Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress

. 2020 Jul 08 ; 10 (7) : . [epub] 20200708

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32650608

Grantová podpora
Faculty of Science VT2019-2021 UHK CEP - Centrální evidence projektů

Numerous abiotic stresses trigger the overproduction of reactive oxygen species (ROS) that are highly toxic and reactive. These ROS are known to cause damage to carbohydrates, DNA, lipids and proteins, and build the oxidative stress and results in the induction of various diseases. To resolve this issue, antioxidants molecules have gained significant attention to scavenge these free radicals and ROS. However, poor absorption ability, difficulty in crossing the cell membranes and degradation of these antioxidants during delivery are the few challenges associated with both natural and synthetic antioxidants that limit their bioavailability. Moreover, the use of nanoparticles as an antioxidant is overlooked, and is limited to a few nanomaterials. To address these issues, antioxidant functionalized nanoparticles derived from various biological origin have emerged as an important alternative, because of properties like biocompatibility, high stability and targeted delivery. Algae, bacteria, fungi, lichens and plants are known as the producers of diverse secondary metabolites and phenolic compounds with extraordinary antioxidant properties. Hence, these compounds could be used in amalgamation with biogenic derived nanoparticles (NPs) for better antioxidant potential. This review intends to increase our knowledge about the antioxidant functionalized nanoparticles and the mechanism by which antioxidants empower nanoparticles to combat oxidative stress.

Zobrazit více v PubMed

Dabhade P., Kotwal S. Tackling the aging process with biomolecules: A possible role for caloric restriction, food-derived nutrients, vitamins, amino acids, peptides, and minerals. J. Nutr. Gerontol. Geriatr. 2013;32:24–40. doi: 10.1080/21551197.2012.753777. PubMed DOI

López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039. PubMed DOI PMC

Shokolenko I.N., Wilson G.L., Alexeyev M.F. Aging: A mitochondrial DNA perspective, critical analysis and an update. World J. Exp. Med. 2014;4:46. doi: 10.5493/wjem.v4.i4.46. PubMed DOI PMC

Chang C.H., Lee K.Y., Shim Y.H. Normal aging: Definition and physiologic changes. J. Korean Med. Assoc. 2017;60:358–363. doi: 10.5124/jkma.2017.60.5.358. DOI

Harman D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956;11:298–300. doi: 10.1093/geronj/11.3.298. PubMed DOI

Islam M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res. 2017;39:73–82. doi: 10.1080/01616412.2016.1251711. PubMed DOI

Valentão P., Fernandes E., Carvalho F., Andrade P.B., Seabra R.M., De Lourdes Bastos M. Antioxidant activity of Hypericum androsaemum infusion: Scavenging activity against superoxide radical, hydroxyl radical and hypochlorous acid. Biol. Pharm. Bull. 2002;25:1320–1323. doi: 10.1248/bpb.25.1320. PubMed DOI

Dias V., Junn E., Mouradian M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinson’s Dis. 2013;3:461–491. doi: 10.3233/JPD-130230. PubMed DOI PMC

Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medicine. 4th ed. Clarendon Press; Oxford, UK: 2007.

Bahorun T., Soobrattee M.A., Luximon-Ramma V., Aruoma O.I. Free radicals and antioxidants in cardiovascular health and disease. Internet J. Med. Update. 2006;1:25–41. doi: 10.4314/ijmu.v1i2.39839. DOI

Kumar S., Pandey A.K. Free radicals: Health implications and their mitigation by herbals. Br. J. Med. Med. Res. 2015;7:438–457. doi: 10.9734/BJMMR/2015/16284. DOI

Kumar S., Pandey A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013;2013:162750. doi: 10.1155/2013/162750. PubMed DOI PMC

Valko M., Izakovic M., Mazur M., Rhodes C.J., Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem. 2004;266:37–56. doi: 10.1023/B:MCBI.0000049134.69131.89. PubMed DOI

Valko M., Leibfritz D., Moncola J., Cronin M.D., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001. PubMed DOI

Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI

Willcox J.K., Ash S.L., Catignani G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004;44:275–295. doi: 10.1080/10408690490468489. PubMed DOI

Pacher P., Beckman J.S., Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007;87:315–424. doi: 10.1152/physrev.00029.2006. PubMed DOI PMC

Genestra M. Oxyl radicals, redox-sensitive signaling cascades and antioxidants. Cell. Signal. 2007;19:1807–1819. doi: 10.1016/j.cellsig.2007.04.009. PubMed DOI

Halliwell B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007;35:1147–1150. doi: 10.1042/BST0351147. PubMed DOI

Ricordi C., Garcia-Contreras M., Farnetti S. Diet and inflammation: Possible effects on immunity, chronic diseases, and life span. J. Am. Coll. Nutr. 2015;34:10–13. doi: 10.1080/07315724.2015.1080101. PubMed DOI

Sharma P., Mehta M., Dhanjal D.S., Kaur S., Gupta G., Singh H., Thangavelu L., Rajeshkumar S., Tambuwala M., Bakshi H.A., et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact. 2019;309:108720. doi: 10.1016/j.cbi.2019.06.033. PubMed DOI

Aggarwal V., Tuli H.S., Varol A., Thakral F., Yerer M.B., Sak K., Varol M., Jain A., Khan M., Sethi G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent Advancements. Biomolecules. 2019;9:735. doi: 10.3390/biom9110735. PubMed DOI PMC

Liou G.Y., Storz P. Reactive oxygen species in cancer. Free Radic. Res. 2010;44:479–496. doi: 10.3109/10715761003667554. PubMed DOI PMC

Qian Q., Chen W., Cao Y., Cao Q., Cui Y., Li Y., Wu J. Targeting reactive oxygen species in cancer via Chinese herbal medicine. Oxid. Med. Cell. Longev. 2019;2019:9240426. doi: 10.1155/2019/9240426. PubMed DOI PMC

Kumari S., Badana A.K., Murali M.G., Shailender G., Malla R. Reactive oxygen species: A key constituent in cancer survival. Biomark. Insights. 2018;13:1177271918755391. doi: 10.1177/1177271918755391. PubMed DOI PMC

Yang H., Villani R.M., Wang H., Simpson M.J., Roberts M.S., Tang M., Liang X. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 2018;37:266. doi: 10.1186/s13046-018-0909-x. PubMed DOI PMC

Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034. PubMed DOI PMC

Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta. 2016;1863:2977–2992. doi: 10.1016/j.bbamcr.2016.09.012. PubMed DOI

Mehta M., Dhanjal D.S., Paudel K.R., Singh B., Gupta G., Rajeshkumar S., Thangavelu L., Tambuwala M.M., Bakshi H.A., Chellappan D.K., et al. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: An update. Inflammopharmacology. 2020:1–23. doi: 10.1007/s10787-020-00698-3. PubMed DOI

Kessenbrock K., Plaks V., Werb Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 2010;141:52–67. doi: 10.1016/j.cell.2010.03.015. PubMed DOI PMC

He F., Zuo L. Redox roles of reactive oxygen species in cardiovascular diseases. Int. J. Mol. Sci. 2015;16:27770–27780. doi: 10.3390/ijms161126059. PubMed DOI PMC

Panth N., Paudel K.R., Parajuli K. Reactive oxygen species: A key hallmark of cardiovascular disease. Adv. Med. 2016;2016:9152732. doi: 10.1155/2016/9152732. PubMed DOI PMC

Sag C.M., Santos C.X., Shah A.M. Redox regulation of cardiac hypertrophy. J. Mol. Cell Cardiol. 2014;73:103–111. doi: 10.1016/j.yjmcc.2014.02.002. PubMed DOI

Zhou T., Prather E.R., Garrison D.E., Zuo L. Interplay between ROS and antioxidants during ischemia-reperfusion injuries in cardiac and skeletal muscle. Int. J. Mol. Sci. 2018;19:417. doi: 10.3390/ijms19020417. PubMed DOI PMC

Van der Pol A., Van Gilst W.H., Voors A.A., Van der Meer P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail. 2019;21:425–435. doi: 10.1002/ejhf.1320. PubMed DOI PMC

Uttara B., Singh A.V., Zamboni P., Mahajan R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009;7:65–74. doi: 10.2174/157015909787602823. PubMed DOI PMC

Liu Z., Zhou T., Ziegler A.C., Dimitrion P., Zuo L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev. 2017;2017:2525967. doi: 10.1155/2017/2525967. PubMed DOI PMC

Khaltaev N., Axelrod S. Chronic respiratory diseases global mortality trends, treatment guidelines, life style modifications, and air pollution: Preliminary analysis. J. Thorac. Dis. 2019;11:2643–2655. doi: 10.21037/jtd.2019.06.08. PubMed DOI PMC

Boukhenouna S., Wilson M.A., Bahmed K., Kosmider B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxid. Med. Cell. Longev. 2018;2018:5730395. doi: 10.1155/2018/5730395. PubMed DOI PMC

Thimmulappa R.K., Chattopadhyay I., Rajasekaran S. Oxidative stress mechanisms in the pathogenesis of environmental lung diseases. In: Chakraborti S., Chakraborti T., Ghosh R., Ganguly N.K., Parinandni N.L., editors. Oxidative Stress in Lung Diseases. Volume 2. Springer; Singapore: 2020. pp. 103–137.

Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., Squadrito F., Altavilla D., Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763. PubMed DOI PMC

Young I.S., Woodside J.V. Antioxidants in health and disease. J. Clin. Pathol. 2001;54:176–186. doi: 10.1136/jcp.54.3.176. PubMed DOI PMC

Matill H.A. Antioxidants. Annu. Rev. Biochem. 1947;16:177–192. doi: 10.1146/annurev.bi.16.070147.001141. PubMed DOI

German J. Food processing and lipid oxidation. Adv. Exp. Med. Biol. 1999;459:23–50. PubMed

Jacob R. Three eras of vitamin C discovery. Subcell. Biochem. 1996;25:1–16. PubMed

Knight J. Free radicals: Their history and current status in aging and disease. Ann. Clin. Lab. Sci. 1998;28:331–346. PubMed

Halliwell B. How to characterize an antioxidant- An update. Biochem. Soc. Symp. 1995;61:73–101. PubMed

Shi H.L., Noguchi N., Niki N. Comparative study on dynamics of antioxidative action of α- tocopheryl hydroquinone, ubiquinoland α- tocopherol, against lipid peroxidation. Free Radic. Biol. Med. 1999;27:334–346. doi: 10.1016/S0891-5849(99)00053-2. PubMed DOI

Levine M., Ramsey S.C., Daruwara R. Criteria and recommendation for vitamin C intake. JAMA. 1991;281:1415–1423. doi: 10.1001/jama.281.15.1415. PubMed DOI

Yang X., Sun Z., Wang W., Zhou Q., Shi G., Wei F., Jiang G. Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. Sci. Total. Environ. 2018;643:559–568. doi: 10.1016/j.scitotenv.2018.06.213. PubMed DOI

Aguilera Y., Martin-Cabrejas M.A., González de Mejia E. Phenolic compounds in fruits and beverages consumed as part of the mediterranean diet: Their role in prevention of chronic diseases. Phytochem. Rev. 2016;15:405–423. doi: 10.1007/s11101-015-9443-z. DOI

Faustino M., Veiga M., Sousa P., Costa E.M., Silva S., Pintado M. Agro-food byproducts as a new source of natural food additives. Molecules. 2019;24:1056. doi: 10.3390/molecules24061056. PubMed DOI PMC

Chandra P., Sharma R.K., Arora D.S. Antioxidant compounds from microbial sources: A review. Food Res. Int. 2020;129:108849. doi: 10.1016/j.foodres.2019.108849. PubMed DOI

Dey T.B., Chakraborty S., Jain K.K., Sharma A., Kuhad R.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci. Technol. 2016;53:60–74.

Brewer M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011;10:221–247. doi: 10.1111/j.1541-4337.2011.00156.x. DOI

Kozarski M., Klaus A., Jakovljevic D., Todorovic N., Vunduk J., Petrović P., Niksic M., Niksic M.M., Griensven L.V. Antioxidants of edible mushrooms. Molecules. 2015;20:19489–19525. doi: 10.3390/molecules201019489. PubMed DOI PMC

Ferreira I.C.F.R., Barros L., Abreu R.M.V. Antioxidants in wild mushrooms. Curr. Med. Chem. 2009;16:1543–1560. doi: 10.2174/092986709787909587. PubMed DOI

Munir N., Sharif N., Naz S., Manzoor F. Algae: A potent antioxidant source. Sky J. Microbiol. Res. 2013;1:22–31.

Venkatesan J., Kim S.K., Shim S.K. Antimicrobial, antioxidant, and anticancer activities of biosynthesized silver nanoparticles using marine algae Ecklonia cava. Nanomaterials. 2016;6:235. doi: 10.3390/nano6120235. PubMed DOI PMC

Fernández-Moriano C., Gómez-Serranillos M.P., Crespo A. Antioxidant potential of lichen species and their secondary metabolites. A systematic review. Pharm. Biol. 2015;54:1–17. doi: 10.3109/13880209.2014.1003354. PubMed DOI

Hu B., Liu X., Zhang C., Zeng X. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. J. Food Drug. Anal. 2017;25:3–15. doi: 10.1016/j.jfda.2016.11.004. PubMed DOI PMC

Eftekhari A., Ahmadian E., Panahi-Azar V., Hosseini H., Tabibiazar M., Dizaj S.M. Hepatoprotective and free radical scavenging actions of quercetin nanoparticles on aflatoxin B1-induced liver damage: In vitro/in vivo studies. Artif. Cells Nanomed. Biotechnol. 2017;46:411–420. doi: 10.1080/21691401.2017.1315427. PubMed DOI

Eftekhari A., Dizaj S.M., Chodari L., Sunar S., Hasanzadeh A., Ahmadian E., Hasanzadeh M. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed. Pharmacother. 2018;103:1018–1027. doi: 10.1016/j.biopha.2018.04.126. PubMed DOI

Nelson B.C., Johnson M.E., Walker M.L., Riley K.R., Sims C.M. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants. 2016;5:15. doi: 10.3390/antiox5020015. PubMed DOI PMC

Eriksson P., Tal A.A., Skallberg A., Brommesson C., Hu Z., Boyd R.D., Olovsson W., Fairley N., Abrikosov I.A., Zhang X., et al. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Sci. Rep. 2018;8:6999. doi: 10.1038/s41598-018-25390-z. PubMed DOI PMC

Das S., Dowding J.M., Klump K.E., McGinnis J.F., Self W., Seal S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine. 2013;8:1483–1508. doi: 10.2217/nnm.13.133. PubMed DOI

Deshpande S., Patil S., Kuchibhatla S.V.N.T., Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005;87:133113. doi: 10.1063/1.2061873. DOI

Kim C.K., Kim T., Choi I.Y., Soh M., Kim D., Kim Y.J., Jang H., Yang H.S., Kim J.Y., Park H.K., et al. Ceria nanoparticles that can protect against ischemic stroke. Angew. Chem. Int. Ed. Engl. 2012;51:11039–11043. doi: 10.1002/anie.201203780. PubMed DOI

Hirst S.M., Karakoti A., Singh S., Self W., Tyler R., Seal S., Reilly C.M. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Envrion. Toxicol. 2013;28:107–118. doi: 10.1002/tox.20704. PubMed DOI

Caputo F., Nicola M.D., Sienkiewicz A., Giovanetti A., Bejarano I., Licoccia S., Traversa E., Ghibelli L. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. Nanoscale. 2015;7:15643–15656. doi: 10.1039/C5NR03767K. PubMed DOI

Sonaje K., Italia J.L., Sharma G., Bhardwaj V., Tikoo K., Kumar M.N.V.R. Development of biodegradable nanoparticles for oral delivery of ellagic acid and evaluation of their antioxidant efficacy against cyclosporine A-induced nephrotoxicity in rats. Pharm. Res. 2007;24:899–908. doi: 10.1007/s11095-006-9207-y. PubMed DOI

Yun X., Maximov V.D., Yu J., Zhu H., Vertegel A.A., Kindly M.S. Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury. J. Cereb. Blood Flow. Metab. 2013;33:583–592. doi: 10.1038/jcbfm.2012.209. PubMed DOI PMC

Chorny M., Hood E., Levy R.J., Muzykantov V.R. Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles. J. Control. Release. 2010;146:144–151. doi: 10.1016/j.jconrel.2010.05.003. PubMed DOI PMC

Reddy M.K., Labhasetwar V. Nanoparticle-mediated delivery of superoxide dismutase to the brain: An effective strategy to reduce ischemia-reperfusion injury. FASEB J. 2009;23:1384–1395. doi: 10.1096/fj.08-116947. PubMed DOI

Fan Y., Yi J., Zhang Y., Yokoyama W. Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity. Food Chem. 2018;239:1210–1218. doi: 10.1016/j.foodchem.2017.07.075. PubMed DOI

Elle R.E., Rahmani S., Lauret C., Morena M., Bidel L.P.R., Boulahtouf A., Balaguer P., Cristol J.P., Durand J.O., Charnay C., et al. Functionalized mesoporous silica nanoparticle with antioxidants as a new carrier that generates lower oxidative stress impact on cells. Mol. Pharm. 2016;13:2647–2660. doi: 10.1021/acs.molpharmaceut.6b00190. PubMed DOI

Tzankova V., Aluani D., Kondeva-Burdina M., Yordanov Y., Odzhakov F., Apostolov A., Yoncheva K. Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed. Pharmacother. 2017;92:569–579. doi: 10.1016/j.biopha.2017.05.008. PubMed DOI

Trombino S., Cassano R., Ferrarelli T., Barone E., Picci N., Mancuso C. Trans-ferulic acid-based solid lipid nanoparticles and their antioxidant effect in rat brain microsomes. Colloids Surf. B Biointerfaces. 2013;109:273–279. doi: 10.1016/j.colsurfb.2013.04.005. PubMed DOI

Du L., Li J., Chen C., Liu Y. Nanocarrier: A potential tool for future antioxidant therapy. Free Radic. Res. 2014;48:1061–1069. doi: 10.3109/10715762.2014.924625. PubMed DOI

Hans M., Lowman A. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 2002;6:319–327. doi: 10.1016/S1359-0286(02)00117-1. DOI

Vila A., Sanchez A., Tobıo M., Calvo P., Alonso M. Design of biodegradable particles for protein delivery. J. Control. Release. 2002;78:15–24. doi: 10.1016/S0168-3659(01)00486-2. PubMed DOI

Shah B.R., Zhang C., Li Y., Li B. Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and pickering emulsion based on chitosan-tripolyphosphate nanoparticles. Food Res. Int. 2016;89:399–407. doi: 10.1016/j.foodres.2016.08.022. PubMed DOI

Pu H.L., Chiang W.L., Maiti B., Liao Z.X., Ho Y.C., Shim M.S., Chuang E.Y., Xia Y., Sung H.W. Nanoparticles with dual responses to oxidative stress and reduced pH for drug release and anti-inflammatory applications. ACS Nano. 2014;8:1213–1221. doi: 10.1021/nn4058787. PubMed DOI

Patil S.P., Kumbhar S.T. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. Biochem. Biophys. Rep. 2017;10:76–81. PubMed PMC

Saratale R.G., Benelli G., Kumar G., Kim D.S., Saratale G.D. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ. Sci. Pollut. Res. 2018;25:10392–10406. doi: 10.1007/s11356-017-9581-5. PubMed DOI

Phull A.R., Abbas Q., Ali A., Raza H., Kim S.J., Zia M., Haq I.U. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future J. Pharm. Sci. 2016;2:31–36. doi: 10.1016/j.fjps.2016.03.001. DOI

Sriranjani R., Srinithya B., Vellingiri V., Brindha P., Anthony S.P., Sivasubramanian A., Muthuraman M.S. Silver nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities. J. Mol. Liq. 2016;220:926–930. doi: 10.1016/j.molliq.2016.05.042. DOI

Kalaiyarasan T., Bharti V.K., Chaurasia O.P. One pot green preparation of Seabuckthorn silver nanoparticles (SBT@AgNPs) featuring high stability and longevity, antibacterial, antioxidant potential: A nano disinfectant future perspective. RSC Adv. 2017;7:51130–51141. doi: 10.1039/C7RA10262C. PubMed DOI PMC

Sharma B., Deswal R. Single pot synthesized gold nanoparticles using Hippophae rhamnoides leaf and berry extract showed shape-dependent differential nanobiotechnological applications. Artif. Cells Nanomed. Biotechnol. 2018;46:408–418. doi: 10.1080/21691401.2018.1458034. PubMed DOI

Das D., Ghosh R., Mandal P. Biogenic synthesis of silver nanoparticles using S1 genotype of Morus alba leaf extract: Characterization, antimicrobial and antioxidant potential assessment. SN Appl. Sci. 2019;1:498. doi: 10.1007/s42452-019-0527-z. DOI

Sathishkumar G., Jha P.K., Vignesh V., Rajkuberan C., Jeyaraj M., Selvakumar M., Jha R., Sivaramakrishnan S. Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity. J. Mol. Liq. 2016;215:229–236.

Patra J.K., Das G., Baek K.H. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. J. Photochem. Photobiol. B. 2016;161:200–210. doi: 10.1016/j.jphotobiol.2016.05.021. PubMed DOI

Mohanta Y.K., Panda S.K., Jayabalan R., Sharma N., Bastia A.K., Mohanta T.K. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.) Front. Mol. Biosci. 2017;4:14. doi: 10.3389/fmolb.2017.00014. PubMed DOI PMC

Hamelian M., Zangeneh M.M., Amisama A., Varmira K., Veisi H. Green synthesis of silver nanoparticles using Thymus kotschyanus extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Appl. Organomet. Chem. 2018;32:e4458. doi: 10.1002/aoc.4458. DOI

Chandra H., Patel D., Kumari P., Jangwan J.S., Yadav S. Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;102:212–220. doi: 10.1016/j.msec.2019.04.035. PubMed DOI

Veena S., Devasena T., Sathak S.S.M., Yasasve M., Vishal L.A. Green synthesis of gold nanoparticles from Vitex negundo leaf extract: Characterization and in vitro evaluation of antioxidant-antibacterial activity. J. Clust. Sci. 2019;30:1591–1597. doi: 10.1007/s10876-019-01601-z. DOI

Keshari A.K., Srivastava R., Singh P., Yadav V.B., Nath G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med. 2020;11:37–44. doi: 10.1016/j.jaim.2017.11.003. PubMed DOI PMC

Subbaiy R., Selvam M.M. Green synthesis of copper nanoparticles from Hibicus rosasinensis and their antimicrobial, antioxidant activities. Res. J. Pharm. Biol. Chem. Sci. 2015;6:1183–1190.

Ghosh S., More P., Nitnavare R., Jagtap S., Chippalkatti R., Derle A., Kitture R., Asok A., Kale S., Singh S., et al. Antidiabetic and antioxidant properties of copper nanoparticles synthesized by medicinal plant Dioscorea bulbifera. J. Nanomed. Nanotechnol. 2015;S6:007.

Sarkar J., Chakraborty N., Chatterjee A., Bhattacharjee A., Dasgupta D., Acharya K. Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. Nanomaterials. 2020;10:312. doi: 10.3390/nano10020312. PubMed DOI PMC

Dobrucka R. Antioxidant and catalytic activity of biosynthesized CuO nanoparticles using extract of Galeopsidis herba. J. Inorg. Organomet. Polym. Mater. 2018;28:812–819. doi: 10.1007/s10904-017-0750-2. DOI

Rajeshkumar S., Menon S., Kumar S.V., Tambuwala M.M., Bakshi H.A., Mehta M., Satija S., Gupta G., Chellappan D.K., Thangavelu L., et al. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J. Photochem. Photobiol. 2019;197:111531. doi: 10.1016/j.jphotobiol.2019.111531. PubMed DOI

Harshiny M., Iswarya C.N., Matheswaran M. Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaves extract as reducing agents. Powder Technol. 2015;286:744–749. doi: 10.1016/j.powtec.2015.09.021. DOI

Muthukumar H., Manickam M. Amaranthus spinosus leaf extract mediated FeO nanoparticles: Physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain. Chem. Eng. 2015;3:3149–3156. doi: 10.1021/acssuschemeng.5b00722. DOI

Tuzun B.S., Fafal T., Tastan P., Kivcak B., Yelken B.O., Kayabasi C., Susluer S.Y., Gunduz C. Structural characterization, antioxidant and cytotoxic effects of iron nanoparticles synthesized using Asphodelus aestivus Brot. aqueous extract. Green Process. Synth. 2020;9:153–163. doi: 10.1515/gps-2020-0016. DOI

Srihasam S., Thyagarajan K., Korivi M., Lebaka V.R., Mallem S.P.R. Phytogenic generation of NiO nanoparticles using Stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomolecules. 2020;10:89. doi: 10.3390/biom10010089. PubMed DOI PMC

Markus J., Mathiyalagan R., Kim Y.J., Abbai R., Singh P., Ahn S., Perez Z.E.J., Hurh J., Yang D.C. Intracellularsynthesis of goldnanoparticles with antioxidantactivity by probiotic Lactobacillus kimchicus DCY51T isolated from Koreankimchi. Enzym. Microb. Technol. 2016;95:85–93. doi: 10.1016/j.enzmictec.2016.08.018. PubMed DOI

Baygar T., Ugur A. Biosynthesis of silver nanoparticles by Streptomyces griseorubens isolated from soil and their antioxidant activity. IET Nanobiotechnol. 2017;11:286–291. doi: 10.1049/iet-nbt.2015.0127. PubMed DOI PMC

Oladipo I.C., Lateef A., Elegbede J.A., Azeez M.A., Asafa T.M., Yekeen T.A., Akinboro A., Gueguim-Kana E.B., Beukes L.S., Oluyide T.O., et al. Enterococcus species for the one-pot biofabrication of gold nanoparticles: Characterization and nanobiotechnological applications. J. Photochem. Photobiol. B. 2017;173:250–257. doi: 10.1016/j.jphotobiol.2017.06.003. PubMed DOI

Veeraapandian S., Sawant S.N., Doble M. Antibacterial and antioxidant activity of protein capped silver and gold nanoparticles synthesized with Escherichia coli. J. Bimed. Nanotechnol. 2012;8:140–148. doi: 10.1166/jbn.2012.1356. PubMed DOI

Shanmugasundaram T., Radhakrishnan M., Gopikrishnan V., Pazhanimurugan R., Balagurunathan R. A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles. Colloids Surf. B Biointerfaces. 2013;111:680–687. doi: 10.1016/j.colsurfb.2013.06.045. PubMed DOI

Ramya S., Shanmugasundaram T., Balagurunathan R. Biomedical potential of actinobacterially synthesised selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J. Trace Elem. Med. Biol. 2015;32:30–39. doi: 10.1016/j.jtemb.2015.05.005. PubMed DOI

Torres S.K., Campos V.L., León C.G., Rodríguez-Llamazares S.M., Rajos S.M., González M., Smith C., Mondaca M.A. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J. Nanopart Res. 2012;14:1236. doi: 10.1007/s11051-012-1236-3. DOI

Sowani H., Mohite P., Munot H., Shouche Y., Bapat T., Kumar A.R., Kulkarni M., Zinjarde S. Green synthesis of gold and silver nanoparticles by an Actinomycete Gordonia amicalis HS-11: Mechanistic aspects and biological application. Process Biochem. 2016;51:374–383. doi: 10.1016/j.procbio.2015.12.013. DOI

Sivasankar P., Seedevi P., Poongodi S., Sivakumar M., Murugan T., Sivakumar L., Sivakumar K. Characterization, antimicrobial and antioxidant property of exopolysaccharide mediated silver nanoparticles synthesized by Streptomyces violaceus MM72. Carbohydr. Polym. 2018;181:752–759. doi: 10.1016/j.carbpol.2017.11.082. PubMed DOI

Moghaddam A.B., Moniri M., Azizi S., Rahim R.A., Ariff A.B., Saad W.Z., Namvar F., Navaderi M., Mohamad R. Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules. 2017;22:872. doi: 10.3390/molecules22060872. PubMed DOI PMC

Netala V.R., Bethu M.S., Pushpalatha B., Baki V.B., Aishwarya S., Rao J.V., Tartte V. Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int. J. Nanomed. 2016;11:5683–5696. doi: 10.2147/IJN.S112857. PubMed DOI PMC

Manjunath H.M., Joshi C.G., Danagoudar A., Poyya J., Kudva A.K., Dhananjaya B.L. Biogenic synthesis of gold nanoparticles by marine endophytic fungus-Cladosporium cladosporioides isolated from seaweed and evaluation of their antioxidant and antimicrobial properties. Process Biochem. 2017;63:137–144.

Manjunath H.M., Joshi C.G. Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus- Cladosporium cladosporioides. Process Biochem. 2019;82:199–204. doi: 10.1016/j.procbio.2019.04.011. DOI

Netala V.R., Kotakadi V.S., Bobbu P., Gaddam S.A., Tartte V. Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti microbial studies. 3Biotech. 2016;6:132. doi: 10.1007/s13205-016-0433-7. PubMed DOI PMC

Saravanakumar K., Wang M.H. Trichoderma based synthesis of anti-pathogenic silver nanoparticles and their characterization, antioxidant and cytotoxicity properties. Microb. Pathog. 2018;114:269–273. doi: 10.1016/j.micpath.2017.12.005. PubMed DOI

Gao Y., Anand M.A.V., Ramachandran V., Karthikkumar V., Shalini V., Vijayalakshmi S., Ernest D. Biofabrication of zinc oxide nanoparticles from Aspergillus niger, their antioxidant, antimicrobial and anticancer activity. J. Clust. Sci. 2019;30:937–946. doi: 10.1007/s10876-019-01551-6. DOI

Govindappa M., Farheen H., Chandrappa C.P., Rai R.V., Raghavendra V.B. Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016;7:035014. doi: 10.1088/2043-6262/7/3/035014. DOI

Nagajyothi P.C., Sreekanth T.V.M., Lee J.I., Lee K.D. Mycosynthesis: Antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract. J. Photochem. Photobiol. B. 2014;130:299–304. doi: 10.1016/j.jphotobiol.2013.11.022. PubMed DOI

Popli D., Anil V., Subramanyam A.B., Namratha M.N., Ranjitha V.R., Rao S.N., Rai R.V., Govindappa M. Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artif. Cells Nanomed. Biotechnol. 2018;46:676–683. doi: 10.1080/21691401.2018.1434188. PubMed DOI

Sriramulu M., Sumathi S. Photocatalytic, antioxidant, antibacterial and anti-inflammatory activity of silver nanoparticles synthesised using forest and edible mushroom. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017;8:045012. doi: 10.1088/2043-6254/aa92b5. DOI

Lee K.D., Nagajyothi P.C., Sreekanth T.V.M., Park S. Eco-friendly synthesis of gold nanoparticles (AuNPs) using Inonotus obliquus and their antibacterial, antioxidant and cytotoxic activities. J. Ind. Eng. Chem. 2015;26:67–72. doi: 10.1016/j.jiec.2014.11.016. DOI

Aygün A., Özdemir S., Gülcan M., Cellat K., Şen F. Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. J. Pharm. Bimed. Anal. 2020;178:112970. doi: 10.1016/j.jpba.2019.112970. PubMed DOI

Poudel M., Pokharel R., Sudip K.C., Awal S.C., Pradhananga R. Biosynthesis of silver nanoparticles using Ganoderma Lucidum and assessment of antioxidant and antibacterial activity. Int. J. Appl. Sci. Biotechnol. 2017;5:523–531. doi: 10.3126/ijasbt.v5i4.18776. DOI

Naveena B.E., Prakash S. Biological synthesis of gold nanoparticles using marine algae Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian J. Pharm. Clin. Res. 2013;6:179–182.

Sharma B., Purkayastha D.D., Hazra S., Thajamanbi M., Bhattacharjee C.R., Ghosh N.N., Rout J. Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C.Ag. and antioxidant activity of biomatrix loaded nanoparticles. Bioprocess Biosyst. Eng. 2014;37:2559–2565. doi: 10.1007/s00449-014-1233-2. PubMed DOI

Dasari S., Suresh K.A., Rajesh M., Reddy C.S.S., Hemalatha C.S., Wudayagiri R., Valluru L. Biosynthesis, characterization, antibacterial and antioxidant activity of silver nanoparticles produced by lichens. J. Bionanosci. 2013;7:237–244. doi: 10.1166/jbns.2013.1140. DOI

Debnath R., Purkayastha D.D., Hazra S., Ghosh N.N., Bhattacharjee C.R., Rout J. Biogenic synthesis of antioxidant, shape selective gold nanomaterials mediated by high altitude lichens. Mater. Lett. 2016;169:58–61. doi: 10.1016/j.matlet.2016.01.072. DOI

Kumar H., Bhardwaj K., Kuča K., Kalia A., Nepovimova E., Verma R., Kumar D. Flower-basedgreensynthesis of metallicnanoparticles: Applicationsbeyondfragrance. Nanomaterials. 2020;10:766. doi: 10.3390/nano10040766. PubMed DOI PMC

Guajardo-Pachecoa M.J., Morales-Sanchz J.E., González-Hernándezc J., Ruiz F. Synthesis of copper nanoparticles using soybeans as a chelant agent. Mater. Lett. 2010;64:1361–1364. doi: 10.1016/j.matlet.2010.03.029. DOI

Xi Y., Hu C., Gao P., Yang R., He X., Wang X., Wan B. Morphology and phase selective synthesis of CuxO (x = 1, 2) nanostructures and their catalytic degradation activity. Mater. Sci. Eng. B. 2010;166:113–117. doi: 10.1016/j.mseb.2009.10.008. DOI

He Y. A novel solid-stabilized emulsion approach to CuO nanostructures microspheres. Mater. Res. Bull. 2007;42:190–195. doi: 10.1016/j.materresbull.2006.05.020. DOI

Motogoshi R., Oku T., Suzuki A., Kikuchi K., Kikuchi S., Jeyadevan B., Cuya J. Fabrication and characterization of cupprious oxide: Fullerene solar cells. Synth. Met. 2010;160:1219–1222. doi: 10.1016/j.synthmet.2010.03.012. DOI

Herlekar M., Barve S., Kumar R. Plant-mediated green synthesis of iron nanoparticles. J. Nanopart. Res. 2014;2014:140614. doi: 10.1155/2014/140614. DOI

Huber D.L. Synthesis, properties, and applications of iron nanoparticles. Small. 2005;1:482–501. doi: 10.1002/smll.200500006. PubMed DOI

Guo J., Wang R., Tjiu W.W., Pan J., Liu T. Synthesis of Fe nanoparticles@ graphene composites for environmental applications. J. Hazard. Mater. 2012;225:63–73. doi: 10.1016/j.jhazmat.2012.04.065. PubMed DOI

Babay S., Mhiri T., Toumi M. Synthesis, structural and spectroscopic characterizations of maghemite γ-Fe2O3 prepared by one-step coprecipitation route. J. Mol. Struct. 2015;1085:286–293. doi: 10.1016/j.molstruc.2014.12.067. DOI

Saleh N., Kim H.J., Phenrat T., Matyjaszewski K., Tilton R.D., Lowry G.V. Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ. Sci. Technol. 2008;42:3349–3355. doi: 10.1021/es071936b. PubMed DOI

Kim H.J., Kim D.G., Yoon H., Choi Y.S., Yoon J., Lee J.C. Polyphenol/FeIII complex coated membranes having multifunctional properties prepared by a one-step fast assembly. Adv. Mater. Interfaces. 2015;2:1500298. doi: 10.1002/admi.201500298. DOI

Yang L., Cao Z., Sajja H.K., Mao H., Wang L., Geng H., Xu H., Jiang T., Wood W.C., Nie S., et al. Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J. Biomed. Nanotechnol. 2008;4:439–449. doi: 10.1166/jbn.2008.007. PubMed DOI PMC

Ebrahiminezhad A., Zare-Hoseinabadi A., Sarmah A.K., Taghizadeh S., Ghasemi Y., Berenjian A. Plant-mediated synthesis and applications of iron nanoparticles. Mol. Biotechnol. 2018;60:154–168. doi: 10.1007/s12033-017-0053-4. PubMed DOI

Agarwal H., Kumar S.V., Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles -An eco-friendly approach. Res. Effic. Technol. 2017;3:406–413. doi: 10.1016/j.reffit.2017.03.002. DOI

Jayaseelan C., Rahuman A.A., Kirthi A.V., Marimuthu S., Santhoshkumar T., Bagavan A., Guarav K., Karthik L., Rao K.V. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012;90:78–84. doi: 10.1016/j.saa.2012.01.006. PubMed DOI

Pulit-prociak J., Chwastowski J., Kucharski A., Banach M. Applied surface science functionalization of textiles with silver and zinc oxide nanoparticles. Appl. Surf. Sci. 2016;385:543–553. doi: 10.1016/j.apsusc.2016.05.167. DOI

Wodka D., Bielaníska E., Socha R.P., Elzbieciak-Wodka M., Gurgul J., Nowak P., Warszyński P., Kumakiri I. Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS Appl. Mater. Interfaces. 2010;2:1945–1953. doi: 10.1021/am1002684. PubMed DOI

Wadhwani S.A., Shedbalkar U.U., Singh R., Chopade B.A. Biogenic selenium nanoparticles: Current status and future prospects. Appl. Microbiol. Biotechnol. 2016;100:2555–2566. doi: 10.1007/s00253-016-7300-7. PubMed DOI

Li Y., Li X., Zheng W., Fan C., Zhang Y., Chen T. Functionalized selenium nanoparticles with nephroprotective activity, the important roles of ROS mediated signaling pathways. J. Mater. Chem. 2013;1:6365–6372. doi: 10.1039/c3tb21168a. PubMed DOI

Din M.I., Rani A. Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: A green adeptness. Int. J. Anal. Chem. 2016;2016:3512145. PubMed PMC

Saxena A., Kumar K., Mozumdar S. Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative couplingof thiols. J. Mol. Catal. A Chem. 2007;269:35–40. doi: 10.1016/j.molcata.2006.12.042. DOI

Alonso F., Riente P., Yus M. Hydrogen-transfer reduction of carbonyl compounds promoted by nickel nanoparticles. Tetrahedron. 2008;64:1847–1852. doi: 10.1016/j.tet.2007.11.093. DOI

Dhakshinamoorthy A., Pitchumani K. Clay entrapped nickel nanoparticles as efficient and recyclable catalysts forhydrogenation of olefins. Tetrahedron Lett. 2008;49:1818–1823. doi: 10.1016/j.tetlet.2008.01.061. DOI

Alonso F., Riente P., Yus M. Wittig-type olefination of alcohols promoted by nickel nanoparticles: Synthesis ofpolymethoxylated and polyhydroxylated stilbenes. Eur. J. Org. Chem. 2009;2009:6034–6042. doi: 10.1002/ejoc.200900951. DOI

Alonso F., Riente P., Yus M. Alcohols for the α-alkylationof methyl ketones and indirect aza-wittig reaction promoted bynickel nanoparticles. Eur. J. Org. Chem. 2008;2008:4908–4914. doi: 10.1002/ejoc.200800729. DOI

Li X.K., Ji W.J., Zhao J., Wang S.J., Au C.T. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15. J. Catal. 2005;236:181–189. doi: 10.1016/j.jcat.2005.09.030. DOI

Li Y., Zhang B., Xie X., Liu J., Xu Y., Shen W. Novel Nicatalysts for methane decomposition to hydrogen and carbonnanofibers. J. Catal. 2006;238:412–424. doi: 10.1016/j.jcat.2005.12.027. DOI

Al-Rawi M., Diabaté S., Weiss C. Uptake and intracellular localization of submicron and nano-sized SiO₂ particles in HeLa cells. Arch Toxicol. 2011;85:813–826. doi: 10.1007/s00204-010-0642-5. PubMed DOI

Hussain S.M., Hess K.L., Gearhart J.M., Geiss K.T., Schlager J.J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. Vitr. 2005;19:975–983. doi: 10.1016/j.tiv.2005.06.034. PubMed DOI

Clift M.J.D., Rothen-Rutishauser B., Brown D.M., Duffin R., Ronaldson K., Proudfoot L., Guy K., Stone V. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol. Appl. Pharmacol. 2008;232:418–427. doi: 10.1016/j.taap.2008.06.009. PubMed DOI

Rabolli V., Thomassen L.C., Uwambayinema F., Martens J.A., Lison D. The cytotoxic activity of amorphous silica nanoparticles is mainly influenced by surface area and not by aggregation. Toxicol. Lett. 2011;206:197–203. doi: 10.1016/j.toxlet.2011.07.013. PubMed DOI

Morais T., Soares M.E., Duarte J.A., Soares L., Maia S., Gomes P., Pereira E., Fraga S., Carmo H., De Lourdes Bastos M. Effect of surface coating on the biodistribution profile of gold nanoparticles in the rat. Eur. J. Pharm. Biopharm. 2012;80:185–193. doi: 10.1016/j.ejpb.2011.09.005. PubMed DOI

Cho W.S., Cho M., Jeong J., Choi M., Cho H.Y., Han B.S., Kim S.H., Kim H.O., Lim Y.T., Chung B.H., et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 2009;236:16–24. doi: 10.1016/j.taap.2008.12.023. PubMed DOI

Knaapen A.M., Borm P.J., Albrecht C., Schins R.P. Inhaled particles and lung cancer. Part A: Mechanisms. Int. J. Cancer. 2004;109:799–809. doi: 10.1002/ijc.11708. PubMed DOI

Xia T., Kovochich M., Liong M., Mädler L., Gilbert B., Shi H., Yeh J.I., Zink J.I., Nel A.E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2:2121–2134. doi: 10.1021/nn800511k. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace