Conifer-Derived Metallic Nanoparticles: Green Synthesis and Biological Applications

. 2020 Nov 27 ; 21 (23) : . [epub] 20201127

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33261095

Grantová podpora
VT2019-2021 UHK CEP - Centrální evidence projektů

The use of metallic nanoparticles in engineering and biomedicine disciplines has gained considerable attention. Scientists are exploring new synthesis protocols of these substances considering their small size and lucrative antimicrobial potential. Among the most economical techniques of synthesis of metallic nanoparticles via chemical routes, which includes the use of chemicals as metal reducing agents, is considered to generate nanoparticles possessing toxicity and biological risk. This limitation of chemically synthesized nanoparticles has engendered the exploration for the ecofriendly synthesis process. Biological or green synthesis approaches have emerged as an effective solution to address the limitations of conventionally synthesized nanoparticles. Nanoparticles synthesized via biological entities obtained from plant extracts exhibit superior effect in comparison to chemical methods. Recently, conifer extracts have been found to be effective in synthesizing metallic nanoparticles through a highly regulated process. The current review highlights the importance of conifers and its extracts in synthesis of metallic nanoparticles. It also discusses the different applications of the conifer extract mediated metallic nanoparticles.

Zobrazit více v PubMed

Bhattacharyya D., Singh S., Satnalika N., Khandelwal A., Jeon S.-H. Nanotechnology, big things from a tiny world: A review. Int. J. u-e-Serv. Sci. Technol. 2009;2:29–38.

Baker S., Satish S. Endophytes: Toward a vision in synthesis of nanoparticle for future therapeutic agents. Int. J. Bio-Inorg. Hybd. Nanomat. 2012;1:67–77.

Sarmast M.K., Salehi H. Silver Nanoparticles: An Influential Element in Plant Nanobiotechnology. Mol. Biotechnol. 2016;58:441–449. doi: 10.1007/s12033-016-9943-0. PubMed DOI

Salam H.A., Rajiv P., Kamaraj M., Jagadeeswaran P., Gunalan S., Sivaraj R. Plants: Green route for nanoparticle synthesis. Int. J. Biol. Sci. 2012;1:85–90.

Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–2650. doi: 10.1039/c1gc15386b. DOI

Ahmed S., Ahmad M., Swami B.L., Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016;7:17–28. doi: 10.1016/j.jare.2015.02.007. PubMed DOI PMC

Singh J., Dutta T., Kim K.-H., Rawat M., Samddar P., Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology. 2018;16:1–24. doi: 10.1186/s12951-018-0408-4. PubMed DOI PMC

Cao G. Nanostructures & Nanomaterials: Synthesis, Properties & Applications. Imperial College Press; London, UK: 2004.

Kavitha K.S., Baker S., Rakshith D., Kavitha H.U., Yashwantha Rao H.C., Harini B.P., Satish S. Plants as green source towards synthesis of nanoparticles. Int. Res. J. Biol. Sci. 2013;2:66–76.

Akhtar M.S., Panwar J., Yun Y.-S. Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS Sustain. Chem. Eng. 2013;1:591–602. doi: 10.1021/sc300118u. DOI

Kumar H., Bhardwaj K., Sharma R., Nepovimova E., Kuca K., Dhanjal D.S., Verma R., Bhardwaj P., Sharma S., Kumar D. Fruit and Vegetable Peels: Utilization of High Value Horticultural Waste in Novel Industrial Applications. Molecules. 2020;25:2812. doi: 10.3390/molecules25122812. PubMed DOI PMC

Mehta M., Sharma P., Kaur S., Dhanjal D.S., Singh B., Vyas M., Gupta G., Chellappan D.K., Nammi S., Singh T.G., et al. Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems. Academic Press; Cambrige, MA, USA: 2020. Plant-based drug delivery systems in respiratory diseases; pp. 517–539.

Ndeh N.T., Maensiri S., Maensiri D. The effect of green synthesized gold nanoparticles on rice germination and roots. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017;8:035008. doi: 10.1088/2043-6254/aa724a. DOI

Kopaczyk J.M., Warguła J., Jelonek T. The variability of terpenes in conifers under developmental and environmental stimuli. Environ. Exp. Bot. 2020:104197. doi: 10.1016/j.envexpbot.2020.104197. DOI

Gernandt D., Willyard A., Syring J., Liston A. The Conifers (Pinophyta) Genet. Genom. Breed. Conifers. 2011:29–67. doi: 10.1201/b11075-2. DOI

Farjon A. Coniferous Trees. In: Owens J.N., Lund H.G., editors. Forests and Forest Plants-Vol II. Eolss Publisher Co. Ltd.; Oxford, UK: 2009. pp. 39–58.

Mourey A., Canillac N. Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control. 2002;13:289–292. doi: 10.1016/S0956-7135(02)00026-9. DOI

Bhardwaj K., Islam M.T., Jayasena V., Sharma B., Sharma S., Sharma P., Kuča K., Bhardwaj P. Review on essential oils, chemical composition, extraction, and utilization of some conifers in Northwestern Himalayas. Phytotherapy Res. 2020;34:2889–2910. doi: 10.1002/ptr.6736. PubMed DOI

Bhardwaj K., Bhardwaj P., Kaur S. Medicinal Value of Secondary Metabolites of Pines grown in Himalayan Region of India. Res. J. Biotech. 2020;15:131–140.

Abdillahi H., Stafford G., Finnie J., Van Staden J. Ethnobotany, phytochemistry and pharmacology of Podocarpus sensu latissimo (s.l.) South Afr. J. Bot. 2010;76:1–24. doi: 10.1016/j.sajb.2009.09.002. DOI

Aslam M.S., Choudhary B., Uzair M., Ijaz A. Phytochemical and Ethno-Pharmacological Review of the Genus Araucaria—Review. Trop. J. Pharm. Res. 2013;12:651–659. doi: 10.4314/tjpr.v12i4.31. DOI

Kumar B., Rani R., Das S., Das S. Phytoconstituents and therapeutic potential of Thuja occidentalis. Res. J. Pharm. Biol. Chem. Sci. 2012;3:354–362.

Tumen I., Deniz F.S.S., Orhan I.E. Evaluation of possible in vitro neurobiological effects of two varieties of Cupressus sempervirens (Mediterranean cypress) through their antioxidant and enzyme inhibition actions. Turk. J. Biochem. 2012;37:5–13. doi: 10.5505/tjb.2012.92400. DOI

Branco C.S., Rodrigues T.S. Chemical Constituents and Biological Activities of Araucaria angustifolia (Bertol.) O. Kuntze: A Review. J. Org. Inorg. Chem. 2016;2:1–10. doi: 10.21767/2472-1123.100008. DOI

Al-Snafi A.E. Medical importance of Cupressus sempervirens—A review. IOSR J. Pharm. 2016;6:66–76.

Naser B., Bodinet C., Tegtmeier M., Lindequist U. Thuja occidentalis (Arbor vitae): A review of its pharmaceutical, pharmacological and clinical properties. Evid. Based Complement. Altern. Med. 2005;2:67–78. doi: 10.1093/ecam/neh065. PubMed DOI PMC

Kim S.H., Park J.G., Hong Y.D., Kim E., Baik K.-S., Yoon D.H., Kim S., Lee M.-N., Rho H.S., Shin S.S., et al. Src/Syk/IRAK1-targeted anti-inflammatory action of Torreya nucifera butanol fraction in lipopolysaccharide-activated RAW264.7 cells. J. Ethnopharmacol. 2016;188:167–176. doi: 10.1016/j.jep.2016.05.008. PubMed DOI

Lee W.S., Kim J.-R., Han J.-M., Jang K.C., Sok D.-E., Jeong T.-S. Antioxidant Activities of Abietane Diterpenoids Isolated fromTorreya nuciferaLeaves. J. Agric. Food Chem. 2006;54:5369–5374. doi: 10.1021/jf060896c. PubMed DOI

Yu S., Yan H., Zhang L., Shan M., Chen P.-D., Ding A., Li S.F.Y. A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules. 2017;22:299. doi: 10.3390/molecules22020299. PubMed DOI PMC

Xia Q.H., Ma Y.J., Wang J.W. Biosynthesis of Silver Nanoparticles Using Taxus yunnanensis Callus and Their Antibacterial Activity and Cytotoxicity in Human Cancer Cells. Nanomaterials. 2016;6:160. doi: 10.3390/nano6090160. PubMed DOI PMC

Ali A., Ahmed T., Wu W., Hossain A., Hafeez R., Masum M.I., Wang Y., An Q., Sun G., Li B. Advancements in Plant and Microbe-Based Synthesis of Metallic Nanoparticles and Their Antimicrobial Activity against Plant Pathogens. Nanomater. 2020;10:1146. doi: 10.3390/nano10061146. PubMed DOI PMC

Liu G., Bai X., Lv H. Green synthesis of supported palladium nanoparticles employing pine needles as reducing agent and carrier: New reusable heterogeneous catalyst in the Suzuki coupling reaction. Appl. Organomet. Chem. 2016;31:e3587. doi: 10.1002/aoc.3587. DOI

Taghizadeh S.-M., Berenjian A., Taghizadeh S., Ghasemi Y., Taherpour A., Sarmah A.K., Ebrahiminezhad A. One-put green synthesis of multifunctional silver iron core-shell nanostructure with antimicrobial and catalytic properties. Ind. Crop. Prod. 2019;130:230–236. doi: 10.1016/j.indcrop.2018.12.085. DOI

Kajani A.A., Bordbar A.-K., Esfahani S.H.Z., Khosropour A.R., Razmjou A. Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract. RSC Adv. 2014;4:61394–61403. doi: 10.1039/C4RA08758E. DOI

Makarov V.V., Love A.J., Sinitsyna O.V., Makarova S.S., Yaminsky I.V., Taliansky M.E., Kalinina N.O. “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta Nat. 2014;6:35–44. doi: 10.32607/20758251-2014-6-1-35-44. PubMed DOI PMC

Maurya S., Bhardwaj A.K., Gupta K.K., Agarwal S., Kushwaha A., Vk C., Pathak R.K., Gopal R., Uttam K.N., Singh A.K. Green synthesis of silver nanoparticles using Pleurotus and its bactericidal activity. Cell. Mol. Biol. 2016;62:131.

Mohamed M.S., Kumar D.S. Plant Nanotechnology. Springer Science and Business Media LLC; Cham, Switzerland: 2016. Effect of Nanoparticles on Plants with Regard to Physiological Attributes; pp. 119–153.

Baruwati B., Varma R.S. High Value Products from Waste: Grape Pomace Extract A Three-in-One Package for the Synthesis of Metal Nanoparticles. ChemSusChem. 2009;2:1041–1044. doi: 10.1002/cssc.200900220. PubMed DOI

Nadagouda M.N., Varma R.S. A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) Nanocrystals Using Aqueous Vitamin C. Cryst. Growth Des. 2007;7:2582–2587. doi: 10.1021/cg070554e. DOI

Mallikarjuna N.N., Varma R.S. Microwave-Assisted Shape-Controlled Bulk Synthesis of Noble Nanocrystals and Their Catalytic Properties. Cryst. Growth Des. 2007;7:686–690. doi: 10.1021/cg060506e. DOI

Nadagouda M.N., Varma R.S. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008;10:859–862. doi: 10.1039/b804703k. DOI

Baruwati B., Nadagouda M.N., Varma R.S. Bulk Synthesis of Monodisperse Ferrite Nanoparticles at Water−Organic Interfaces under Conventional and Microwave Hydrothermal Treatment and Their Surface Functionalization. J. Phys. Chem. C. 2008;112:18399–18404. doi: 10.1021/jp807245g. DOI

Baruwati B., Polshettiwar V., Varma R.S. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem. 2009;11:926–930. doi: 10.1039/b902184a. DOI

Polshettiwar V., Baruwati B., Varma R.S. Self-Assembly of Metal Oxides into Three-Dimensional Nanostructures: Synthesis and Application in Catalysis. ACS Nano. 2009;3:728–736. doi: 10.1021/nn800903p. PubMed DOI

Lukman A.I., Gong B., Marjo C.E., Roessner U., Harris A.T. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J. Colloid Interface Sci. 2011;353:433–444. doi: 10.1016/j.jcis.2010.09.088. PubMed DOI

Al-Dhafri K., Ching C.L., Philip K. Phyto-synthesis of silver nanoparticles and its bioactivity response towards nosocomial bacterial pathogens. Biocatal. Agric. Biotechnol. 2019;18:101075. doi: 10.1016/j.bcab.2019.101075. DOI

Wu T., Duan X., Hu C., Wu C., Chen X., Huang J., Liu J., Cui S. Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artif. Cells Nanomed. Biotechnol. 2019;47:512–523. doi: 10.1080/21691401.2018.1560305. PubMed DOI

Samrot A.V., Saipriya C., Angalene J.L.A., Roshini S.M., Cypriyana P.J.J., Saigeetha S., Raji P., Kumar S.S. Evaluation of Nanotoxicity of Araucaria heterophylla Gum Derived Green Synthesized Silver Nanoparticles on Eudrilus eugeniae and Danio rerio. J. Clust. Sci. 2019;30:1017–1024. doi: 10.1007/s10876-019-01561-4. DOI

Jiang J., Oberdörster G., Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanoparticle Res. 2009;11:77–89. doi: 10.1007/s11051-008-9446-4. DOI

Kumar H., Bhardwaj K., Kuča K., Kalia A., Nepovimova E., Verma R., Kumar D. Flower-Based Green Synthesis of Metallic Nanoparticles: Applications beyond Fragrance. Nanomaterials. 2020;10:766. doi: 10.3390/nano10040766. PubMed DOI PMC

Tanase C., Berta L., Coman N.-A., Roșca I., Man A., Toma F., Mocan A., Nicolescu A., Jakab-Farkas L., Biró D., et al. Antibacterial and Antioxidant Potential of Silver Nanoparticles Biosynthesized Using the Spruce Bark Extract. Nanomaterials. 2019;9:1541. doi: 10.3390/nano9111541. PubMed DOI PMC

Iravani S., Zolfaghari B. Green Synthesis of Silver Nanoparticles UsingPinus eldaricaBark Extract. BioMed Res. Int. 2013;2013:1–5. doi: 10.1155/2013/639725. PubMed DOI PMC

Masruri M., Pangestin D.N., Ulfa S.M., Riyanto S., Srihardyastutie A., Rahman M.F. A Potent Staphylococcus Aureus Growth Inhibitor Of A Dried Flower Extract Of Pinus Merkusii Jungh & De Vriese And Copper Nanoparticle. IOP Conf. Series: Mater. Sci. Eng. 2018;299:12072. doi: 10.1088/1757-899x/299/1/012072. DOI

Mariychuk R., Fejer J., Porubska J., Grishchenko L.M., Lisnyak V.V. Green synthesis and characterization of gold triangular nanoprisms using extract of Juniperus communis L. Appl. Nanosci. 2020;10:2835–2841. doi: 10.1007/s13204-019-00990-x. DOI

Prashanth S., Menaka I., Muthezhilan R., Sharma N.K. Synthesis of plant-mediated silver nano particles using medicinal plant extract and evaluation of its anti microbial activities. Int. J. Eng. Sci. Technol. 2011;3:6235–6250.

Velmurugan P., Park J.-H., Lee S.-M., Jang J.S., Lee K.-J., Han S.-S., Lee S.-H., Cho M., Oh B.-T. Synthesis and characterization of nanosilver with antibacterial properties using Pinus densiflora young cone extract. J. Photochem. Photobiol. B: Biol. 2015;147:63–68. doi: 10.1016/j.jphotobiol.2015.03.008. PubMed DOI

Azkiya N.I., Masruri M., Ulfa S.M. Green Synthesis of Silver Nanoparticles using Extract ofPinus merkusiiJungh & De Vriese Cone Flower. IOP Conf. Series: Mater. Sci. Eng. 2018;299:12070. doi: 10.1088/1757-899x/299/1/012070. DOI

Samrot A.V., Angalene J.L.A., Roshini S.M., Raji P., Stefi S.M., Preethi R., Selvarani A.J., Madankumar A. Bioactivity and Heavy Metal Removal Using Plant Gum Mediated Green Synthesized Silver Nanoparticles. J. Clust. Sci. 2019;30:1599–1610. doi: 10.1007/s10876-019-01602-y. DOI

Kajani A.A., Bordbar A.-K., Esfahani S.H.Z., Razmjou A. Gold nanoparticles as potent anticancer agent: Green synthesis, characterization, and in vitro study. RSC Adv. 2016;6:63973–63983. doi: 10.1039/C6RA09050H. DOI

Noruzi M., Zare D., Davoodi D. A rapid biosynthesis route for the preparation of gold nanoparticles by aqueous extract of cypress leaves at room temperature. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2012;94:84–88. doi: 10.1016/j.saa.2012.03.041. PubMed DOI

Kheshtzar R., Berenjian A., Taghizadeh S.-M., Ghasemi Y., Asad A.G., Ebrahiminezhad A. Optimization of reaction parameters for the green synthesis of zero valent iron nanoparticles using pine tree needles. Green Process. Synth. 2019;8:846–855. doi: 10.1515/gps-2019-0055. DOI

Hernández L.G., Islas D.A., Guerrero M.U.F., Ortega P.A.R., Lechuga L.G. Proceedings of the TMS 2015 144th Annual Meeting & Exhibition. Springer Science and Business Media LLC; Cham, Switzerland: 2015. Use of Extract of Cupressus Goveniana for Synthesis and Stabilization of Nanoparticles Silver; pp. 1105–1112.

Ebrahiminezhad A., Taghizadeh S., Ghasemi Y. Green Synthesis of Silver Nanoparticles using Mediterranean Cypress (Cupressus sempervirens) Leaf Extract. Am. J. Biochem. Biotechnol. 2017;13:1–6. doi: 10.3844/ajbbsp.2017.1.6. DOI

Rajput K., Bhatt A., Agrawal P.K. Plant mediated biosynthesis, characterization and application of silver nanoparticles by leaves extract of cupressus torulosa. Int. J. Adv. Res. 2016;4:1199–1207. doi: 10.21474/IJAR01/983. DOI

Ibrahim E.H., Kilany M., Ghramh H.A., Khan K.A., Islam S.U. Cellular proliferation/cytotoxicity and antimicrobial potentials of green synthesized silver nanoparticles (AgNPs) using Juniperus procera. Saudi J. Biol. Sci. 2019;26:1689–1694. doi: 10.1016/j.sjbs.2018.08.014. PubMed DOI PMC

Kanawaria S.K., Sankhla A., Jatav P.K., Yadav R.S., Verma K.S., Velraj P., Kachhwaha S., Kothari S.L. Rapid biosynthesis and characterization of silver nanoparticles: An assessment of antibacterial and antimycotic activity. Appl. Phys. A. 2018;124:320. doi: 10.1007/s00339-018-1701-7. DOI

Bhor G.L., Kharate S., Nikam S., Kulkarni V.D. Synthesis of Silver Nanoparticles using thuja leaf extract. Res. J. Mater. Sci. 2016;4:4–6.

Riat A.K., Geyi D., Rafi M., Kaur G. Efficacy of Thuja occidentalis plant mediated synthesis of Silver nanoparticles against Culex quinquefasciatus Larvae. Res. J. Pharm. Technol. 2018;11:4981. doi: 10.5958/0974-360X.2018.00908.3. DOI

Barua S., Konwarh R., Bhattacharya S.S., Das P., Devi K.S.P., Maiti T.K., Mandal M., Karak N. Non-hazardous anticancerous and antibacterial colloidal ‘green’silver nanoparticles. Colloids Surf. B. Biointerfaces. 2013;105:37–42. doi: 10.1016/j.colsurfb.2012.12.015. PubMed DOI

Barua S., Banerjee P.P., Sadhu A., Sengupta A., Chatterjee S., Sarkar S., Barman S., Chattopadhyay A., Bhattacharya S., Mondal N.C., et al. Silver Nanoparticles as Antibacterial and Anticancer Materials Against Human Breast, Cervical and Oral Cancer Cells. J. Nanosci. Nanotechnol. 2017;17:968–976. doi: 10.1166/jnn.2017.12636. PubMed DOI

Kalpana D., Han J.H., Park W.S., Lee S.M., Wahab R., Lee Y.S. Green biosynthesis of silver nanoparticles using Torreya nucifera and their antibacterial activity. Arab. J. Chem. 2019;12:1722–1732. doi: 10.1016/j.arabjc.2014.08.016. DOI

Sarli S., Ghasemi N. Optimization of biosynthesized Zn nanoparticles by poisonous Taxus baccata leaves extract and evaluation of their effect on the bacterias and MCF-7 cancer cells. Eurasian Chem. Commun. 2020;2:302–318. doi: 10.33945/sami/ecc.2020.3.2. DOI

Fernando S.I.D., Judan-Cruz K.G., De Guia A.C.M. Biologically synthesized gold nanoparticles (Aunp) using pine (Pinus kesiya) pollen extract show antifungal activity against Candida albicans. Int. J. Agric. Technol. 2017;13:2615–2622.

Khan N., Khan I., Nadhman A., Azam S., Ullah I., Ahmad F., Khan H.A. Pinus wallichiana-synthesized silver nanoparticles as biomedical agents: In-vitro and in-vivo approach. Green Chem. Lett. Rev. 2020;13:69–82. doi: 10.1080/17518253.2020.1733105. DOI

Das S., Das J., Samadder A., Bhattacharyya S.S., Das D., Khuda-Bukhsh A.R. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Colloids Surfaces B: Biointerfaces. 2013;101:325–336. doi: 10.1016/j.colsurfb.2012.07.008. PubMed DOI

Deshmukh S., Patil S., Mullani S., Delekar S.D. Silver nanoparticles as an effective disinfectant: A review. Mater. Sci. Eng. C. 2019;97:954–965. doi: 10.1016/j.msec.2018.12.102. PubMed DOI PMC

Anand R., Bhagat M. Silver nanoparticles (AgNPs): As nanopesticides and nanofertilizers. MOJ Biol. Med. 2019;4:19–20.

Srikar S.K., Giri D.D., Pal D.B., Mishra P.K., Upadhyay S.N. Green Synthesis of Silver Nanoparticles: A Review. Green Sustain. Chem. 2016;6:34–56. doi: 10.4236/gsc.2016.61004. DOI

Das P., Barua S., Sarkar S., Karak N., Bhattacharyya P., Raza N., Kim K.-H., Bhattacharya S.S. Plant extract–mediated green silver nanoparticles: Efficacy as soil conditioner and plant growth promoter. J. Hazard. Mater. 2018;346:62–72. doi: 10.1016/j.jhazmat.2017.12.020. PubMed DOI

Mashwani Z.-U.-R., Khan M.A., Khan T., Nadhman A. Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv. Colloid Interface Sci. 2016;234:132–141. doi: 10.1016/j.cis.2016.04.008. PubMed DOI

Khullar P., Goshisht M.K., Moudgil L., Singh G., Mandial D., Kumar H., Ahluwalia G.K., Bakshi M.S. Mode of Protein Complexes on Gold Nanoparticles Surface: Synthesis and Characterization of Biomaterials for Hemocompatibility and Preferential DNA Complexation. ACS Sustain. Chem. Eng. 2016;5:1082–1093. doi: 10.1021/acssuschemeng.6b02373. DOI

Lazarides A., Kelly K.L., Jensen T., Schatz G. Optical properties of metal nanoparticles and nanoparticle aggregates important in biosensors. J. Mol. Struct. Theochem. 2000;529:59–63. doi: 10.1016/S0166-1280(00)00532-7. DOI

Usman A.I., Aziz A.A., Abu Noqta O. Application of Green Synthesis of Gold Nanoparticles: A Review. J. Teknol. 2018;81:1–5. doi: 10.11113/jt.v81.11409. DOI

Anand K., Rajamanikandan R., Sharma A.S., Ilanchelian M., Khan F.I., Tiloke C., Katari N.K., Boomi P., Balakumar C., Saravanan M., et al. Human serum albumin interaction, in silico and anticancer evaluation of Pine-Gold nanoparticles. Process Biochem. 2020;89:98–109. doi: 10.1016/j.procbio.2019.09.036. DOI

Velmurugan P., Lee S.-M., Iydroose M., Lee K.-J., Oh B.-T. Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens. Appl. Microbiol. Biotechnol. 2013;97:361–368. doi: 10.1007/s00253-012-3892-8. PubMed DOI

Jamdagni P., Khatri P., Rana J. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King Saud Univ. Sci. 2018;30:168–175. doi: 10.1016/j.jksus.2016.10.002. DOI

Bala N., Saha S.K., Chakraborty M., Maiti M.K., Das S.K., Basu R., Nandy P. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 2015;5:4993–5003. doi: 10.1039/C4RA12784F. DOI

Chen L., Batjikh I., Hurh J., Han Y., Huo Y., Ali H., Li J.F., Rupa E.J., Ahn J.C., Mathiyalagan R., et al. Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue. Optik. 2019;184:324–329. doi: 10.1016/j.ijleo.2019.03.051. DOI

Suárez-Cerda J., Espinoza-Gómez H., Alonso-Núñez G., Rivero I.A., Gochi-Ponce Y., Flores-López L.Z. A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J. Saudi Chem. Soc. 2017;21:341–348. doi: 10.1016/j.jscs.2016.10.005. DOI

Xu P., Zeng G., Huang D.L., Feng C.L., Hu S., Zhao M.H., Lai C., Wei Z., Huang C., Xie G.X., et al. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total. Environ. 2012;424:1–10. doi: 10.1016/j.scitotenv.2012.02.023. PubMed DOI

Mak S.-Y., Chen D.-H. Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles. Dye. Pigment. 2004;61:93–98. doi: 10.1016/j.dyepig.2003.10.008. DOI

Sylvester P., Westerhoff P., Möller T., Badruzzaman M., Boyd O. A Hybrid Sorbent Utilizing Nanoparticles of Hydrous Iron Oxide for Arsenic Removal from Drinking Water. Environ. Eng. Sci. 2007;24:104–112. doi: 10.1089/ees.2007.24.104. DOI

Parham H., Zargar B., Shiralipour R. Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole. J. Hazard. Mater. 2012;205:94–100. doi: 10.1016/j.jhazmat.2011.12.026. PubMed DOI

Zargar B., Parham H., Hatamie A. Fast removal and recovery of amaranth by modified iron oxide magnetic nanoparticles. Chemosphere. 2009;76:554–557. doi: 10.1016/j.chemosphere.2009.02.065. PubMed DOI

Shahwan T., Abu-Sirriah S., Nairat M., Boyacı E., Eroğlu A.E., Scott T.B., Hallam K.R. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 2011;172:258–266. doi: 10.1016/j.cej.2011.05.103. DOI

Dakal T.C., Kumar A., Majumdar R.S., Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016;7:1831. doi: 10.3389/fmicb.2016.01831. PubMed DOI PMC

Abbaszadegan A., Ghahramani Y., Gholami A., Hemmateenejad B., Dorostkar S., Nabavizadeh M., Sharghi H. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study. J. Nanomater. 2015;2015:1–8. doi: 10.1155/2015/720654. DOI

Losasso C., Belluco S., Cibin V., Zavagnin P., Mičetić I., Gallocchio F., Zanella M., Bregoli L., Biancotto G., Ricci A. Antibacterial activity of silver nanoparticles: Sensitivity of different Salmonella serovars. Front. Microbiol. 2014;5:227. doi: 10.3389/fmicb.2014.00227. PubMed DOI PMC

Qing Y., Cheng L., Li R., Liu G., Zhang Y., Tang X., Wang J., Liu H., Qin Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomed. 2018;13:3311–3327. doi: 10.2147/IJN.S165125. PubMed DOI PMC

Gordon O., Slenters T.V., Brunetto P.S., Villaruz A.E., Sturdevant D.E., Otto M., Landmann R., Fromm K.M. Silver Coordination Polymers for Prevention of Implant Infection: Thiol Interaction, Impact on Respiratory Chain Enzymes, and Hydroxyl Radical Induction. Antimicrob. Agents Chemother. 2010;54:4208–4218. doi: 10.1128/AAC.01830-09. PubMed DOI PMC

Husen A. Medicinal Plant Product-Based Fabrication Nanoparticles (Au and Ag) and Their Anticancer Effects. CRC Press; Boca Raton, FL, USA: 2019. pp. 133–147.

Gherbawy Y.A., Elhariry H.M. Endophytic fungi associated with high-altitude Juniperus trees and their antimicrobial activities. Plant Biosyst. 2016;150:131–140. doi: 10.1080/11263504.2014.984011. DOI

Khatami M., Mortazavi S.M., Kishani-Farahani Z., Amini A., Amini E., Heli H. Biosynthesis of Silver Nanoparticles Using Pine Pollen and Evaluation of the Antifungal Efficiency. Iran. J. Biotechnol. 2017;15:95–101. doi: 10.15171/ijb.1436. PubMed DOI PMC

Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551. PubMed DOI

Kumar H., Bhardwaj K., Dhanjal D.S., Nepovimova E., Șen F., Regassa H., Singh R., Verma R., Kumar V., Kumar D., et al. Fruit Extract Mediated Green Synthesis of Metallic Nanoparticles: A New Avenue in Pomology Applications. Int. J. Mol. Sci. 2020;21:8458. doi: 10.3390/ijms21228458. PubMed DOI PMC

Rao P.V., Nallappan D., Madhavi K., Rahman S., Wei L.J., Gan S.H. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents. Oxidative Med. Cell. Longev. 2016;2016:1–15. doi: 10.1155/2016/3685671. PubMed DOI PMC

Patil M.P., Kim G.-D. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl. Microbiol. Biotechnol. 2017;101:79–92. doi: 10.1007/s00253-016-8012-8. PubMed DOI

Conde J., Doria G., Baptista P. Noble Metal Nanoparticles Applications in Cancer. J. Drug Deliv. 2011;2012:1–12. doi: 10.1155/2012/751075. PubMed DOI PMC

Sharma P., Mehta M., Dhanjal D.S., Kaur S., Gupta G., Singh H., Thangavelu L., Kumar S.R., Tambuwala M., Bakshi H.A., et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Interactions. 2019;309:108720. doi: 10.1016/j.cbi.2019.06.033. PubMed DOI

Mehta M., Dhanjal D.S., Paudel K.R., Singh B., Gupta G., RajeshKumar S., Thangavelu L., Tambuwala M., Bakshi H.A., Chellappan D.K., et al. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: An update. Inflammopharmacology. 2020;28:795–817. doi: 10.1007/s10787-020-00698-3. PubMed DOI

Amalinei R.L.M., Trifan A., Cioanca O., Miron S.D., Mihai C.T., Rotinberg P., Miron A. Polyphenol-rich extract from Pinus sylvestris L. bark--chemical and antitumor studies. Med Surg. J. 2014;118:551–557. PubMed

Dhanjal D.S., Bhardwaj S., Sharma R., Bhardwaj K., Kumar D., Chopra C., Nepovimova E., Singh R., Kuca K. Plant Fortification of the Diet for Anti-Ageing Effects: A Review. Nutrients. 2020;12:3008. doi: 10.3390/nu12103008. PubMed DOI PMC

Kumar H., Bhardwaj K., Nepovimova E., Kuca K., Dhanjal D.S., Bhardwaj S., Bhatia S.K., Verma R., Kumar D. Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress. Nanomaterials. 2020;10:1334. doi: 10.3390/nano10071334. PubMed DOI PMC

Bedlovičová Z., Strapáč I., Baláž M., Salayová A. A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles. Molecules. 2020;25:3191. doi: 10.3390/molecules25143191. PubMed DOI PMC

Roy A., Bulut O., Some S., Mandal A.K., Yilmaz M.D. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9:2673–2702. doi: 10.1039/C8RA08982E. PubMed DOI PMC

Watters J.L., A Satia J., Kupper L.L., A Swenberg J., Schroeder J.C., Switzer B.R., Florin T.A., Fryer G.E., Miyoshi T., Weitzman M., et al. Associations of Antioxidant Nutrients and Oxidative DNA Damage in Healthy African-American and White Adults. Cancer Epidemiol. Biomark. Prev. 2007;16:1428–1436. doi: 10.1158/1055-9965.EPI-06-1030. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...