018;8:6999. doi: 10.1038/s41598-018-25390-z. PubMed DOI PMC
Das S., Dowding J.M., Klump K.E., McGinnis J.F., Self W., Seal S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine. 2013;8:1483–1508. doi: 10.2217/nnm.13.133. PubMed DOI
Deshpande S., Patil S., Kuchibhatla S.V.N.T., Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005;87:133113. doi: 10.1063/1.2061873. DOI
Kim C.K., Kim T., Choi I.Y., Soh M., Kim D., Kim Y.J., Jang H., Yang H.S., Kim J.Y., Park H.K., et al. Ceria nanoparticles that can protect against ischemic stroke. Angew. Chem. Int. Ed. Engl. 2012;51:11039–11043. doi: 10.1002/anie.201203780. PubMed DOI
Hirst S.M., Karakoti A., Singh S., Self W., Tyler R., Seal S., Reilly C.M. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Envrion. Toxicol. 2013;28:107–118. doi: 10.1002/tox.20704. PubMed DOI
Caputo F., Nicola M.D., Sienkiewicz A., Giovanetti A., Bejarano I., Licoccia S., Traversa E., Ghibelli L. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. Nanoscale. 2015;7:15643–15656. doi: 10.1039/C5NR03767K. PubMed DOI
Sonaje K., Italia J.L., Sharma G., Bhardwaj V., Tikoo K., Kumar M.N.V.R. Development of biodegradable nanoparticles for oral delivery of ellagic acid and evaluation of their antioxidant efficacy against cyclosporine A-induced nephrotoxicity in rats. Pharm. Res. 2007;24:899–908. doi: 10.1007/s11095-006-9207-y. PubMed DOI
Yun X., Maximov V.D., Yu J., Zhu H., Vertegel A.A., Kindly M.S. Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury. J. Cereb. Blood Flow. Metab. 2013;33:583–592. doi: 10.1038/jcbfm.2012.209. PubMed DOI PMC
Chorny M., Hood E., Levy R.J., Muzykantov V.R. Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles. J. Control. Release. 2010;146:144–151. doi: 10.1016/j.jconrel.2010.05.003. PubMed DOI PMC
Reddy M.K., Labhasetwar V. Nanoparticle-mediated delivery of superoxide dismutase to the brain: An effective strategy to reduce ischemia-reperfusion injury. FASEB J. 2009;23:1384–1395. doi: 10.1096/fj.08-116947. PubMed DOI
Fan Y., Yi J., Zhang Y., Yokoyama W. Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity. Food Chem. 2018;239:1210–1218. doi: 10.1016/j.foodchem.2017.07.075. PubMed DOI
Elle R.E., Rahmani S., Lauret C., Morena M., Bidel L.P.R., Boulahtouf A., Balaguer P., Cristol J.P., Durand J.O., Charnay C., et al. Functionalized mesoporous silica nanoparticle with antioxidants as a new carrier that generates lower oxidative stress impact on cells. Mol. Pharm. 2016;13:2647–2660. doi: 10.1021/acs.molpharmaceut.6b00190. PubMed DOI
Tzankova V., Aluani D., Kondeva-Burdina M., Yordanov Y., Odzhakov F., Apostolov A., Yoncheva K. Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed. Pharmacother. 2017;92:569–579. doi: 10.1016/j.biopha.2017.05.008. PubMed DOI
Trombino S., Cassano R., Ferrarelli T., Barone E., Picci N., Mancuso C. Trans-ferulic acid-based solid lipid nanoparticles and their antioxidant effect in rat brain microsomes. Colloids Surf. B Biointerfaces. 2013;109:273–279. doi: 10.1016/j.colsurfb.2013.04.005. PubMed DOI
Du L., Li J., Chen C., Liu Y. Nanocarrier: A potential tool for future antioxidant therapy. Free Radic. Res. 2014;48:1061–1069. doi: 10.3109/10715762.2014.924625. PubMed DOI
Hans M., Lowman A. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 2002;6:319–327. doi: 10.1016/S1359-0286(02)00117-1. DOI
Vila A., Sanchez A., Tobıo M., Calvo P., Alonso M. Design of biodegradable particles for protein delivery. J. Control. Release. 2002;78:15–24. doi: 10.1016/S0168-3659(01)00486-2. PubMed DOI
Shah B.R., Zhang C., Li Y., Li B. Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and pickering emulsion based on chitosan-tripolyphosphate nanoparticles. Food Res. Int. 2016;89:399–407. doi: 10.1016/j.foodres.2016.08.022. PubMed DOI
Pu H.L., Chiang W.L., Maiti B., Liao Z.X., Ho Y.C., Shim M.S., Chuang E.Y., Xia Y., Sung H.W. Nanoparticles with dual responses to oxidative stress and reduced pH for drug release and anti-inflammatory applications. ACS Nano. 2014;8:1213–1221. doi: 10.1021/nn4058787. PubMed DOI
Patil S.P., Kumbhar S.T. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. Biochem. Biophys. Rep. 2017;10:76–81. PubMed PMC
Saratale R.G., Benelli G., Kumar G., Kim D.S., Saratale G.D. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ. Sci. Pollut. Res. 2018;25:10392–10406. doi: 10.1007/s11356-017-9581-5. PubMed DOI
Phull A.R., Abbas Q., Ali A., Raza H., Kim S.J., Zia M., Haq I.U. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future J. Pharm. Sci. 2016;2:31–36. doi: 10.1016/j.fjps.2016.03.001. DOI
Sriranjani R., Srinithya B., Vellingiri V., Brindha P., Anthony S.P., Sivasubramanian A., Muthuraman M.S. Silver nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities. J. Mol. Liq. 2016;220:926–930. doi: 10.1016/j.molliq.2016.05.042. DOI
Kalaiyarasan T., Bharti V.K., Chaurasia O.P. One pot green preparation of Seabuckthorn silver nanoparticles (SBT@AgNPs) featuring high stability and longevity, antibacterial, antioxidant potential: A nano disinfectant future perspective. RSC Adv. 2017;7:51130–51141. doi: 10.1039/C7RA10262C. PubMed DOI PMC
Sharma B., Deswal R. Single pot synthesized gold nanoparticles using Hippophae rhamnoides leaf and berry extract showed shape-dependent differential nanobiotechnological applications. Artif. Cells Nanomed. Biotechnol. 2018;46:408–418. doi: 10.1080/21691401.2018.1458034. PubMed DOI
Das D., Ghosh R., Mandal P. Biogenic synthesis of silver nanoparticles using S1 genotype of Morus alba leaf extract: Characterization, antimicrobial and antioxidant potential assessment. SN Appl. Sci. 2019;1:498. doi: 10.1007/s42452-019-0527-z. DOI
Sathishkumar G., Jha P.K., Vignesh V., Rajkuberan C., Jeyaraj M., Selvakumar M., Jha R., Sivaramakrishnan S. Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity. J. Mol. Liq. 2016;215:229–236.
Patra J.K., Das G., Baek K.H. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. J. Photochem. Photobiol. B. 2016;161:200–210. doi: 10.1016/j.jphotobiol.2016.05.021. PubMed DOI
Mohanta Y.K., Panda S.K., Jayabalan R., Sharma N., Bastia A.K., Mohanta T.K. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.) Front. Mol. Biosci. 2017;4:14. doi: 10.3389/fmolb.2017.00014. PubMed DOI PMC
Hamelian M., Zangeneh M.M., Amisama A., Varmira K., Veisi H. Green synthesis of silver nanoparticles using Thymus kotschyanus extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Appl. Organomet. Chem. 2018;32:e4458. doi: 10.1002/aoc.4458. DOI
Chandra H., Patel D., Kumari P., Jangwan J.S., Yadav S. Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;102:212–220. doi: 10.1016/j.msec.2019.04.035. PubMed DOI
Veena S., Devasena T., Sathak S.S.M., Yasasve M., Vishal L.A. Green synthesis of gold nanoparticles from Vitex negundo leaf extract: Characterization and in vitro evaluation of antioxidant-antibacterial activity. J. Clust. Sci. 2019;30:1591–1597. doi: 10.1007/s10876-019-01601-z. DOI
Keshari A.K., Srivastava R., Singh P., Yadav V.B., Nath G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med. 2020;11:37–44. doi: 10.1016/j.jaim.2017.11.003. PubMed DOI PMC
Subbaiy R., Selvam M.M. Green synthesis of copper nanoparticles from Hibicus rosasinensis and their antimicrobial, antioxidant activities. Res. J. Pharm. Biol. Chem. Sci. 2015;6:1183–1190.
Ghosh S., More P., Nitnavare R., Jagtap S., Chippalkatti R., Derle A., Kitture R., Asok A., Kale S., Singh S., et al. Antidiabetic and antioxidant properties of copper nanoparticles synthesized by medicinal plant Dioscorea bulbifera. J. Nanomed. Nanotechnol. 2015;S6:007.
Sarkar J., Chakraborty N., Chatterjee A., Bhattacharjee A., Dasgupta D., Acharya K. Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. Nanomaterials. 2020;10:312. doi: 10.3390/nano10020312. PubMed DOI PMC
Dobrucka R. Antioxidant and catalytic activity of biosynthesized CuO nanoparticles using extract of Galeopsidis herba. J. Inorg. Organomet. Polym. Mater. 2018;28:812–819. doi: 10.1007/s10904-017-0750-2. DOI
Rajeshkumar S., Menon S., Kumar S.V., Tambuwala M.M., Bakshi H.A., Mehta M., Satija S., Gupta G., Chellappan D.K., Thangavelu L., et al. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J. Photochem. Photobiol. 2019;197:111531. doi: 10.1016/j.jphotobiol.2019.111531. PubMed DOI
Harshiny M., Iswarya C.N., Matheswaran M. Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaves extract as reducing agents. Powder Technol. 2015;286:744–749. doi: 10.1016/j.powtec.2015.09.021. DOI
Muthukumar H., Manickam M. Amaranthus spinosus leaf extract mediated FeO nanoparticles: Physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain. Chem. Eng. 2015;3:3149–3156. doi: 10.1021/acssuschemeng.5b00722. DOI
Tuzun B.S., Fafal T., Tastan P., Kivcak B., Yelken B.O., Kayabasi C., Susluer S.Y., Gunduz C. Structural characterization, antioxidant and cytotoxic effects of iron nanoparticles synthesized using Asphodelus aestivus Brot. aqueous extract. Green Process. Synth. 2020;9:153–163. doi: 10.1515/gps-2020-0016. DOI
Srihasam S., Thyagarajan K., Korivi M., Lebaka V.R., Mallem S.P.R. Phytogenic generation of NiO nanoparticles using Stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomolecules. 2020;10:89. doi: 10.3390/biom10010089. PubMed DOI PMC
Markus J., Mathiyalagan R., Kim Y.J., Abbai R., Singh P., Ahn S., Perez Z.E.J., Hurh J., Yang D.C. Intracellularsynthesis of goldnanoparticles with antioxidantactivity by probiotic Lactobacillus kimchicus DCY51T isolated from Koreankimchi. Enzym. Microb. Technol. 2016;95:85–93. doi: 10.1016/j.enzmictec.2016.08.018. PubMed DOI
Baygar T., Ugur A. Biosynthesis of silver nanoparticles by Streptomyces griseorubens isolated from soil and their antioxidant activity. IET Nanobiotechnol. 2017;11:286–291. doi: 10.1049/iet-nbt.2015.0127. PubMed DOI PMC
Oladipo I.C., Lateef A., Elegbede J.A., Azeez M.A., Asafa T.M., Yekeen T.A., Akinboro A., Gueguim-Kana E.B., Beukes L.S., Oluyide T.O., et al. Enterococcus species for the one-pot biofabrication of gold nanoparticles: Characterization and nanobiotechnological applications. J. Photochem. Photobiol. B. 2017;173:250–257. doi: 10.1016/j.jphotobiol.2017.06.003. PubMed DOI
Veeraapandian S., Sawant S.N., Doble M. Antibacterial and antioxidant activity of protein capped silver and gold nanoparticles synthesized with Escherichia coli. J. Bimed. Nanotechnol. 2012;8:140–148. doi: 10.1166/jbn.2012.1356. PubMed DOI
Shanmugasundaram T., Radhakrishnan M., Gopikrishnan V., Pazhanimurugan R., Balagurunathan R. A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles. Colloids Surf. B Biointerfaces. 2013;111:680–687. doi: 10.1016/j.colsurfb.2013.06.045. PubMed DOI
Ramya S., Shanmugasundaram T., Balagurunathan R. Biomedical potential of actinobacterially synthesised selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J. Trace Elem. Med. Biol. 2015;32:30–39. doi: 10.1016/j.jtemb.2015.05.005. PubMed DOI
Torres S.K., Campos V.L., León C.G., Rodríguez-Llamazares S.M., Rajos S.M., González M., Smith C., Mondaca M.A. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J. Nanopart Res. 2012;14:1236. doi: 10.1007/s11051-012-1236-3. DOI
Sowani H., Mohite P., Munot H., Shouche Y., Bapat T., Kumar A.R., Kulkarni M., Zinjarde S. Green synthesis of gold and silver nanoparticles by an Actinomycete Gordonia amicalis HS-11: Mechanistic aspects and biological application. Process Biochem. 2016;51:374–383. doi: 10.1016/j.procbio.2015.12.013. DOI
Sivasankar P., Seedevi P., Poongodi S., Sivakumar M., Murugan T., Sivakumar L., Sivakumar K. Characterization, antimicrobial and antioxidant property of exopolysaccharide mediated silver nanoparticles synthesized by Streptomyces violaceus MM72. Carbohydr. Polym. 2018;181:752–759. doi: 10.1016/j.carbpol.2017.11.082. PubMed DOI
Moghaddam A.B., Moniri M., Azizi S., Rahim R.A., Ariff A.B., Saad W.Z., Namvar F., Navaderi M., Mohamad R. Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules. 2017;22:872. doi: 10.3390/molecules22060872. PubMed DOI PMC
Netala V.R., Bethu M.S., Pushpalatha B., Baki V.B., Aishwarya S., Rao J.V., Tartte V. Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int. J. Nanomed. 2016;11:5683–5696. doi: 10.2147/IJN.S112857. PubMed DOI PMC
Manjunath H.M., Joshi C.G., Danagoudar A., Poyya J., Kudva A.K., Dhananjaya B.L. Biogenic synthesis of gold nanoparticles by marine endophytic fungus-Cladosporium cladosporioides isolated from seaweed and evaluation of their antioxidant and antimicrobial properties. Process Biochem. 2017;63:137–144.
Manjunath H.M., Joshi C.G. Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus- Cladosporium cladosporioides. Process Biochem. 2019;82:199–204. doi: 10.1016/j.procbio.2019.04.011. DOI
Netala V.R., Kotakadi V.S., Bobbu P., Gaddam S.A., Tartte V. Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti microbial studies. 3Biotech. 2016;6:132. doi: 10.1007/s13205-016-0433-7. PubMed DOI PMC
Saravanakumar K., Wang M.H. Trichoderma based synthesis of anti-pathogenic silver nanoparticles and their characterization, antioxidant and cytotoxicity properties. Microb. Pathog. 2018;114:269–273. doi: 10.1016/j.micpath.2017.12.005. PubMed DOI
Gao Y., Anand M.A.V., Ramachandran V., Karthikkumar V., Shalini V., Vijayalakshmi S., Ernest D. Biofabrication of zinc oxide nanoparticles from Aspergillus niger, their antioxidant, antimicrobial and anticancer activity. J. Clust. Sci. 2019;30:937–946. doi: 10.1007/s10876-019-01551-6. DOI
Govindappa M., Farheen H., Chandrappa C.P., Rai R.V., Raghavendra V.B. Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016;7:035014. doi: 10.1088/2043-6262/7/3/035014. DOI
Nagajyothi P.C., Sreekanth T.V.M., Lee J.I., Lee K.D. Mycosynthesis: Antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract. J. Photochem. Photobiol. B. 2014;130:299–304. doi: 10.1016/j.jphotobiol.2013.11.022. PubMed DOI
Popli D., Anil V., Subramanyam A.B., Namratha M.N., Ranjitha V.R., Rao S.N., Rai R.V., Govindappa M. Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artif. Cells Nanomed. Biotechnol. 2018;46:676–683. doi: 10.1080/21691401.2018.1434188. PubMed DOI
Sriramulu M., Sumathi S. Photocatalytic, antioxidant, antibacterial and anti-inflammatory activity of silver nanoparticles synthesised using forest and edible mushroom. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017;8:045012. doi: 10.1088/2043-6254/aa92b5. DOI
Lee K.D., Nagajyothi P.C., Sreekanth T.V.M., Park S. Eco-friendly synthesis of gold nanoparticles (AuNPs) using Inonotus obliquus and their antibacterial, antioxidant and cytotoxic activities. J. Ind. Eng. Chem. 2015;26:67–72. doi: 10.1016/j.jiec.2014.11.016. DOI
Aygün A., Özdemir S., Gülcan M., Cellat K., Şen F. Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. J. Pharm. Bimed. Anal. 2020;178:112970. doi: 10.1016/j.jpba.2019.112970. PubMed DOI
Poudel M., Pokharel R., Sudip K.C., Awal S.C., Pradhananga R. Biosynthesis of silver nanoparticles using Ganoderma Lucidum and assessment of antioxidant and antibacterial activity. Int. J. Appl. Sci. Biotechnol. 2017;5:523–531. doi: 10.3126/ijasbt.v5i4.18776. DOI
Naveena B.E., Prakash S. Biological synthesis of gold nanoparticles using marine algae Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian J. Pharm. Clin. Res. 2013;6:179–182.
Sharma B., Purkayastha D.D., Hazra S., Thajamanbi M., Bhattacharjee C.R., Ghosh N.N., Rout J. Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C.Ag. and antioxidant activity of biomatrix loaded nanoparticles. Bioprocess Biosyst. Eng. 2014;37:2559–2565. doi: 10.1007/s00449-014-1233-2. PubMed DOI
Dasari S., Suresh K.A., Rajesh M., Reddy C.S.S., Hemalatha C.S., Wudayagiri R., Valluru L. Biosynthesis, characterization, antibacterial and antioxidant activity of silver nanoparticles produced by lichens. J. Bionanosci. 2013;7:237–244. doi: 10.1166/jbns.2013.1140. DOI
Debnath R., Purkayastha D.D., Hazra S., Ghosh N.N., Bhattacharjee C.R., Rout J. Biogenic synthesis of antioxidant, shape selective gold nanomaterials mediated by high altitude lichens. Mater. Lett. 2016;169:58–61. doi: 10.1016/j.matlet.2016.01.072. DOI
Kumar H., Bhardwaj K., Kuča K., Kalia A., Nepovimova E., Verma R., Kumar D. Flower-basedgreensynthesis of metallicnanoparticles: Applicationsbeyondfragrance. Nanomaterials. 2020;10:766. doi: 10.3390/nano10040766. PubMed DOI PMC
Guajardo-Pachecoa M.J., Morales-Sanchz J.E., González-Hernándezc J., Ruiz F. Synthesis of copper nanoparticles using soybeans as a chelant agent. Mater. Lett. 2010;64:1361–1364. doi: 10.1016/j.matlet.2010.03.029. DOI
Xi Y., Hu C., Gao P., Yang R., He X., Wang X., Wan B. Morphology and phase selective synthesis of CuxO (x = 1, 2) nanostructures and their catalytic degradation activity. Mater. Sci. Eng. B. 2010;166:113–117. doi: 10.1016/j.mseb.2009.10.008. DOI
He Y. A novel solid-stabilized emulsion approach to CuO nanostructures microspheres. Mater. Res. Bull. 2007;42:190–195. doi: 10.1016/j.materresbull.2006.05.020. DOI
Motogoshi R., Oku T., Suzuki A., Kikuchi K., Kikuchi S., Jeyadevan B., Cuya J. Fabrication and characterization of cupprious oxide: Fullerene solar cells. Synth. Met. 2010;160:1219–1222. doi: 10.1016/j.synthmet.2010.03.012. DOI
Herlekar M., Barve S., Kumar R. Plant-mediated green synthesis of iron nanoparticles. J. Nanopart. Res. 2014;2014:140614. doi: 10.1155/2014/140614. DOI
Huber D.L. Synthesis, properties, and applications of iron nanoparticles. Small. 2005;1:482–501. doi: 10.1002/smll.200500006. PubMed DOI
Guo J., Wang R., Tjiu W.W., Pan J., Liu T. Synthesis of Fe nanoparticles@ graphene composites for environmental applications. J. Hazard. Mater. 2012;225:63–73. doi: 10.1016/j.jhazmat.2012.04.065. PubMed DOI
Babay S., Mhiri T., Toumi M. Synthesis, structural and spectroscopic characterizations of maghemite γ-Fe2O3 prepared by one-step coprecipitation route. J. Mol. Struct. 2015;1085:286–293. doi: 10.1016/j.molstruc.2014.12.067. DOI
Saleh N., Kim H.J., Phenrat T., Matyjaszewski K., Tilton R.D., Lowry G.V. Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ. Sci. Technol. 2008;42:3349–3355. doi: 10.1021/es071936b. PubMed DOI
Kim H.J., Kim D.G., Yoon H., Choi Y.S., Yoon J., Lee J.C. Polyphenol/FeIII complex coated membranes having multifunctional properties prepared by a one-step fast assembly. Adv. Mater. Interfaces. 2015;2:1500298. doi: 10.1002/admi.201500298. DOI
Yang L., Cao Z., Sajja H.K., Mao H., Wang L., Geng H., Xu H., Jiang T., Wood W.C., Nie S., et al. Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J. Biomed. Nanotechnol. 2008;4:439–449. doi: 10.1166/jbn.2008.007. PubMed DOI PMC
Ebrahiminezhad A., Zare-Hoseinabadi A., Sarmah A.K., Taghizadeh S., Ghasemi Y., Berenjian A. Plant-mediated synthesis and applications of iron nanoparticles. Mol. Biotechnol. 2018;60:154–168. doi: 10.1007/s12033-017-0053-4. PubMed DOI
Agarwal H., Kumar S.V., Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles -An eco-friendly approach. Res. Effic. Technol. 2017;3:406–413. doi: 10.1016/j.reffit.2017.03.002. DOI
Jayaseelan C., Rahuman A.A., Kirthi A.V., Marimuthu S., Santhoshkumar T., Bagavan A., Guarav K., Karthik L., Rao K.V. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012;90:78–84. doi: 10.1016/j.saa.2012.01.006. PubMed DOI
Pulit-prociak J., Chwastowski J., Kucharski A., Banach M. Applied surface science functionalization of textiles with silver and zinc oxide nanoparticles. Appl. Surf. Sci. 2016;385:543–553. doi: 10.1016/j.apsusc.2016.05.167. DOI
Wodka D., Bielaníska E., Socha R.P., Elzbieciak-Wodka M., Gurgul J., Nowak P., Warszyński P., Kumakiri I. Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS Appl. Mater. Interfaces. 2010;2:1945–1953. doi: 10.1021/am1002684. PubMed DOI
Wadhwani S.A., Shedbalkar U.U., Singh R., Chopade B.A. Biogenic selenium nanoparticles: Current status and future prospects. Appl. Microbiol. Biotechnol. 2016;100:2555–2566. doi: 10.1007/s00253-016-7300-7. PubMed DOI
Li Y., Li X., Zheng W., Fan C., Zhang Y., Chen T. Functionalized selenium nanoparticles with nephroprotective activity, the important roles of ROS mediated signaling pathways. J. Mater. Chem. 2013;1:6365–6372. doi: 10.1039/c3tb21168a. PubMed DOI
Din M.I., Rani A. Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: A green adeptness. Int. J. Anal. Chem. 2016;2016:3512145. PubMed PMC
Saxena A., Kumar K., Mozumdar S. Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative couplingof thiols. J. Mol. Catal. A Chem. 2007;269:35–40. doi: 10.1016/j.molcata.2006.12.042. DOI
Alonso F., Riente P., Yus M. Hydrogen-transfer reduction of carbonyl compounds promoted by nickel nanoparticles. Tetrahedron. 2008;64:1847–1852. doi: 10.1016/j.tet.2007.11.093. DOI
Dhakshinamoorthy A., Pitchumani K. Clay entrapped nickel nanoparticles as efficient and recyclable catalysts forhydrogenation of olefins. Tetrahedron Lett. 2008;49:1818–1823. doi: 10.1016/j.tetlet.2008.01.061. DOI
Alonso F., Riente P., Yus M. Wittig-type olefination of alcohols promoted by nickel nanoparticles: Synthesis ofpolymethoxylated and polyhydroxylated stilbenes. Eur. J. Org. Chem. 2009;2009:6034–6042. doi: 10.1002/ejoc.200900951. DOI
Alonso F., Riente P., Yus M. Alcohols for the α-alkylationof methyl ketones and indirect aza-wittig reaction promoted bynickel nanoparticles. Eur. J. Org. Chem. 2008;2008:4908–4914. doi: 10.1002/ejoc.200800729. DOI
Li X.K., Ji W.J., Zhao J., Wang S.J., Au C.T. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15. J. Catal. 2005;236:181–189. doi: 10.1016/j.jcat.2005.09.030. DOI
Li Y., Zhang B., Xie X., Liu J., Xu Y., Shen W. Novel Nicatalysts for methane decomposition to hydrogen and carbonnanofibers. J. Catal. 2006;238:412–424. doi: 10.1016/j.jcat.2005.12.027. DOI
Al-Rawi M., Diabaté S., Weiss C. Uptake and intracellular localization of submicron and nano-sized SiO₂ particles in HeLa cells. Arch Toxicol. 2011;85:813–826. doi: 10.1007/s00204-010-0642-5. PubMed DOI
Hussain S.M., Hess K.L., Gearhart J.M., Geiss K.T., Schlager J.J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. Vitr. 2005;19:975–983. doi: 10.1016/j.tiv.2005.06.034. PubMed DOI
Clift M.J.D., Rothen-Rutishauser B., Brown D.M., Duffin R., Ronaldson K., Proudfoot L., Guy K., Stone V. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol. Appl. Pharmacol. 2008;232:418–427. doi: 10.1016/j.taap.2008.06.009. PubMed DOI
Rabolli V., Thomassen L.C., Uwambayinema F., Martens J.A., Lison D. The cytotoxic activity of amorphous silica nanoparticles is mainly influenced by surface area and not by aggregation. Toxicol. Lett. 2011;206:197–203. doi: 10.1016/j.toxlet.2011.07.013. PubMed DOI
Morais T., Soares M.E., Duarte J.A., Soares L., Maia S., Gomes P., Pereira E., Fraga S., Carmo H., De Lourdes Bastos M. Effect of surface coating on the biodistribution profile of gold nanoparticles in the rat. Eur. J. Pharm. Biopharm. 2012;80:185–193. doi: 10.1016/j.ejpb.2011.09.005. PubMed DOI
Cho W.S., Cho M., Jeong J., Choi M., Cho H.Y., Han B.S., Kim S.H., Kim H.O., Lim Y.T., Chung B.H., et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 2009;236:16–24. doi: 10.1016/j.taap.2008.12.023. PubMed DOI
Knaapen A.M., Borm P.J., Albrecht C., Schins R.P. Inhaled particles and lung cancer. Part A: Mechanisms. Int. J. Cancer. 2004;109:799–809. doi: 10.1002/ijc.11708. PubMed DOI
Xia T., Kovochich M., Liong M., Mädler L., Gilbert B., Shi H., Yeh J.I., Zink J.I., Nel A.E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2:2121–2134. doi: 10.1021/nn800511k. PubMed DOI PMC
Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential
Pleurotus Macrofungi-Assisted Nanoparticle Synthesis and Its Potential Applications: A Review
Conifer-Derived Metallic Nanoparticles: Green Synthesis and Biological Applications
Plant Fortification of the Diet for Anti-Ageing Effects: A Review