Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34070179
PubMed Central
PMC8158490
DOI
10.3390/molecules26103005
PII: molecules26103005
Knihovny.cz E-zdroje
- Klíčová slova
- anti-inflammatory, antibacterial, anticancer, conifers, neurodegenerative, oxidative stress, phytoconstituent,
- MeSH
- cévnaté rostliny chemie MeSH
- fytonutrienty chemie terapeutické užití MeSH
- klinické zkoušky jako téma MeSH
- lesy * MeSH
- lidé MeSH
- neuroprotekce účinky léků MeSH
- rostlinné extrakty terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fytonutrienty MeSH
- rostlinné extrakty MeSH
Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers' phytochemicals and illustrates their potential role as drugs.
Biology Department Science and Humanities College Shaqra University Alquwayiyah 11971 Saudi Arabia
Center for Study in Animal Science ICETA University of Porto 4051 401 Porto Portugal
Department of Biochemistry University of Allahabad Allahabad 211002 India
Department of Environmental Biology Sapienza University of Rome Square Aldo Moro 5 00185 Rome Italy
Faculty of Medicine University of Porto 4200 319 Porto Portugal
Institute for Research and Innovation in Health University of Porto 4200 135 Porto Portugal
School of Bioengineering and Biosciences Lovely Professional University Phagwara 144411 India
Zobrazit více v PubMed
Mustafa G., Arif R., Atta A., Sharif S., Jamil A. Bioactive Compounds from Medicinal Plants and Their Importance in Drug Discovery in Pakistan. Matrix Sci. Pharma. 2017;1:17–26. doi: 10.26480/msp.01.2017.17.26. DOI
Abdel-Razek A.S., El-Naggar M.E., Allam A., Morsy O.M., Othman S.I. Microbial natural products in drug discovery. Processes. 2020;8:470. doi: 10.3390/pr8040470. DOI
Yuan H., Ma Q., Ye L., Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016;21:559. doi: 10.3390/molecules21050559. PubMed DOI PMC
Nisar B., Sultan A., Rubab S.L. Comparison of Medicinally Important Natural Products versus Synthetic Drugs-A Short Commentary. Nat. Prod. Chem. Res. 2018;06:308. doi: 10.4172/2329-6836.1000308. DOI
Newman D.J., Cragg G.M., Snader K.M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 2003;66:1022–1037. doi: 10.1021/np030096l. PubMed DOI
Galm U., Shen B. Natural Product Drug Discovery: The Times Have Never Been Better. Chem. Biol. 2007;14:1098–1104. doi: 10.1016/j.chembiol.2007.10.004. PubMed DOI
Akaberi M., Boghrati Z., Amiri M.S., Khayyat M.H., Emami S.A. A Review of Conifers in Iran: Chemistry, Biology and their Importance in Traditional and Modern Medicine. Curr. Pharm. Des. 2020;26:1584–1613. doi: 10.2174/1381612826666200128100023. PubMed DOI
Bhardwaj K., Islam M.T., Jayasena V., Sharma B., Sharma S., Sharma P., Kuča K., Bhardwaj P. Review on essential oils, chemical composition, extraction, and utilization of some conifers in Northwestern Himalayas. Phyther. Res. 2020;34:2889–2910. doi: 10.1002/ptr.6736. PubMed DOI
Bhardwaj K., Dhanjal D.S., Sharma A., Nepovimova E., Kalia A., Thakur S., Bhardwaj S., Chopra C., Singh R., Verma R., et al. Conifer-derived metallic nanoparticles: Green synthesis and biological applications. Int. J. Mol. Sci. 2020;21:9028. doi: 10.3390/ijms21239028. PubMed DOI PMC
Conifers. [(accessed on 15 March 2021)]; Available online: https://portals.iucn.org/library/sites/library/files/documents/1999-024.pdf.
Farjon A. The Kew Review Conifers of the World. Kew Bull. 2018;5974:1–16. doi: 10.1007/s12225-018-9738-5. DOI
Kopaczyk J.M., Warguła J., Jelonek T. The variability of terpenes in conifers under developmental and environmental stimuli. Environ. Exp. Bot. 2020;180:104197. doi: 10.1016/j.envexpbot.2020.104197. DOI
Virjamo V., Fyhrquist P., Koskinen A., Lavola A., Nissinen K., Julkunen-Tiitto R. 1,6-Dehydropinidine Is an Abundant Compound in Picea abies (Pinaceae) Sprouts and 1,6-Dehydropinidine Fraction Shows Antibacterial Activity against Streptococcus equi Subsp. equi. Molecules. 2020;25:4558. doi: 10.3390/molecules25194558. PubMed DOI PMC
Mill R.R., Chase M.W. A new classification and linear sequence of extant gymnosperms. Phytotaxa. 2011;19:55–70.
Sharma A., Sharma L., Goyal R. A review on himalayan pine species: Ethnopharmacological, phytochemical and pharmacological aspects. Pharmacogn. J. 2018;10:611–619. doi: 10.5530/pj.2018.4.100. DOI
Tiberi R., Niccoli A., Curini M., Epifano F., Marcotullio M.C., Rosati O. The role of the monoterpene composition in Pinus spp. needles, in host selection by the pine processionary caterpillar, Thaumetopoea pityocampa. Phytoparasitica. 1999;27:263–272. doi: 10.1007/BF02981482. DOI
Naser B., Bodinet C., Tegtmeier M., Lindequist U. Thuja occidentalis (Arbor vitae): A review of its pharmaceutical, pharmacological and clinical properties. Evid. Based Complement. Altern. Med. 2005;2:69–78. doi: 10.1093/ecam/neh065. PubMed DOI PMC
St-Pierre A., Blondeau D., Bourdeau N., Bley J., Desgagné-Penix I. Chemical Composition of Black Spruce (Picea mariana) Bark Extracts and Their Potential as Natural Disinfectant. Ind. Biotechnol. 2019;15:219–231. doi: 10.1089/ind.2019.0007. DOI
Rafieian-kopaei M., Suleimani dehkordi I., Ghanadian M., Shokrollahi A., Aghaei M., Ayatollahi S.A., Choudhary M.I. Bioactivity-guided isolation of new antiproliferative compounds from Juniperus foetidissima Willd. Nat. Prod. Res. 2016;30:1927–1933. doi: 10.1080/14786419.2015.1101106. PubMed DOI
Barnawi I.O., Nasr F.A., Noman O.M., Alqahtani A.S., Al-Zharani M., Alotaibi A.A., Daradka H.M., Al-Mishari A.A., Alobaid W.A., Alqahtani A., et al. Induction of apoptosis and cell cycle arrest by chloroform fraction of Juniperus phoenicea and chemical constituents analysis. Open Chem. 2021;19:119–127. doi: 10.1515/chem-2021-0195. DOI
Osuna-Torres L., García-Martí X., Ventura-Zapata E., López-Upton J., Zamilpa-Alvarez A., González-Cortazar M., Herrera-Ruiz M., Tapia-Barrera N. Taxus globosa Schltdl. (Mexican yew) and Taxus baccata L. (European yew): Intra and interspecies analysis of taxol content and biological activity according to different sources. For. Syst. 2015;24:16. doi: 10.5424/fs/2015243-07545. DOI
Qayum M., Nisar M., Shah M.R., Adhikari A., Kaleem W.A., Khan I., Khan N., Gul F., Khan I.A., Zia-Ul-Haq M., et al. Analgesic and antiinflammatory activities of taxoids from Taxus wallichiana Zucc. Phyther. Res. 2012;26:552–556. doi: 10.1002/ptr.3574. PubMed DOI
Kusumoto N., Aburai N., Ashitani T., Takahashi K., Kimura K. Pharmacological Prospects of Oxygenated Abietane-Type Diterpenoids from Taxodium distichum Cones. Adv. Biol. Chem. 2014;04:109–115. doi: 10.4236/abc.2014.42015. DOI
Muto N., Tomokuni T., Haramoto M., Tatemoto H., Nakanishi T., Inatomi Y., Murata H., Inada A. Isolation of apoptosis- and differentiation-inducing substances toward human promyelocytic leukemia HL-60 cells from leaves of Juniperus taxifolia. Biosci. Biotechnol. Biochem. 2008;72:477–484. doi: 10.1271/bbb.70570. PubMed DOI
Kim C.S., Subedi L., Kim S.Y., Choi S.U., Kim K.H., Lee K.R. Diterpenes from the Trunk of Abies holophylla and Their Potential Neuroprotective and Anti-inflammatory Activities. J. Nat. Prod. 2016;79:387–394. doi: 10.1021/acs.jnatprod.5b01053. PubMed DOI
Bajpai V.K., Sharma A., Kang S.C., Baek K.H. Antioxidant, lipid peroxidation inhibition and free radical scavenging efficacy of a diterpenoid compound sugiol isolated from Metasequoia glyptostroboides. Asian Pac. J. Trop. Med. 2014;7:9–15. doi: 10.1016/S1995-7645(13)60183-2. PubMed DOI
Tavares W., Seca A. The Current Status of the Pharmaceutical Potential of Juniperus L. Metabolites. Medicines. 2018;5:81. doi: 10.3390/medicines5030081. PubMed DOI PMC
Tawara J.N., Blokhin A., Foderaro T.A., Stermitz F.R., Hope H. Toxic Piperidine Alkaloids from Pine (Pinus) and Spruce (Picea) Trees. New Structures and a Biosynthetic Hypothesis. J. Org. Chem. 1993;58:4813–4818. doi: 10.1021/jo00070a014. DOI
Küpeli E., Erdemoǧlu N., Yeşilada E., Şener B. Anti-inflammatory and antinociceptive activity of taxoids and lignans from the heartwood of Taxus baccata L. J. Ethnopharmacol. 2003;89:265–270. doi: 10.1016/j.jep.2003.09.005. PubMed DOI
Juyal D., Thawani V., Thaledi S., Joshi M. Ethnomedical properties of Taxus wallichiana Zucc. (Himalayan yew) J. Tradit. Complement. Med. 2014;4:159–161. doi: 10.4103/2225-4110.136544. PubMed DOI PMC
Hafezi K., Hemmati A.A., Abbaszadeh H., Valizadeh A., Makvandi M. Anticancer activity and molecular mechanisms of α-conidendrin, a polyphenolic compound present in Taxus yunnanensis, on human breast cancer cell lines. Phyther. Res. 2020;34:1397–1408. doi: 10.1002/ptr.6613. PubMed DOI
Ivanova D.I., Tashev A.N., Nedialkov P.T., Ilieva Y.E., Atanassova T.N., Olech M., Nowak R., Angelov G., Tsvetanova F.V., Iliev I.A., et al. Antioxidant and antiproliferative activity of Juniperus L. Species of Bulgarian and foreign origin and their anticancer metabolite identification. Bulg. Chem. Commun. 2018;50:144–150.
Kanchan B., Prerna B., Simran K. Medicinal value of secondary metabolites of pines grown in Himalayan region of India. Res. J. Biotechnol. 2020;15:131–140.
Singh S.K., Shanmugavel M., Kampasi H., Singh R., Mondhe D.M., Rao J.M., Adwankar M.K., Saxena A.K., Qazi G.N. Chemically standardized isolates from Cedrus deodara stem wood having anticancer activity. Planta Med. 2007;73:519–526. doi: 10.1055/s-2007-967185. PubMed DOI
Jang Y.P., Kim S.R., Choi Y.H., Kim J., Kim S.G., Markelonis G.J., Oh T.H., Kim Y.C. Arctigenin protects cultured cortical neurons from glutamate-induced neurodegeneration by binding to kainate receptor. J. Neurosci. Res. 2002;68:233–240. doi: 10.1002/jnr.10204. PubMed DOI
Asmi K.S., Lakshmi T., Balusamy S.R., Parameswari R. Therapeutic aspects of taxifolin—An update. J. Adv. Pharm. Educ. Res. 2017;7:187–189.
Hammerbacher A., Kandasamy D., Ullah C., Schmidt A., Wright L.P., Gershenzon J. Flavanone-3-hydroxylase plays an important role in the biosynthesis of spruce phenolic defenses against bark beetles and their fungal associates. Front. Plant Sci. 2019;10:1–15. doi: 10.3389/fpls.2019.00208. PubMed DOI PMC
Michael H.N., Awad H.M., El-Sayed N.H., Paré P.W. Chemical and antioxidant investigations: Norfolk pine needles (Araucaria excelsa) Pharm. Biol. 2010;48:534–538. doi: 10.3109/13880200903177503. PubMed DOI
Ferreira-Santos P., Genisheva Z., Botelho C., Santos J., Ramos C., Teixeira J.A., Rocha C.M.R. Unravelling the biological potential of Pinus pinaster bark extracts. Antioxidants. 2020;9:334. doi: 10.3390/antiox9040334. PubMed DOI PMC
Gascón S., Jiménez-Moreno N., Jiménez S., Quero J., Rodríguez-Yoldi M.J., Ancín-Azpilicueta C. Nutraceutical composition of three pine bark extracts and their antiproliferative effect on Caco-2 cells. J. Funct. Foods. 2018;48:420–429. doi: 10.1016/j.jff.2018.07.040. DOI
Dziedzinski M., Kobus-Cisowska J., Szymanowska D., Stuper-Szablewska K., Baranowska M. Identification of polyphenols from coniferous shoots as natural antioxidants and antimicrobial compounds. Molecules. 2020;25:3527. doi: 10.3390/molecules25153527. PubMed DOI PMC
Fierascu I., Ungureanu C., Avramescu S.M., Cimpeanu C., Georgescu M.I., Fierascu R.C., Ortan A., Sutan A.N., Anuta V., Zanfirescu A., et al. Genoprotective, antioxidant, antifungal and anti-inflammatory evaluation of hydroalcoholic extract of wild-growing Juniperus communis L. (Cupressaceae) native to Romanian southern sub-Carpathian hills. BMC Complement. Altern. Med. 2018;18:1–15. doi: 10.1186/s12906-017-2066-8. PubMed DOI PMC
Branco C.S., Duong A., Machado A.K., Wu A., Scola G., Andreazza A.C., Salvador M. Araucaria angustifolia (Bertol.) Kuntze has neuroprotective action through mitochondrial modulation in dopaminergic SH-SY5Y cells. Mol. Biol. Rep. 2019;46:6013–6025. doi: 10.1007/s11033-019-05037-6. PubMed DOI
Nisar M., Khan I., Ahmad B., Ali I., Ahmad W., Choudhary M.I. Antifungal and antibacterial activities of Taxus wallichiana Zucc. J. Enzym. Inhib. Med. Chem. 2008;23:256–260. doi: 10.1080/14756360701505336. PubMed DOI
Freitas A.M., Almeida M.T.R., Andrighetti-Fröhner C.R., Cardozo F.T.G.S., Barardi C.R.M., Farias M.R., Simões C.M.O. Antiviral activity-guided fractionation from Araucaria angustifolia leaves extract. J. Ethnopharmacol. 2009;126:512–517. doi: 10.1016/j.jep.2009.09.005. PubMed DOI
Al-Sayed E., Gad H.A., El-Shazly M., Abdel-Daim M.M., Nasser Singab A. Anti-inflammatory and analgesic activities of cupressuflavone from Cupressus macrocarpa: Impact on pro-inflammatory mediators. Drug Dev. Res. 2018;79:22–28. doi: 10.1002/ddr.21417. PubMed DOI
Ferrentino G., Haman N., Morozova K., Tonon G., Scampicchio M. Phenolic compounds extracted from spruce (Picea abies) by supercritical carbon dioxide as antimicrobial agents against gram-positive bacteria assessed by isothermal calorimetry. J. Therm. Anal. Calorim. 2020 doi: 10.1007/s10973-020-10100-7. DOI
Hoon L.Y., Choo C., Watawana M.I., Jayawardena N., Waisundara V.Y. Evaluation of the total antioxidant capacity and antioxidant compounds of different solvent extracts of Chilgoza Pine nuts (Pinus gerardiana) J. Funct. Foods. 2015;18:1014–1021. doi: 10.1016/j.jff.2014.07.009. DOI
Lee S.J., Lee S.Y., Hur S.J., Bae Y., II, Jeong C.H. Neuroprotective and antioxidant effects of Metasequoia glyptostroboides leaf extract. Curr. Top. Nutraceutical Res. 2016;14:67–72.
Sahin Yaglioglu A., Eser F. Screening of some Juniperus extracts for the phenolic compounds and their antiproliferative activities. S. Afr. J. Bot. 2017;113:29–33. doi: 10.1016/j.sajb.2017.07.005. DOI
Legault J., Girard-Lalancette K., Dufour D., Pichette A. Antioxidant potential of bark extracts from boreal forest conifers. Antioxidants. 2013;2:77–89. doi: 10.3390/antiox2030077. PubMed DOI PMC
Lantto T.A., Colucci M., Závadová V., Hiltunen R., Raasmaja A. Cytotoxicity of curcumin, resveratrol and plant extracts from basil, juniper, laurel and parsley in SH-SY5Y and CV1-P cells. Food Chem. 2009;117:405–411. doi: 10.1016/j.foodchem.2009.04.018. DOI
Välimaa A.L., Raitanen J.E., Tienaho J., Sarjala T., Nakayama E., Korpinen R., Mäkinen S., Eklund P., Willför S., Jyske T. Enhancement of Norway spruce bark side-streams: Modification of bioactive and protective properties of stilbenoid-rich extracts by UVA-irradiation. Ind. Crops Prod. 2020;145:112150. doi: 10.1016/j.indcrop.2020.112150. DOI
Raiber S., Schröder G., Schröder J. Molecular and enzymatic characterization of two stilbene synthases from Eastern white pine (Pinus strobus) A single Arg/His difference determines the activity and the pH dependence of the enzymes. FEBS Lett. 1995;361:299–302. doi: 10.1016/0014-5793(95)00199-J. PubMed DOI
Hovelstad H., Leirset I., Oyaas K., Fiksdahl A. Screening analyses of pinosylvin stilbenes, resin acids and lignans in Norwegian conifers. Molecules. 2006;11:103–114. doi: 10.3390/11010103. PubMed DOI PMC
Francezon N., Meda N.S.B.R., Stevanovic T. Optimization of bioactive polyphenols extraction from Picea mariana bark. Molecules. 2017;22:2118. doi: 10.3390/molecules22122118. PubMed DOI PMC
Latva-Mäenpää H. Bioactive and Protective Polyphenolics From Roots and Stumps of Conifer Trees (Norway Spruce and Scots Pine) Helsingin Yliopisto; Helsinki, Finland: 2017.
Brodribb T.J., Pittermann J., Coomes D.A. Elegance versus speed: Examining the competition between conifer and angiosperm trees. Int. J. Plant Sci. 2012;173:673–694. doi: 10.1086/666005. DOI
Larter M. Ph.D. Thesis. Université de Bordeaux; Bordeaux, France: 2016. Evolution de la Résistance à la Cavitation Chez les Conifères the Evolution of Cavitation Resistance in Conifers.
Moriguchi Y., Ueno S., Hasegawa Y., Tadama T., Watanabe M., Saito R., Hirayama S., Iwai J., Konno Y. Marker-assisted selection of trees with MALE STERALITY 1 in Cryptomeria japonica D. Don. bioRxiv. 2020:1–10. doi: 10.1101/2020.05.29.114140. DOI
Hussein R.A., El-Anssary A.A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. Herb. Med. 2019;1:13. doi: 10.5772/intechopen.76139. DOI
Singh B., Sharma R.A. Plant terpenes: Defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech. 2015;5:129–151. doi: 10.1007/s13205-014-0220-2. PubMed DOI PMC
Porres-Martínez M., González-Burgos E., Carretero M.E., Pilar Gómez-Serranillos M. In vitro neuroprotective potential of the monoterpenes α-pinene and 1,8-cineole against H2O2-induced oxidative stress in PC12 cells. Z. fur Naturforsch. Sect. C J. Biosci. 2016;71:191–199. doi: 10.1515/znc-2014-4135. PubMed DOI
Da Silveira E Sá R.D.C., Andrade L.N., De Sousa D.P. Sesquiterpenes from essential oils and anti-inflammatory activity. Nat. Prod. Commun. 2015;10:1767–1774. doi: 10.1177/1934578X1501001033. PubMed DOI
Dey P., Kundu A., Kumar A., Gupta M., Lee B.M., Bhakta T., Dash S., Kim H.S. Analysis of Alkaloids (Indole Alkaloids, Isoquinoline Alkaloids, Tropane Alkaloids) Elsevier Inc.; Amsterdam, The Netherlands: 2020.
Thawabteh A., Juma S., Bader M., Karaman D., Scrano L., Bufo S.A., Karaman R. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins. 2019;11:656. doi: 10.3390/toxins11110656. PubMed DOI PMC
Ignat I., Volf I., Popa V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011;126:1821–1835. doi: 10.1016/j.foodchem.2010.12.026. PubMed DOI
Tanase C., Boz I., Stingu A., Volf I., Popa V.I. Physiological and biochemical responses induced by spruce bark aqueous extract and deuterium depleted water with synergistic action in sunflower (Helianthus annuus L.) plants. Ind. Crops Prod. 2014;60:160–167. doi: 10.1016/j.indcrop.2014.05.039. DOI
Tanase C., Cosarcă S., Muntean D.L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules. 2019;24:1182. doi: 10.3390/molecules24061182. PubMed DOI PMC
El Omari N., Ezzahrae Guaouguaou F., El Menyiy N., Benali T., Aanniz T., Chamkhi I., Balahbib A., Taha D., Shariati M.A., Zengin G., et al. Phytochemical and biological activities of Pinus halepensis mill., and their ethnomedicinal use. J. Ethnopharmacol. 2021;268:113661. doi: 10.1016/j.jep.2020.113661. PubMed DOI
Metsämuuronen S., Sirén H. Bioactive phenolic compounds, metabolism and properties: A review on valuable chemical compounds in Scots pine and Norway spruce. Phytochem. Rev. 2019;18:623–664. ISBN 0123456789.
Rodríguez-García C., Sánchez-Quesada C., Gaforio J.J., Gaforio J.J. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants. 2019;8:137. doi: 10.3390/antiox8050137. PubMed DOI PMC
Tsao R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients. 2010;2:1231–1246. doi: 10.3390/nu2121231. PubMed DOI PMC
Nanda S., Mohanty J.N., Mishra R., Joshi R.K. Transgenesis and Secondary Metabolism. Springer; Berlin/Heidelberg, Germany: 2017. Metabolic Engineering of Phenylpropanoids in Plants; pp. 485–510. DOI
Saleem M., Kim J., Ali S., Sup Y. An update on bioactive plant lignans. Nat. Prod. Rep. 2005;22:696–716. doi: 10.1039/b514045p. PubMed DOI
García-Pérez M.E., Royer M., Herbette G., Desjardins Y., Pouliot R., Stevanovic T. Picea mariana bark: A new source of trans-resveratrol and other bioactive polyphenols. Food Chem. 2012;135:1173–1182. doi: 10.1016/j.foodchem.2012.05.050. PubMed DOI
Salminen J., Karonen M. Chemical ecology of tannins and other phenolics: We need a change in approach. Br. Ecol. Soc. 2011;25:325–338. doi: 10.1111/j.1365-2435.2010.01826.x. DOI
Raitanen J.E., Järvenpää E., Korpinen R., Mäkinen S., Hellström J., Kilpeläinen P., Liimatainen J., Ora A., Tupasela T., Jyske T. Tannins of conifer bark as Nordic piquancy—sustainable preservative and aroma? Molecules. 2020;25:567. doi: 10.3390/molecules25030567. PubMed DOI PMC
Koche D., Shirsat R., Kawale M. An overview of major classes of phytochemicals: Their type and role in disease prevention. Hislopia J. 2016;9:2016.
Prothmann J., Sun M., Spégel P., Sandahl M., Turner C., Scheuba J., Wronski V.K., Rollinger J.M., Grienke U., Santos-Buelga C., et al. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J. Agric. Food Chem. 2017;53:1713. PubMed
Matthews S., Mila I., Scalbert A., Donnelly D.M.X. Extractable and non-extractable proanthocyanidins in barks. Phytochemistry. 1997;45:405–410. doi: 10.1016/S0031-9422(96)00873-4. DOI
Koleckar V., Kubikova K., Rehakova Z., Kuca K., Jun D., Jahodar L., Opletal L. Condensed and Hydrolysable Tannins as Antioxidants Influencing the Health. Mini-Rev. Med. Chem. 2008;8:436–447. doi: 10.2174/138955708784223486. PubMed DOI
De Bruyne T., Pieters L., Deelstra H., Vlietinck A. Condensed vegetable tannins: Biodiversity in structure and biological activities. Biochem. Syst. Ecol. 1999;27:445–459. doi: 10.1016/S0305-1978(98)00101-X. DOI
Scalbert A. Antimicrobial properties of tannins. Phytochemistry. 1991;30:3875–3883. doi: 10.1016/0031-9422(91)83426-L. DOI
Bhangale J.O., Acharya S.R. Anti-Parkinson Activity of Petroleum Ether Extract of Ficus religiosa (L.) Leaves. Adv. Pharmacol. Sci. 2016;2016:9436106. doi: 10.1155/2016/9436106. PubMed DOI PMC
Brijesh K., Ruchi R., Sanjita D., Saumya D., June A. Phytoconstituents and Therapeutic potential of Thuja occidentalis. Res. J. Pharm. Biol. Chem. Sci. 2012;3:354–362.
Shuaib M., Ali M., Ahamad J., Naquvi K.J., Ahmad M.I. Pharmacognosy of Pinus roxburghii: A Review. Phytochemistry. 2006;2:262–268.
Poudel R.C., Gao L.M., Möller M., Baral S.R., Uprety Y., Liu J., Li D.Z. Yews (Taxus) along the Hindu Kush-Himalayan region: Exploring the ethnopharmacological relevance among communities of Mongol and Caucasian origins. J ethnopharmacol. 2013;147:190–203. doi: 10.1016/j.jep.2013.02.031. PubMed DOI
Kunwar R.M., Shrestha K.P., Bussmann R.W. Traditional herbal medicine in Far-west Nepal: A pharmacological appraisal. J. Ethnobiol. Ethnomed. 2010;6:1–18. doi: 10.1186/1746-4269-6-35. PubMed DOI PMC
Sharma H., Garg M. A review of traditional use, phytoconstituents and biological activities of Himalayan yew, Taxus wallichiana. J. Integr. Med. 2015;13:80–90. doi: 10.1016/S2095-4964(15)60161-3. PubMed DOI
Di Meo S., Reed T.T., Venditti P., Victor V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016;2016:1245049. doi: 10.1155/2016/1245049. PubMed DOI PMC
Phaniendra A., Jestadi D.B., Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015;30:11–26. doi: 10.1007/s12291-014-0446-0. PubMed DOI PMC
Kumar H., Bhardwaj K., Nepovimova E., Kuča K., Dhanjal D.S., Bhardwaj S., Bhatia S.K., Verma R., Kumar D. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials. 2020;10:1334. doi: 10.3390/nano10071334. PubMed DOI PMC
Collin F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci. 2019;20:2407. doi: 10.3390/ijms20102407. PubMed DOI PMC
Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell. Signal. 2007;19:1807–1819. doi: 10.1016/j.cellsig.2007.04.009. PubMed DOI
Ricordi C., Garcia-Contreras M., Farnetti S. Diet and Inflammation: Possible Effects on Immunity, Chronic Diseases, and Life Span. J. Am. Coll. Nutr. 2015;34:10–13. doi: 10.1080/07315724.2015.1080101. PubMed DOI
Boukhenouna S., Wilson M.A., Bahmed K., Kosmider B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxid. Med. Cell. Longev. 2018;2018:5730395. doi: 10.1155/2018/5730395. PubMed DOI PMC
Packer L., Rimbach G., Virgili F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radic. Biol. Med. 1999;27:704–724. doi: 10.1016/S0891-5849(99)00090-8. PubMed DOI
Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010;4:118–126. doi: 10.4103/0973-7847.70902. PubMed DOI PMC
Iravani S., Zolfaghari B. Pharmaceutical and nutraceutical effects of Pinus pinaster bark extract. Res. Pharm. Sci. 2011;6:1–11. PubMed PMC
Senthilmohan S.T., Zhang J., Stanley R.A. Effects of flavonoid extract Enzogenol with vitamin C on protein oxidation and DNA damage in older human subjects. Nutr. Res. 2003;23:1199–1210. doi: 10.1016/S0271-5317(03)00127-1. DOI
Azqueta A., Collins A. Polyphenols and DNA damage: A mixed blessing. Nutrients. 2016;8:785. doi: 10.3390/nu8120785. PubMed DOI PMC
Kukreja A., Wadhwa N. Therapeutic Role of Resveratrol and Piceatannol in Disease Prevention. J. Blood Disord. Transfus. 2014;5:9. doi: 10.4172/2155-9864.1000240. DOI
Sharma A., Goyal R., Sharma L. Potential biological efficacy of Pinus plant species against oxidative, inflammatory and microbial disorders. BMC Complement. Altern. Med. 2016;16:1–11. doi: 10.1186/s12906-016-1011-6. PubMed DOI PMC
Azab A., Nassar A., Azab A.N. Anti-inflammatory activity of natural products. Molecules. 2016;21:1321. doi: 10.3390/molecules21101321. PubMed DOI PMC
Artis D., Spits H. The biology of innate lymphoid cells. Nature. 2015;517:293–301. doi: 10.1038/nature14189. PubMed DOI
Fernandes J.V., Cobucci R.N.O., Jatobá C.A.N., de Medeiros Fernandes T.A.A., de Azevedo J.W.V., de Araújo J.M.G. The Role of the Mediators of Inflammation in Cancer Development. Pathol. Oncol. Res. 2015;21:527–534. doi: 10.1007/s12253-015-9913-z. PubMed DOI
Heppner F.L., Ransohoff R.M., Becher B. Immune attack: The role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 2015;16:358–372. doi: 10.1038/nrn3880. PubMed DOI
Rock K.L., Rock K.L. Innate and adaptive immune responses to cell death. Immunol. Rev. 2011;243:191–205. doi: 10.1111/j.1600-065X.2011.01040.x. PubMed DOI PMC
Waisman A., Liblau R.S., Becher B. Innate and adaptive immune responses in the CNS. Lancet Neurol. 2015;14:945–955. doi: 10.1016/S1474-4422(15)00141-6. PubMed DOI
Vignali D.A.A., Kuchroo V.K. Review IL-12 family cytokines: Immunological playmakers. Nat. Immunol. 2012;13:722–728. doi: 10.1038/ni.2366. PubMed DOI PMC
Montgomery S.L., Bowers W.J. Tumor Necrosis Factor-alpha and the Roles it Plays in Homeostatic and Degenerative Processes Within the Central Nervous System. J. Neuroimmune Pharmacol. 2012;7:42–59. doi: 10.1007/s11481-011-9287-2. PubMed DOI
Fenton M.J. Review: Transcriptional and post-transcriptional regulation of interleukin 1 gene expression. Int. J. Immunopharm. 1992;14:401–411. doi: 10.1016/0192-0561(92)90170-P. PubMed DOI
Rider P., Carmi Y., Voronov E., Apte R.N. Interleukin-1α. Semin. Immunol. 2013;25:430–438. doi: 10.1016/j.smim.2013.10.005. PubMed DOI
Cha K.-J. The Anti-Inflammatory Effects of Picea wilsonii Mast on HaCaT Cells. Korean J. Clin. Lab. Sci. 2016;48:365–370. doi: 10.15324/kjcls.2016.48.4.365. DOI
Langrish C.L., Mckenzie B.S., Wilson N.J., Kastelein R.A., Cua D.J. IL-12 and IL-23: Master regulators of innate and adaptive immunity. Immunol. Rev. 2004;202:96–105. doi: 10.1111/j.0105-2896.2004.00214.x. PubMed DOI
Duvallet E., Semerano L., Assier E., Falgarone G., Duvallet E., Semerano L., Assier E., Falgarone G., Duvallet E., Semerano L., et al. Interleukin-23: A key cytokine in inflammatory diseases. Ann. Med. 2011;3890:503–511. doi: 10.3109/07853890.2011.577093. PubMed DOI
Sabat R. Cytokine & Growth Factor Reviews IL-10 family of cytokines. Cytokine Growth Factor Rev. 2010;21:315–324. doi: 10.1016/j.cytogfr.2010.11.001. PubMed DOI
Ng T.H.S., Britton G.J., Hill E.V., Verhagen J., Burton B.R., Wraith D.C. Regulation of adaptive immunity; the role of interleukin-10. Front. Immunol. 2013;4:1–14. doi: 10.3389/fimmu.2013.00129. PubMed DOI PMC
Kwilasz A.J., Grace P.M., Serbedzija P., Maier S.F., Watkins L.R. Neuropharmacology The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology. 2014;2:55–69. doi: 10.1016/j.neuropharm.2014.10.020. PubMed DOI PMC
Atanasov A.G., Waltenberger B., Pferschy-Wenzig E.M., Linder T., Wawrosch C., Uhrin P., Temml V., Wang L., Schwaiger S., Heiss E.H., et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015;33:1582–1614. doi: 10.1016/j.biotechadv.2015.08.001. PubMed DOI PMC
Zhang Q.W., Lin L.G., Ye W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018;13:1–26. doi: 10.1186/s13020-018-0177-x. PubMed DOI PMC
Bucar F., Wube A., Schmid M. Natural product isolation-how to get from biological material to pure compounds. Nat. Prod. Rep. 2013;30:525–545. doi: 10.1039/c3np20106f. PubMed DOI
Gopalasatheeskumar K. Significant Role of Soxhlet Extraction Process in Phytochemical. Mintage J. Pharm. Med. Sci. 2018;7:43–47.
Zhao Q.Q., Wang S.F., Li Y., Song Q.Y., Gao K. Terpenoids with anti-inflammatory activity from Abies chensiensis. Fitoterapia. 2016;111:87–94. doi: 10.1016/j.fitote.2016.04.002. PubMed DOI
Stan M.S., Voicu S.N., Caruntu S., Nica I.C., Olah N.K., Burtescu R., Balta C., Rosu M., Herman H., Hermenean A., et al. Antioxidant and anti-inflammatory properties of a Thuja occidentalis mother tincture for the treatment of ulcerative colitis. Antioxidants. 2019;8:416. doi: 10.3390/antiox8090416. PubMed DOI PMC
Kim D.S., Kim M.S., Kang S.W., Sung H.Y., Kang Y.H. Pine bark extract enzogenol attenuated tumor necrosis factor-α- induced endothelial cell adhesion and monocyte transmigration. J. Agric. Food Chem. 2010;58:7088–7095. doi: 10.1021/jf1005287. PubMed DOI
Schäfer A., Chovanová Z., Muchová J., Sumegová K., Liptáková A., Högger P. Inhibition of COX-1 and COX-2 activity by plasma of human volunteers after ingestion of French maritime pine bark extract (Pycnogenol) Biomed. Pharmacother. 2005;60:5–9. doi: 10.1016/j.biopha.2005.08.006. PubMed DOI
Latest Global Cancer Data_ Cancer Burden Rises to 18 2018. WHO. [(accessed on 15 February 2021)]; Available online: https://www.iarc.who.int/featured-news/latest-global-cancer-data-cancer-burden-rises-to-18-1-million-new-cases-and-9-6-million-cancer-deaths-in-2018/PDF.
Yan S.H. An early history of human breast cancer: West meets East. Chin. J. Cancer. 2013;32:475–477. doi: 10.5732/cjc.013.10097. PubMed DOI PMC
Sudhakar A. History of Cancer, Ancient and Modern Treatment Methods. J. Cancer Sci. Ther. 2009;01:i–iv. doi: 10.4172/1948-5956.100000e2. PubMed DOI
Ghosh S.K. Giovanni Battista Morgagni (1682–1771): Father of pathologic anatomy and pioneer of modern medicine. Anat. Sci. Int. 2017;92:305–312. doi: 10.1007/s12565-016-0373-7. PubMed DOI
Cancer. [(accessed on 20 February 2021)]; Available online: https://www.niehs.nih.gov/health/materials/cancer_and_the_environment_508.pdf.
Ma X., Wang Z. Anticancer drug discovery in the future: An evolutionary perspective. Drug Discov. Today. 2009;14:1136–1142. doi: 10.1016/j.drudis.2009.09.006. PubMed DOI
Widmer N., Bardin C., Chatelut E., Paci A., Beijnen J., Levêque D., Veal G., Astier A. Review of therapeutic drug monitoring of anticancer drugs part two—Targeted therapies. Eur. J. Cancer. 2014;50:2020–2036. doi: 10.1016/j.ejca.2014.04.015. PubMed DOI
Kuczynski E.A., Sargent D.J., Grothey A., Kerbel R.S. Drug rechallenge and treatment beyond progression-implications for drug resistance. Nat. Rev. Clin. Oncol. 2013;10:571–587. doi: 10.1038/nrclinonc.2013.158. PubMed DOI PMC
Lichota A., Gwozdzinski K. Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci. 2018;19:3533. doi: 10.3390/ijms19113533. PubMed DOI PMC
Kim J.A.H., Kim D.H., Hossain M.A., Kim M.Y., Sung B., Yoon J.H., Suh H., Jeong T.C., Chung H.Y., Kim N.D. HS-1793, a resveratrol analogue, induces cell cycle arrest and apoptotic cell death in human breast cancer cells. Int. J. Oncol. 2014;44:473–480. doi: 10.3892/ijo.2013.2207. PubMed DOI
Sharifi-Rad J., Ozleyen A., Tumer T.B., Adetunji C.O., El Omari N., Balahbib A., Taheri Y., Bouyahya A., Martorell M., Martins N., et al. Natural products and synthetic analogs as a source of antitumor drugs. 5641266167Biomolecules. 2019;9:679. doi: 10.3390/biom9110679. PubMed DOI PMC
Tafrihi M., Imran M., Tufail T., Gondal T.A., Caruso G., Sharma S., Sharma R., Atanassova M., Atanassov L., Valere P., et al. The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules. 2021;26:1118. doi: 10.3390/molecules26041118. PubMed DOI PMC
Birinci H., Şen B., Sayğılı S., Ölmez E., Uluer E.T., Özbilgin K. The Effect of Pycnogenol and Paclitaxel on DNA Damage in Human Breast Cancer Cell Line. Proceedings. 2017;1:1023. doi: 10.3390/proceedings1101023. DOI
Dinić J., Ríos-Luci C., Karpaviciene I., Cikotiene I., Fernandes M.X., Pešić M., Padrón J.M. CKT0353, a novel microtubule targeting agent, overcomes paclitaxel induced resistance in cancer cells. Investig. New Drugs. 2020;38:584–598. doi: 10.1007/s10637-019-00803-6. PubMed DOI
Binarová P., Tuszynski J. Tubulin: Structure, Functions and Roles in Disease. Cells. 2019;8:1294. doi: 10.3390/cells8101294. PubMed DOI PMC
Zhang D., Kanakkanthara A. Beyond the paclitaxel and vinca alkaloids: Next generation of plant-derived microtubule-targeting agents with potential anticancer activity. Cancers. 2020;12:1721. doi: 10.3390/cancers12071721. PubMed DOI PMC
Harshita, Barkat M.A., Beg S., Pottoo F.H., Ahmad F.J. Nanopaclitaxel therapy: An evidence based review on the battle for next-generation formulation challenges. Nanomedicine. 2019;14:1323–1341. doi: 10.2217/nnm-2018-0313. PubMed DOI
Ganguly A., Yang H., Cabral F. Paclitaxel-dependent cell lines reveal a novel drug activity. Mol. Cancer Ther. 2010;9:2914–2923. doi: 10.1158/1535-7163.MCT-10-0552. PubMed DOI PMC
Banerjee S., Das A., Chakraborty P., Suthindhiran K., Jayasri M.A. Antioxidant and antimicrobial activity of Araucaria cookii and Brassaia actinophyla. Pak. J. Biol. Sci. 2014;17:715–719. doi: 10.3923/pjbs.2014.715.719. PubMed DOI
Jain S., Kumar D., Malviya N., Jain A., Jain S., Jain V. Estimation of total phenolic, tannins, and flavonoid contents and antioxidant activity of Cedrus deodara heart wood extracts. Egypt. Pharm. J. 2015;14:10. doi: 10.4103/1687-4315.154690. DOI
Horiba H., Nakagawa T., Zhu Q., Ashour A., Watanabe A., Shimizu K. Biological activities of extracts from different parts of cryptomeria japonica. Nat. Prod. Commun. 2016;11:1337–1342. doi: 10.1177/1934578X1601100939. PubMed DOI
Bhagat M., Gupta S., Sudan R. In vitro Evaluation of Antioxidant Activity of Picea smithiana Growing in Bhaderwah Region of Jammu and Kashmir. Cell. Life Sci. J. 2017;2 doi: 10.23880/cclsj-16000109. DOI
Salhi N., Bouyahya A., El Guourrami O., El Jemli M., Bourais I., Zellou A., Cherrah Y., El Abbes Faouzi M. Investigation of in vitro and in vivo antioxidant and antidiabetic activities of Pinus halepensis extracts. J. Herbmed Pharmacol. 2021;10:123–131. doi: 10.34172/jhp.2021.13. DOI
Tekaday D., Antony B., Jain S. Antimicrobial, antioxidant and phytochemical investigation of Thuja occidentalis (Arbor vitae) leave extract. GSC Biol. Pharm. Sci. 2020;12:108–116. doi: 10.30574/gscbps.2020.12.3.0292. DOI
Milutinović M.G., Stanković M.S., Cvetković D.M., Topuzović M.D., Mihailović V.B., Marković S.D. Antioxidant and anticancer properties of leaves and seed cones from European yew (Taxus baccata L.) Arch. Biol. Sci. 2015;67:525–534. doi: 10.2298/ABS141006015M. DOI
Bhat M.A., Ganie S.A., Dar K.B., Ali R., Hamid R. In Vitro antioxidant potential and hepatoprotective activity of Taxus Wallichiana. Asian J. Pharm. Clin. Res. 2018;11:237–243. doi: 10.22159/ajpcr.2018.v11i8.22345. DOI
Subba B. Analysis of Phytochemical Constituents and Biological Activity of Taxus Wallichiana Zucc. Dolakha District of Nepal. Int. J. Appl. Sci. Biotechnol. 2018;6:110–114. doi: 10.3126/ijasbt.v6i2.20410. DOI
Yang X.-W., Zeng H.-W., Liu X.-H., Li S.-M., Xu W., Shen Y.-H., Zhang C., Zhang W.-D. Anti-inflammatory and anti-tumour effects of Abies georgei extracts. J. Pharm. Pharmacol. 2008;60:937–941. doi: 10.1211/jpp.60.7.0017. PubMed DOI
Nayak S.S., Ghosh A.K., Debnath B., Vishnoi S.P., Jha T. Synergistic effect of methanol extract of Abies webbiana leaves on sleeping time induced by standard sedatives in mice and anti-inflammatory activity of extracts in rats. J. Ethnopharmacol. 2004;93:397–402. doi: 10.1016/j.jep.2004.04.014. PubMed DOI
Bisht B., Nainwal P., Saini P. Evaluation of in vitro anti-inflammatory activity of Agathis robusta. J. Pharma. Res. 2012;2:1304–1306.
Journal A.I. An Indian Journal Note. Anal. Chem. 2007;6:4–8.
Orhan N., Akkol E., Ergun F. Evaluation of antiinflammatory and antinociceptive effects of some juniperus species growing in Turkey. Turk. J. Biol. 2012;36:719–726. doi: 10.3906/biy-1203-32. DOI
Science A. Assessment of Anti-Inflammatory Activity of Taxus baccata Linn. Bark Extract Satyajit Dutta * G. Mariappan ** Dipankar Sarkar ** Piyali Sarkar ** Table 1: Effect of Taxus baccata (L) bark extracts on Carrageenan-induced paw edema method in rats. Anc. Sci. Life. 2010;29:19–21. PubMed PMC
Branco C.D.S., De Lima É.D., Rodrigues T.S., Scheffel T.B., Scola G., Laurino C.C.F.C., Moura S., Salvador M. Mitochondria and redox homoeostasis as chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx HEp-2 cancer cells. Chem. Biol. Interact. 2015;231:108–118. doi: 10.1016/j.cbi.2015.03.005. PubMed DOI
Shashi B., Jaswant S., Madhusudana R.J., Kumar S.A., Nabi Q.G. A novel lignan composition from Cedrus deodara induces apoptosis and early nitric oxide generation in human leukemia Molt-4 and HL-60 cells. Nitric Oxide Biol. Chem. 2006;14:72–88. doi: 10.1016/j.niox.2005.09.009. PubMed DOI
Shi X., Liu D., Zhang J., Hu P., Shen W., Fan B., Ma Q., Wang X. Extraction and purification of total flavonoids from pine needles of Cedrus deodara contribute to anti-tumor in vitro. BMC Complement. Altern. Med. 2016;16:1–9. doi: 10.1186/s12906-016-1249-z. PubMed DOI PMC
Basu L.R., De A., Sarkar P., Karak P., Dastidar S.G. Possibilities of developing novel potent antitumor agents from the leaves of Cryptomaria japonica. Int. J. Phytomed. 2016;8:404–410. doi: 10.5138/09750185.1860. DOI
Fernandez A., Cock I.E. The therapeutic properties of juniperus communis L.: Antioxidant capacity, bacterial growth inhibition, anticancer activity and toxicity. Pharmacogn. J. 2016;8:273–280. doi: 10.5530/pj.2016.3.17. DOI
Machana S., Weerapreeyakul N., Barusrux S., Nonpunya A., Sripanidkulchai B., Thitimetharoch T. Cytotoxic and apoptotic effects of six herbal plants against the human hepatocarcinoma (HepG2) cell line. Chin. Med. 2011;6:2–9. doi: 10.1186/1749-8546-6-39. PubMed DOI PMC
MacHana S., Weerapreeyakul N., Barusrux S., Thumanu K., Tanthanuch W. FTIR microspectroscopy discriminates anticancer action on human leukemic cells by extracts of Pinus kesiya; Cratoxylum formosum ssp. pruniflorum and melphalan. Talanta. 2012;93:371–382. doi: 10.1016/j.talanta.2012.02.058. PubMed DOI
Thu N.B., Trung T.N., Ha D.T., Khoi N.M., Hung T.V., Hien T.T., Namhui Y., Bae K. Screening of Vietnamese medicinal plants for cytotoxic activity. Nat. Prod. Sci. 2010;16:43–49.
Chattopadhyay S.K., Kumar T.R.S., Maulik P.R., Srivastava S., Garg A., Sharon A., Negi A.S., Khanuja S.P.S. Absolute configuration and anticancer activity of taxiresinol and related lignans of Taxus wallichiana. Bioorg. Med. Chem. 2003;11:4945–4948. doi: 10.1016/j.bmc.2003.09.010. PubMed DOI
Kaushik P., Lal Khokra S., Rana A.C., Kaushik D. Evaluation of anticancer activity of Pinus roxburghii sarg. Against IMR-32 human neuroblastoma cancer cell line. Int. J. Pharm. Clin. Res. 2015;7:105–108.
Jiang P., Zhang Q., Zhao Y., Xiong J., Wang F., Zhang T., Zhang C. Extraction, Purification, and Biological Activities of Polysaccharides from Branches and Leaves of Taxus cuspidata S. Et Z. Molecules. 2019;24:2926. doi: 10.3390/molecules24162926. PubMed DOI PMC
Mukherjee A., Sikdar S., Bishayee K., Paul A., Ghosh S., Boujedaini N., Khuda-Bukhsh A.R. Ethanolic extract of Thuja occidentalis blocks proliferation of A549 cells and induces apoptosis in vitro. J. Chin. Integr. Med. 2012;10:1451–1459. doi: 10.3736/jcim20121218. PubMed DOI
Khuda-Bukhsh A.R., Biswas R., Mandal S.K., Dutta S., Bhattacharyya S.S., Boujedaini N. Thujone-rich fraction of Thuja occidentalis demonstrates major anti-cancer potentials: Evidences from in vitro studies on A375 cells. Evid. Based Complement. Altern. Med. 2011;2011:568148. doi: 10.1093/ecam/neq042. PubMed DOI PMC
Velmurugan B.K., Rathinasamy B., Lohanathan B.P., Thiyagarajan V., Weng C.F. Neuroprotective role of phytochemicals. Molecules. 2018;23:2485. doi: 10.3390/molecules23102485. PubMed DOI PMC
Gitler A.D., Dhillon P., Shorter J. Neurodegenerative disease: Models, mechanisms, and a new hope. DMM Dis. Model. Mech. 2017;10:499–502. doi: 10.1242/dmm.030205. PubMed DOI PMC
Venkatesan R., Ji E., Kim S.Y. Phytochemicals that regulate neurodegenerative disease by targeting neurotrophins: A comprehensive review. Biomed Res. Int. 2015;2015:814068. doi: 10.1155/2015/814068. PubMed DOI PMC
Johri A., Beal M.F. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther. 2012;342:619–630. doi: 10.1124/jpet.112.192138. PubMed DOI PMC
Yang J.L., Lin Y.T., Chuang P.C., Bohr V.A., Mattson M.P. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. NeuroMol. Med. 2014;16:161–174. doi: 10.1007/s12017-013-8270-x. PubMed DOI PMC
Huang E.J., Reichardt L.F. Neurotrophins: Roles in neuronal development and function. Annu. Rev. Neurosci. 2001;24:677–736. doi: 10.1146/annurev.neuro.24.1.677. PubMed DOI PMC
Agrawal M., Biswas A., Levy C.E. Molecular diagnostics of neurodegenerative disorders. Front. Mol. Biosci. 2015;2:1–10. doi: 10.3389/fmolb.2015.00054. PubMed DOI PMC
Olivares D., Deshpande V.K., Shi Y., Lahiri D.K., Greig N.H., Rogers J.T., Huang X. N-Methyl D-Aspartate (NMDA) Receptor Antagonists and Memantine Treatment for Alzheimer’s Disease, Vascular Dementia and Parkinson’s Disease. Curr. Alzheimer Res. 2012;9:746–758. doi: 10.2174/156720512801322564. PubMed DOI PMC
Briffa M., Ghio S., Neuner J., Gauci A.J., Cacciottolo R., Marchal C., Caruana M., Cullin C., Vassallo N., Cauchi R.J. Extracts from two ubiquitous Mediterranean plants ameliorate cellular and animal models of neurodegenerative proteinopathies. Neurosci. Lett. 2017;638:12–20. doi: 10.1016/j.neulet.2016.11.058. PubMed DOI
Physiology G., Waczulikova I., Kilanczyk E., Bryszewska M. The effect of Pycnogenol on the erythrocyte membrane fluidity. Gen. Physiol. Biophys. 2004;23:39–51. PubMed
Voss P., Horakova L., Jakstadt M., Kiekebusch D., Grune T. Ferritin oxidation and proteasomal degradation: Protection by antioxidants. Free Radic. Res. 2006;40:673–683. doi: 10.1080/10715760500419357. PubMed DOI
Deture M.A., Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019;14:1–18. doi: 10.1186/s13024-019-0333-5. PubMed DOI PMC
Jahn H. Memory loss in Alzheimer’s disease. Dialogues Clin. Neurosci. 2013;15:445–454. PubMed PMC
Tanvir Kabir M., Sahab Uddin M., Al Mamun A., Jeandet P., Aleya L., Mansouri R.A., Md Ashraf G., Mathew B., Bin-Jumah M.N., Abdel-Daim M.M. Combination drug therapy for the management of alzheimer’s disease. Int. J. Mol. Sci. 2020;21:3272. doi: 10.3390/ijms21093272. PubMed DOI PMC
Durães F., Pinto M., Sousa E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals. 2018;11:44. doi: 10.3390/ph11020044. PubMed DOI PMC
Barbier P., Zejneli O., Martinho M., Lasorsa A., Belle V., Smet-Nocca C., Tsvetkov P.O., Devred F., Landrieu I. Role of tau as a microtubule-associated protein: Structural and functional aspects. Front. Aging Neurosci. 2019;10:1–14. doi: 10.3389/fnagi.2019.00204. PubMed DOI PMC
Cory H., Passarelli S., Szeto J., Tamez M., Mattei J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018;5:1–9. doi: 10.3389/fnut.2018.00087. PubMed DOI PMC
Rensink A.A.M., De Waal R.M.W., Kremer B., Verbeek M.M. Pathogenesis of cerebral amyloid angiopathy. Brain Res. Rev. 2003;43:207–223. doi: 10.1016/j.brainresrev.2003.08.001. PubMed DOI
Tanaka M., Saito S., Inoue T., Satoh-Asahara N., Ihara M. Novel therapeutic potentials of taxifolin for amyloid-β-associated neurodegenerative diseases and other diseases: Recent advances and future perspectives. Int. J. Mol. Sci. 2019;20:2139. doi: 10.3390/ijms20092139. PubMed DOI PMC
Sharma L., Sharma A., Goyal R., Alam J. Pinus roxburghii Sarg. Ameliorates alzheimer’s disease-type neurodegeneration and cognitive deficits caused by intracerebroventricular-streptozotocin in rats: An in vitro and in vivo study. Indian J. Pharm. Sci. 2020;82:861–870. doi: 10.36468/pharmaceutical-sciences.715. DOI
Hassaan Y., Handoussa H., El-Khatib A.H., Linscheid M.W., El Sayed N., Ayoub N. Evaluation of plant phenolic metabolites as a source of Alzheimer’s drug leads. Biomed Res. Int. 2014;2014:843263. doi: 10.1155/2014/843263. PubMed DOI PMC
Arbo B.D., André-Miral C., Nasre-Nasser R.G., Schimith L.E., Santos M.G., Costa-Silva D., Muccillo-Baisch A.L., Hort M.A. Resveratrol Derivatives as Potential Treatments for Alzheimer’s and Parkinson’s Disease. Front. Aging Neurosci. 2020;12:1–15. doi: 10.3389/fnagi.2020.00103. PubMed DOI PMC
Ahmed T., Javed S., Javed S., Tariq A., Šamec D., Tejada S., Nabavi S.F., Braidy N., Nabavi S.M. Resveratrol and Alzheimer’s Disease: Mechanistic Insights. Mol. Neurobiol. 2017;54:2622–2635. doi: 10.1007/s12035-016-9839-9. PubMed DOI
Maimoona A., Naeem I., Saddiqe Z., Jameel K. A review on biological, nutraceutical and clinical aspects of French maritime pine bark extract. J. Ethnopharmacol. 2011;133:261–277. doi: 10.1016/j.jep.2010.10.041. PubMed DOI
Peng Q.L., Zard A.R.B., Lau B.H.S. Pycnogenol protects neurons from amyloid- b peptide-induced apoptosis. Mol. Brain Res. 2002;104:55–65. doi: 10.1016/S0169-328X(02)00263-2. PubMed DOI
Paarmann K., Prakash S.R., Krohn M., Möhle L., Brackhan M., Brüning T., Eiriz I., Pahnke J. French maritime pine bark treatment decelerates plaque development and improves spatial memory in Alzheimer’s disease mice. Phytomedicine. 2019;57:39–48. doi: 10.1016/j.phymed.2018.11.033. PubMed DOI
Fang C., Lv L., Mao S., Dong H., Liu B. Cognition Deficits in Parkinson’s Disease: Mechanisms and Treatment. Parkinsons Dis. 2020;2020:2076942. doi: 10.1155/2020/2076942. PubMed DOI PMC
Dias V., Junn E., Mouradian M.M. The role of oxidative stress in parkinson’s disease. J. Parkinsons Dis. 2013;3:461–491. doi: 10.3233/JPD-130230. PubMed DOI PMC
Chen L., Ding Y., Cagniard B., Van Laar A.D., Mortimer A., Chi W., Hastings T.G., Un J.K., Zhuang X. Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J. Neurosci. 2008;28:425–433. doi: 10.1523/JNEUROSCI.3602-07.2008. PubMed DOI PMC
Zoccarato F., Toscano P., Alexandre A. Dopamine-derived dopaminochrome promotes H2O2 release at mitochondrial Complex I: Stimulation by rotenone, control by Ca2+, and relevance to Parkinson disease. J. Biol. Chem. 2005;280:15587–15594. doi: 10.1074/jbc.M500657200. PubMed DOI
Ebrahimi-Fakhari D., Wahlster L., McLean P.J. Protein degradation pathways in Parkinson’s disease: Curse or blessing. Acta Neuropathol. 2012;124:153–172. doi: 10.1007/s00401-012-1004-6. PubMed DOI PMC
Javed H., Nagoor Meeran M.F., Azimullah S., Adem A., Sadek B., Ojha S.K. Plant Extracts and Phytochemicals Targeting α-Synuclein Aggregation in Parkinson’s Disease Models. Front. Pharmacol. 2019;9:1555. doi: 10.3389/fphar.2018.01555. PubMed DOI PMC
Corona J.C. Natural Compounds for the Management of Parkinson’s Disease and Attention-Deficit/Hyperactivity Disorder. Biomed Res. Int. 2018;2018:4067597. doi: 10.1155/2018/4067597. PubMed DOI PMC
Ríos J.L., Onteniente M., Picazo D., Montesinos M.C. Medicinal Plants and Natural Products as Potential Sources for Antiparkinson Drugs. Planta Med. 2016;82:942–951. doi: 10.1055/s-0042-107081. PubMed DOI
Bais S., Gill N.S., Kumar N. Neuroprotective Effect of Juniperus communis on Chlorpromazine Induced Parkinson Disease in Animal Model. Chin. J. Biol. 2015;2015:1–7. doi: 10.1155/2015/542542. DOI
Zhang F., Shi J.S., Zhou H., Wilson B., Hong J.S., Gao H.M. Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions. Mol. Pharmacol. 2010;78:466–477. doi: 10.1124/mol.110.064535. reprinted in Mol. Pharmacol.2010, 78, 981. PubMed DOI PMC
Fang X.S., Hao J.F., Zhou H.Y., Zhu L.X., Wang J.H., Song F.Q. Pharmacological studies on the sedative-hypnotic effect of Semen Ziziphi spinosae (Suanzaoren) and Radix et Rhizoma Salviae miltiorrhizae (Danshen) extracts and the synergistic effect of their combinations. Phytomedicine. 2010;17:75–80. doi: 10.1016/j.phymed.2009.07.004. PubMed DOI
Akram M., Daniyal M., Munir N., Mohiuddin E., Sultana S. Medicinal Plants Combating Against Insomnia: A Green Anti-Insomnia Approach. J. Nerv. Ment. Dis. 2019;207:927–935. doi: 10.1097/NMD.0000000000001052. PubMed DOI
Gooneratne N.S., Vitiello M.V. Sleep in Older Adults. Normative Changes, Sleep Disorders, and Treatment Options. Clin. Geriatr. Med. 2014;30:591–627. doi: 10.1016/j.cger.2014.04.007. PubMed DOI PMC
Atkin T., Comai S., Gobbi G. Drugs for insomnia beyond benzodiazepines: Pharmacology, clinical applications, and discovery. Pharmacol. Rev. 2018;70:197–245. doi: 10.1124/pr.117.014381. PubMed DOI
Sateia M.J., Buysse D.J., Krystal A.D., Neubauer D.N. Adverse effects of hypnotic medications. J. Clin. Sleep Med. 2017;13:839. doi: 10.5664/jcsm.6634. PubMed DOI PMC
Woo J., Yang H., Yoon M., Gadhe C.G., Pae A.N., Cho S., Justin Lee C. 3-Carene, a phytoncide from pine tree has a sleep-enhancing effect by targeting the GABAA-benzodiazepine receptors. Exp. Neurobiol. 2019;28:593–601. doi: 10.5607/en.2019.28.5.593. PubMed DOI PMC
Arumugam G., Manjula P., Paari N. A review: Anti diabetic medicinal plants used for diabetes mellitus. J. Acute Dis. 2013;2:196–200. doi: 10.1016/S2221-6189(13)60126-2. DOI
Salehi B., Ata A., Kumar N.V.A., Sharopov F., Ramírez-Alarcón K., Ruiz-Ortega A., Ayatollahi S.A., Fokou P.V.T., Kobarfard F., Zakaria Z.A., et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules. 2019;9:551. doi: 10.3390/biom9100551. ISBN 5641266167. PubMed DOI PMC
Upendra Rao M., Sreenivasulu M., Chengaiah B., Jaganmohan Reddy K., Madhusudhana Chetty C. Herbal medicines for diabetes mellitus: A review. Int. J. PharmTech Res. 2010;2:1883–1892.
Warren R.E. The stepwise approach to the management of type 2 diabetes. Diabetes Res. Clin. Pract. 2004;65:S3. doi: 10.1016/j.diabres.2004.07.002. PubMed DOI
Wadkar K.A., Magdum C.S., Patil S.S., Naikwade N.S. Anti-diabetic potential and Indian medicinal plants. J. Herbmed Toxicol. 2014;2:45–50.
Afrisham R., Aberomand M., Ghaffari M.A., Siahpoosh A., Jamalan M. Inhibitory Effect of Heracleum persicum and Ziziphus jujuba on Activity of Alpha-Amylase. J. Bot. 2015;2015:824683. doi: 10.1155/2015/824683. DOI
Jeong S.O., Son Y., Lee J.H., Cheong Y.K., Park S.H., Chung H.T., Pae H.O. Resveratrol analog piceatannol restores the palmitic acid-induced impairment of insulin signaling and production of endothelial nitric oxide via activation of anti-inflammatory and antioxidative heme oxygenase-1 in human endothelial cells. Mol. Med. Rep. 2015;12:937–944. doi: 10.3892/mmr.2015.3553. PubMed DOI PMC
Vallianou N.G., Evangelopoulos A., Kazazis C. Resveratrol and diabetes. Rev. Diabet. Stud. 2013;10:236–242. doi: 10.1900/RDS.2013.10.236. PubMed DOI PMC
Szkudelski T., Szkudelska K. Resveratrol and diabetes: From animal to human studies. Biochim. Biophys. Acta Mol. Basis Dis. 2015;1852:1145–1154. doi: 10.1016/j.bbadis.2014.10.013. PubMed DOI
Bagul P.K., Banerjee S.K. Application of Resveratrol in Diabetes: Rationale, Strategies and Challenges. Curr. Mol. Med. 2015;15:312–330. doi: 10.2174/1566524015666150505155702. PubMed DOI
Sciences D. The New Antiepileptic Drugs: Their Neuropharmacology and Clinical Indications. Neurol. Med. Chir. 2016;56:205–220. doi: 10.2176/nmc.ra.2015-0344. PubMed DOI PMC
Kaushik D., Kumar A., Kaushik P., Rana A.C. Anticonvulsant activity of alcoholic extract of bark of Pinus roxburghii Sarg. J. Chin. Integr. Med. 2012;10:1056–1060. doi: 10.3736/jcim20120915. PubMed DOI
Dhayabaran D., Florance E.J., Nandakumar K., Shanmugarathinam A., Puratchikody A. Anticonvulsant activity of fraction isolated from ethanolic extract of heartwood of Cedrus deodara. J. Nat. Med. 2014;68:310–315. doi: 10.1007/s11418-013-0798-4. PubMed DOI
Wang Y.W., Yang C.T., Gong C.L., Chen Y.H., Chen Y.W., Wu K.C., Cheng T.H., Kuo Y.H., Chen Y.F., Leung Y.M. Inhibition of voltage-gated Na+ channels by hinokiol in neuronal cells. Pharmacol. Rep. 2015;67:1049–1054. doi: 10.1016/j.pharep.2015.03.019. PubMed DOI
Vasconcelos S.M.M., Lima S.R., Soares P.M., Assreuy A.M.S., de Sousa F.C.F., Lobato R.d.F.G., Vasconcelos G.S., Santi-Gadelha T., Bezerra E.H.S., Cavada B.S., et al. Central action of Araucaria angustifolia seed lectin in mice. Epilepsy Behav. 2009;15:291–293. doi: 10.1016/j.yebeh.2009.05.002. PubMed DOI
Hijazi M.A., El-Mallah A., Aboul-Ela M., Ellakany A. Evaluation of Analgesic Activity of Papaver libanoticum Extract in Mice: Involvement of Opioids Receptors. Evid. Based Complement. Altern. Med. 2017;2017:8935085. doi: 10.1155/2017/8935085. PubMed DOI PMC
Deng J.S., Chi C.S., Huang S.S., Shie P.H., Lin T.H., Huang G.J. Antioxidant, analgesic, and anti-inflammatory activities of the ethanolic extracts of Taxillus liquidambaricola. J. Ethnopharmacol. 2011;137:1161–1171. doi: 10.1016/j.jep.2011.07.041. PubMed DOI
Deshmukh A., Morankar P.G., Kumbhare M.R. Review on Analgesic Activity and Determination Methods. Pharmtechmedica. 2014;3:425–428.
Machado F.D., Kuo J., Ongaratti B.R., Medeiros N.D., Salvador M., Dani C., Funchal C. Antioxidant and neuroprotective potential of extract of Brazilian pine Araucaria angustifolia bracts against oxidative stress induced by sodium azide in hippocampus. Integr. Pharmacol. Toxicol. Genotoxicol. 2015;1:16–20.
Thiago C., Patrícia de Brum V., Patrícia Gomes da S., Marines de Avila H., Graziele Daiane S., Michele Stach C., Antônio Batista P., Sidnei M., Andreas Sebastian M., Chariston André Dal B. Mechanism of the Entomotoxic Activity Induced by Araucaria Angustifolia Methanolic Extract in Nauphoeta Cinerea Lobster Cockroaches. J. Bot. Res. 2017;1:38–49. doi: 10.36959/771/559. DOI
Zhao Z., Dong Z., Ming J., Liu Y. Cedrin identified from Cedrus deodara (Roxb.) G. Don protects PC12 cells against neurotoxicity. Nat. Prod. Res. 2018;6419:1455–1458. doi: 10.1080/14786419.2017.1346645. PubMed DOI
Lee J.S., Kim H.G., Lee H.W., Han J.M., Lee S.K., Kim D.W., Saravanakumar A., Son C.G. Hippocampal memory enhancing activity of pine needle extract against scopolamine-induced amnesia in a mouse model. Sci. Rep. 2015;5:1–10. doi: 10.1038/srep09651. PubMed DOI PMC
Lee J.S., Kim H.G., Lee H.W., Kim W.Y., Ahn Y.C., Son C.G. Pine needle extract prevents hippocampal memory impairment in acute restraint stress mouse model. J. Ethnopharmacol. 2017;207:226–236. doi: 10.1016/j.jep.2017.06.024. PubMed DOI
Forouzanfar F., Ghorbani A., Hosseini M. Hydroalcoholic extract of needles of Pinus eldarica enhances pentobarbital-induced sleep: Possible involvement of GABAergic system. Avicenna J. Phytomed. 2016;6:449. PubMed PMC
Wang C., He L., Yan M. Effects of polyprenols from pine needles of Pinus massoniana on ameliorating cognitive impairment in a D -galactose-induced mouse model. Age. 2014;36:9676. doi: 10.1007/s11357-014-9676-6. PubMed DOI PMC
Khan M.M., Kempuraj D., Thangavel R., Zaheer A. Protection of MPTP-induced neuroinflammation and neurodegeneration by Pycnogenol. Neurochem. Int. 2013;62:379–388. doi: 10.1016/j.neuint.2013.01.029. PubMed DOI PMC
Kabra A., Baghel U.S., Hano C., Martins N., Khalid M., Sharma R. Neuroprotective potential of Myrica esulenta in Haloperidol induced Parkinson’s disease. J. Ayurveda Integr. Med. 2020;11:448–454. doi: 10.1016/j.jaim.2020.06.007. PubMed DOI PMC
Lokesh D., Amitabha D., Sachin A., Avijeet J. Neuropharmacological Exploration of Thuja Occidentalis Linn. Int. Res. J. Pharm. 2011;2:143–148.
Lee S., Choi C., Kim J., Lim S., Jung H. The Antioxidant Activities and Neuroprotective Effects of Hot Water Extracts from Torreyae Semen. Korea J. Herbol. 2017;32:41–48.
Pradeep Kumar C., Lokesh T., Gobinath M., Kumar B., Saravanan D. Anti-diabetic and anti-hyperlipidemic activities of glucomannan isolated from Araucaria cunninghamii seeds. J. Chem. Pharm. Sci. 2013;6:204–209.
Jain S., Jain A., Malviya N., Kumar D., Jain V., Jain S. Antidiabetic Activity of Cedrus deodara Aqueous Extract and Its Relationship with Its Antioxidant Properties. J. Pharm. Sci. Pharmacol. 2015;1:187–194. doi: 10.1166/jpsp.2014.1023. DOI
De Medina F.S., Gamez M.J., Jimenez I., Jimenez J., Osuna J.I., Zarzuelo A. Hypoglycemic activity of juniper “berries”. Planta Med. 1994;60:197–200. doi: 10.1055/s-2006-959457. PubMed DOI
Esmail Al-Snafi A., Majid W.J., Ali Talab T., Author C. Medicinal Plants with Antidiabetic Effects-An Overview (Part 1) Clinically tested medicinal plants View project Medicinal plants with antimicrobial effects View project Medicinal Plants with Antidiabetic Effects-An Overview (Part 1) IOSR J. Pharm. 2019;9:9–46.
Orhan N., Aslan M., Demirci B., Ergun F. A bioactivity guided study on the antidiabetic activity of Juniperus oxycedrus subsp. oxycedrus L. leaves. J. Ethnopharmacol. 2012;140:409–415. doi: 10.1016/j.jep.2012.01.042. PubMed DOI
Zulfqar F., Akhtar M.F., Saleem A., Akhtar B., Sharif A., Saleem U. Chemical characterization, antioxidant evaluation, and antidiabetic potential of Pinus gerardiana (Pine nuts) extracts. J. Food Biochem. 2020;44:1–12. doi: 10.1111/jfbc.13199. PubMed DOI
Liu X., Wei J., Tan F., Zhou S., Würthwein G., Rohdewald P. Antidiabetic effect of Pycnogenol® French maritime pine bark extract in patients with diabetes type II. Life Sci. 2004;75:2505–2513. doi: 10.1016/j.lfs.2003.10.043. PubMed DOI
Kaushik P., Khokra D. Evaluation of Antidiabetic Potential of Pinus roxburghii Bark Extract in Alloxan Induced Diabetic Rats. J. Pharmacogn. Nat. Prod. 2016;1:1–5. doi: 10.4172/2472-0992.1000105. DOI
Haman N., Morozova K., Tonon G., Scampicchio M., Ferrentino G. Antimicrobial effect of Picea abies extracts on E. coli growth. Molecules. 2019;24:4053. doi: 10.3390/molecules24224053. PubMed DOI PMC
Dorman H.J.D., Deans S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000;88:308–316. doi: 10.1046/j.1365-2672.2000.00969.x. PubMed DOI
Céspedes C.L., Avila J.G., García A.M., Becerra J., Flores C., Aqueveque P., Bittner M., Hoeneisen M., Martinez M., Silva M. Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Z. fur Naturforsch. Sect. C J. Biosci. 2006;61:35–43. doi: 10.1515/znc-2006-1-207. PubMed DOI
Hedenström E., Fagerlund Edfeldt A., Edman M., Jonsson B.G. Resveratrol, piceatannol, and isorhapontigenin from Norway spruce (Picea abies) debarking wastewater as inhibitors on the growth of nine species of wood-decaying fungi. Wood Sci. Technol. 2016;50:617–629. doi: 10.1007/s00226-016-0814-4. DOI
De Souza Wuillda A.C.J., Martins R.C.C., Costa F.D.N. Larvicidal activity of secondary plant metabolites in aedes aegypti control: An overview of the previous 6 years. Nat. Prod. Commun. 2019;14:1934578X19862893. doi: 10.1177/1934578X19862893. DOI
Hales S., De Wet N., Maindonald J., Woodward A. Potential effect of population and climate changes on global distribution of dengue fever: An empirical model. Lancet. 2002;360:830–834. doi: 10.1016/S0140-6736(02)09964-6. PubMed DOI
Wondimu E., Hirpasa T., Tadele A. Larvicidal activity of Juniperus procera extract against anopheles mosquito in in vitro, North Western Ethiopia. J. Med. Plants Res. 2020;14:445–450. doi: 10.5897/JMPR2019.6900. DOI
Nayak J.B., Mohan B. Larvicidal activity of Rauvolfia serpentina L. fruits against Aedes aegypti Mosquito larvae. Int. Res. J. Biol. Sci. 2015;4:54–56.
Phambala K., Tembo Y., Kasambala T., Kabambe V.H., Stevenson P.C., Belmain S.R. Bioactivity of common pesticidal plants on fall Armyworm Larvae (Spodoptera frugiperda) Plants. 2020;9:112. doi: 10.3390/plants9010112. PubMed DOI PMC
Sharma P., Mohan L., Srivastava C.N. Larvicidal potential of Nerium indicum and Thuja oriertelis extracts against malaria and Japanese encephalitis vector. J. Environ. Biol. 2005;26:657–660. PubMed
Hasaballah A., Shehata A., Fouda M., Hassan M., Gad M. The Biological Activity of Cupressus sempervirens Extracts against Musca domestica. Asian J. Biol. 2018;5:1–12. doi: 10.9734/AJOB/2018/38023. DOI
Setiawan S., Koerniasari K., Ngadino N., Sudjarwo S.A. Bioinsecticide effect of Pinus merkusii tree bark extract on aedes aegypti larvae. J. Young Pharm. 2017;9:127–130. doi: 10.5530/jyp.2017.9.24. DOI
Tang Y.L., Chan S.W. A review of the pharmacological effects of piceatannol on cardiovascular diseases. Phyther. Res. 2014;28:1581–1588. doi: 10.1002/ptr.5185. PubMed DOI
Rohdewald P. Pleiotropic Effects of French Maritime Pine Bark Extract to Promote Healthy Aging. Rejuvenation Res. 2019;22:210–217. doi: 10.1089/rej.2018.2095. PubMed DOI
Markus M.A., Morris B.J. Resveratrol in prevention and treatment of common clinical conditions of aging. Clin. Interv. Aging. 2008;3:331–339. doi: 10.2147/CIA.S3506. PubMed DOI PMC
Shaito A., Posadino A.M., Younes N., Hasan H., Halabi S., Alhababi D., Al-Mohannadi A., Abdel-Rahman W.M., Eid A.H., Nasrallah G.K., et al. Potential adverse effects of resveratrol: A literature review. Int. J. Mol. Sci. 2020;21:2084. doi: 10.3390/ijms21062084. PubMed DOI PMC
Kee H.J., Park S., Kang W., Lim K.S., Kim J.H., Ahn Y., Jeong M.H. Piceatannol attenuates cardiac hypertrophy in an animal model through regulation of the expression and binding of the transcription factor GATA binding factor 6. FEBS Lett. 2014;588:1529–1536. doi: 10.1016/j.febslet.2014.03.027. PubMed DOI
Malekahmadi M., Moradi Moghaddam O., Islam S.M.S., Tanha K., Nematy M., Pahlavani N., Firouzi S., Zali M.R., Norouzy A. Evaluation of the effects of pycnogenol (French maritime pine bark extract) supplementation on inflammatory biomarkers and nutritional and clinical status in traumatic brain injury patients in an intensive care unit: A randomized clinical trial protocol. Trials. 2020;21:1–10. doi: 10.1186/s13063-019-4008-x. PubMed DOI PMC
Shand B., Strey C., Scott R., Morrison Z., Gieseg S. Pilot study on the clinical effects of dietary supplementation with Enzogenol, a flavonoid extract of pine bark and vitamin C. Phyther. Res. 2003;17:490–494. doi: 10.1002/ptr.1181. PubMed DOI
Divvela H.N.D., Duppala L., Kolapalli V.R.M. Isolation and acute oral toxicity studies of Araucaria heterophylla novel natural polysaccharide gum in albino mice. World J. Pharm. Pharm. Sci. 2016;5:702–711. doi: 10.20959/wjpps201610-7752. DOI
Grobosch T., Schwarze B., Stoecklein D., Binscheck T. Fatal poisoning with Taxus baccata. quantification of paclitaxel (taxol A), 10-deacetyltaxol, baccatin III, 10-deacetylbaccatin III, cephalomannine (taxol B), and 3,5-dimethoxyphenol in body fluids by liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 2012;36:36–43. doi: 10.1093/jat/bkr012. PubMed DOI