Conifer-Derived Metallic Nanoparticles: Green Synthesis and Biological Applications
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VT2019-2021
UHK
CEP - Centrální evidence projektů
PubMed
33261095
PubMed Central
PMC7729856
DOI
10.3390/ijms21239028
PII: ijms21239028
Knihovny.cz E-zdroje
- Klíčová slova
- anticancer, antimicrobial, antioxidant, catalytic, conifer extract, green synthesis, metallic nanoparticles, thrombolytic,
- MeSH
- antiinfekční látky farmakologie MeSH
- antioxidancia farmakologie MeSH
- cévnaté rostliny chemie MeSH
- kovové nanočástice chemie MeSH
- technologie zelené chemie * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antiinfekční látky MeSH
- antioxidancia MeSH
The use of metallic nanoparticles in engineering and biomedicine disciplines has gained considerable attention. Scientists are exploring new synthesis protocols of these substances considering their small size and lucrative antimicrobial potential. Among the most economical techniques of synthesis of metallic nanoparticles via chemical routes, which includes the use of chemicals as metal reducing agents, is considered to generate nanoparticles possessing toxicity and biological risk. This limitation of chemically synthesized nanoparticles has engendered the exploration for the ecofriendly synthesis process. Biological or green synthesis approaches have emerged as an effective solution to address the limitations of conventionally synthesized nanoparticles. Nanoparticles synthesized via biological entities obtained from plant extracts exhibit superior effect in comparison to chemical methods. Recently, conifer extracts have been found to be effective in synthesizing metallic nanoparticles through a highly regulated process. The current review highlights the importance of conifers and its extracts in synthesis of metallic nanoparticles. It also discusses the different applications of the conifer extract mediated metallic nanoparticles.
Zobrazit více v PubMed
Bhattacharyya D., Singh S., Satnalika N., Khandelwal A., Jeon S.-H. Nanotechnology, big things from a tiny world: A review. Int. J. u-e-Serv. Sci. Technol. 2009;2:29–38.
Baker S., Satish S. Endophytes: Toward a vision in synthesis of nanoparticle for future therapeutic agents. Int. J. Bio-Inorg. Hybd. Nanomat. 2012;1:67–77.
Sarmast M.K., Salehi H. Silver Nanoparticles: An Influential Element in Plant Nanobiotechnology. Mol. Biotechnol. 2016;58:441–449. doi: 10.1007/s12033-016-9943-0. PubMed DOI
Salam H.A., Rajiv P., Kamaraj M., Jagadeeswaran P., Gunalan S., Sivaraj R. Plants: Green route for nanoparticle synthesis. Int. J. Biol. Sci. 2012;1:85–90.
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–2650. doi: 10.1039/c1gc15386b. DOI
Ahmed S., Ahmad M., Swami B.L., Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016;7:17–28. doi: 10.1016/j.jare.2015.02.007. PubMed DOI PMC
Singh J., Dutta T., Kim K.-H., Rawat M., Samddar P., Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology. 2018;16:1–24. doi: 10.1186/s12951-018-0408-4. PubMed DOI PMC
Cao G. Nanostructures & Nanomaterials: Synthesis, Properties & Applications. Imperial College Press; London, UK: 2004.
Kavitha K.S., Baker S., Rakshith D., Kavitha H.U., Yashwantha Rao H.C., Harini B.P., Satish S. Plants as green source towards synthesis of nanoparticles. Int. Res. J. Biol. Sci. 2013;2:66–76.
Akhtar M.S., Panwar J., Yun Y.-S. Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS Sustain. Chem. Eng. 2013;1:591–602. doi: 10.1021/sc300118u. DOI
Kumar H., Bhardwaj K., Sharma R., Nepovimova E., Kuca K., Dhanjal D.S., Verma R., Bhardwaj P., Sharma S., Kumar D. Fruit and Vegetable Peels: Utilization of High Value Horticultural Waste in Novel Industrial Applications. Molecules. 2020;25:2812. doi: 10.3390/molecules25122812. PubMed DOI PMC
Mehta M., Sharma P., Kaur S., Dhanjal D.S., Singh B., Vyas M., Gupta G., Chellappan D.K., Nammi S., Singh T.G., et al. Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems. Academic Press; Cambrige, MA, USA: 2020. Plant-based drug delivery systems in respiratory diseases; pp. 517–539.
Ndeh N.T., Maensiri S., Maensiri D. The effect of green synthesized gold nanoparticles on rice germination and roots. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017;8:035008. doi: 10.1088/2043-6254/aa724a. DOI
Kopaczyk J.M., Warguła J., Jelonek T. The variability of terpenes in conifers under developmental and environmental stimuli. Environ. Exp. Bot. 2020:104197. doi: 10.1016/j.envexpbot.2020.104197. DOI
Gernandt D., Willyard A., Syring J., Liston A. The Conifers (Pinophyta) Genet. Genom. Breed. Conifers. 2011:29–67. doi: 10.1201/b11075-2. DOI
Farjon A. Coniferous Trees. In: Owens J.N., Lund H.G., editors. Forests and Forest Plants-Vol II. Eolss Publisher Co. Ltd.; Oxford, UK: 2009. pp. 39–58.
Mourey A., Canillac N. Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control. 2002;13:289–292. doi: 10.1016/S0956-7135(02)00026-9. DOI
Bhardwaj K., Islam M.T., Jayasena V., Sharma B., Sharma S., Sharma P., Kuča K., Bhardwaj P. Review on essential oils, chemical composition, extraction, and utilization of some conifers in Northwestern Himalayas. Phytotherapy Res. 2020;34:2889–2910. doi: 10.1002/ptr.6736. PubMed DOI
Bhardwaj K., Bhardwaj P., Kaur S. Medicinal Value of Secondary Metabolites of Pines grown in Himalayan Region of India. Res. J. Biotech. 2020;15:131–140.
Abdillahi H., Stafford G., Finnie J., Van Staden J. Ethnobotany, phytochemistry and pharmacology of Podocarpus sensu latissimo (s.l.) South Afr. J. Bot. 2010;76:1–24. doi: 10.1016/j.sajb.2009.09.002. DOI
Aslam M.S., Choudhary B., Uzair M., Ijaz A. Phytochemical and Ethno-Pharmacological Review of the Genus Araucaria—Review. Trop. J. Pharm. Res. 2013;12:651–659. doi: 10.4314/tjpr.v12i4.31. DOI
Kumar B., Rani R., Das S., Das S. Phytoconstituents and therapeutic potential of Thuja occidentalis. Res. J. Pharm. Biol. Chem. Sci. 2012;3:354–362.
Tumen I., Deniz F.S.S., Orhan I.E. Evaluation of possible in vitro neurobiological effects of two varieties of Cupressus sempervirens (Mediterranean cypress) through their antioxidant and enzyme inhibition actions. Turk. J. Biochem. 2012;37:5–13. doi: 10.5505/tjb.2012.92400. DOI
Branco C.S., Rodrigues T.S. Chemical Constituents and Biological Activities of Araucaria angustifolia (Bertol.) O. Kuntze: A Review. J. Org. Inorg. Chem. 2016;2:1–10. doi: 10.21767/2472-1123.100008. DOI
Al-Snafi A.E. Medical importance of Cupressus sempervirens—A review. IOSR J. Pharm. 2016;6:66–76.
Naser B., Bodinet C., Tegtmeier M., Lindequist U. Thuja occidentalis (Arbor vitae): A review of its pharmaceutical, pharmacological and clinical properties. Evid. Based Complement. Altern. Med. 2005;2:67–78. doi: 10.1093/ecam/neh065. PubMed DOI PMC
Kim S.H., Park J.G., Hong Y.D., Kim E., Baik K.-S., Yoon D.H., Kim S., Lee M.-N., Rho H.S., Shin S.S., et al. Src/Syk/IRAK1-targeted anti-inflammatory action of Torreya nucifera butanol fraction in lipopolysaccharide-activated RAW264.7 cells. J. Ethnopharmacol. 2016;188:167–176. doi: 10.1016/j.jep.2016.05.008. PubMed DOI
Lee W.S., Kim J.-R., Han J.-M., Jang K.C., Sok D.-E., Jeong T.-S. Antioxidant Activities of Abietane Diterpenoids Isolated fromTorreya nuciferaLeaves. J. Agric. Food Chem. 2006;54:5369–5374. doi: 10.1021/jf060896c. PubMed DOI
Yu S., Yan H., Zhang L., Shan M., Chen P.-D., Ding A., Li S.F.Y. A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules. 2017;22:299. doi: 10.3390/molecules22020299. PubMed DOI PMC
Xia Q.H., Ma Y.J., Wang J.W. Biosynthesis of Silver Nanoparticles Using Taxus yunnanensis Callus and Their Antibacterial Activity and Cytotoxicity in Human Cancer Cells. Nanomaterials. 2016;6:160. doi: 10.3390/nano6090160. PubMed DOI PMC
Ali A., Ahmed T., Wu W., Hossain A., Hafeez R., Masum M.I., Wang Y., An Q., Sun G., Li B. Advancements in Plant and Microbe-Based Synthesis of Metallic Nanoparticles and Their Antimicrobial Activity against Plant Pathogens. Nanomater. 2020;10:1146. doi: 10.3390/nano10061146. PubMed DOI PMC
Liu G., Bai X., Lv H. Green synthesis of supported palladium nanoparticles employing pine needles as reducing agent and carrier: New reusable heterogeneous catalyst in the Suzuki coupling reaction. Appl. Organomet. Chem. 2016;31:e3587. doi: 10.1002/aoc.3587. DOI
Taghizadeh S.-M., Berenjian A., Taghizadeh S., Ghasemi Y., Taherpour A., Sarmah A.K., Ebrahiminezhad A. One-put green synthesis of multifunctional silver iron core-shell nanostructure with antimicrobial and catalytic properties. Ind. Crop. Prod. 2019;130:230–236. doi: 10.1016/j.indcrop.2018.12.085. DOI
Kajani A.A., Bordbar A.-K., Esfahani S.H.Z., Khosropour A.R., Razmjou A. Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract. RSC Adv. 2014;4:61394–61403. doi: 10.1039/C4RA08758E. DOI
Makarov V.V., Love A.J., Sinitsyna O.V., Makarova S.S., Yaminsky I.V., Taliansky M.E., Kalinina N.O. “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta Nat. 2014;6:35–44. doi: 10.32607/20758251-2014-6-1-35-44. PubMed DOI PMC
Maurya S., Bhardwaj A.K., Gupta K.K., Agarwal S., Kushwaha A., Vk C., Pathak R.K., Gopal R., Uttam K.N., Singh A.K. Green synthesis of silver nanoparticles using Pleurotus and its bactericidal activity. Cell. Mol. Biol. 2016;62:131.
Mohamed M.S., Kumar D.S. Plant Nanotechnology. Springer Science and Business Media LLC; Cham, Switzerland: 2016. Effect of Nanoparticles on Plants with Regard to Physiological Attributes; pp. 119–153.
Baruwati B., Varma R.S. High Value Products from Waste: Grape Pomace Extract A Three-in-One Package for the Synthesis of Metal Nanoparticles. ChemSusChem. 2009;2:1041–1044. doi: 10.1002/cssc.200900220. PubMed DOI
Nadagouda M.N., Varma R.S. A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) Nanocrystals Using Aqueous Vitamin C. Cryst. Growth Des. 2007;7:2582–2587. doi: 10.1021/cg070554e. DOI
Mallikarjuna N.N., Varma R.S. Microwave-Assisted Shape-Controlled Bulk Synthesis of Noble Nanocrystals and Their Catalytic Properties. Cryst. Growth Des. 2007;7:686–690. doi: 10.1021/cg060506e. DOI
Nadagouda M.N., Varma R.S. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008;10:859–862. doi: 10.1039/b804703k. DOI
Baruwati B., Nadagouda M.N., Varma R.S. Bulk Synthesis of Monodisperse Ferrite Nanoparticles at Water−Organic Interfaces under Conventional and Microwave Hydrothermal Treatment and Their Surface Functionalization. J. Phys. Chem. C. 2008;112:18399–18404. doi: 10.1021/jp807245g. DOI
Baruwati B., Polshettiwar V., Varma R.S. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem. 2009;11:926–930. doi: 10.1039/b902184a. DOI
Polshettiwar V., Baruwati B., Varma R.S. Self-Assembly of Metal Oxides into Three-Dimensional Nanostructures: Synthesis and Application in Catalysis. ACS Nano. 2009;3:728–736. doi: 10.1021/nn800903p. PubMed DOI
Lukman A.I., Gong B., Marjo C.E., Roessner U., Harris A.T. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J. Colloid Interface Sci. 2011;353:433–444. doi: 10.1016/j.jcis.2010.09.088. PubMed DOI
Al-Dhafri K., Ching C.L., Philip K. Phyto-synthesis of silver nanoparticles and its bioactivity response towards nosocomial bacterial pathogens. Biocatal. Agric. Biotechnol. 2019;18:101075. doi: 10.1016/j.bcab.2019.101075. DOI
Wu T., Duan X., Hu C., Wu C., Chen X., Huang J., Liu J., Cui S. Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artif. Cells Nanomed. Biotechnol. 2019;47:512–523. doi: 10.1080/21691401.2018.1560305. PubMed DOI
Samrot A.V., Saipriya C., Angalene J.L.A., Roshini S.M., Cypriyana P.J.J., Saigeetha S., Raji P., Kumar S.S. Evaluation of Nanotoxicity of Araucaria heterophylla Gum Derived Green Synthesized Silver Nanoparticles on Eudrilus eugeniae and Danio rerio. J. Clust. Sci. 2019;30:1017–1024. doi: 10.1007/s10876-019-01561-4. DOI
Jiang J., Oberdörster G., Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanoparticle Res. 2009;11:77–89. doi: 10.1007/s11051-008-9446-4. DOI
Kumar H., Bhardwaj K., Kuča K., Kalia A., Nepovimova E., Verma R., Kumar D. Flower-Based Green Synthesis of Metallic Nanoparticles: Applications beyond Fragrance. Nanomaterials. 2020;10:766. doi: 10.3390/nano10040766. PubMed DOI PMC
Tanase C., Berta L., Coman N.-A., Roșca I., Man A., Toma F., Mocan A., Nicolescu A., Jakab-Farkas L., Biró D., et al. Antibacterial and Antioxidant Potential of Silver Nanoparticles Biosynthesized Using the Spruce Bark Extract. Nanomaterials. 2019;9:1541. doi: 10.3390/nano9111541. PubMed DOI PMC
Iravani S., Zolfaghari B. Green Synthesis of Silver Nanoparticles UsingPinus eldaricaBark Extract. BioMed Res. Int. 2013;2013:1–5. doi: 10.1155/2013/639725. PubMed DOI PMC
Masruri M., Pangestin D.N., Ulfa S.M., Riyanto S., Srihardyastutie A., Rahman M.F. A Potent Staphylococcus Aureus Growth Inhibitor Of A Dried Flower Extract Of Pinus Merkusii Jungh & De Vriese And Copper Nanoparticle. IOP Conf. Series: Mater. Sci. Eng. 2018;299:12072. doi: 10.1088/1757-899x/299/1/012072. DOI
Mariychuk R., Fejer J., Porubska J., Grishchenko L.M., Lisnyak V.V. Green synthesis and characterization of gold triangular nanoprisms using extract of Juniperus communis L. Appl. Nanosci. 2020;10:2835–2841. doi: 10.1007/s13204-019-00990-x. DOI
Prashanth S., Menaka I., Muthezhilan R., Sharma N.K. Synthesis of plant-mediated silver nano particles using medicinal plant extract and evaluation of its anti microbial activities. Int. J. Eng. Sci. Technol. 2011;3:6235–6250.
Velmurugan P., Park J.-H., Lee S.-M., Jang J.S., Lee K.-J., Han S.-S., Lee S.-H., Cho M., Oh B.-T. Synthesis and characterization of nanosilver with antibacterial properties using Pinus densiflora young cone extract. J. Photochem. Photobiol. B: Biol. 2015;147:63–68. doi: 10.1016/j.jphotobiol.2015.03.008. PubMed DOI
Azkiya N.I., Masruri M., Ulfa S.M. Green Synthesis of Silver Nanoparticles using Extract ofPinus merkusiiJungh & De Vriese Cone Flower. IOP Conf. Series: Mater. Sci. Eng. 2018;299:12070. doi: 10.1088/1757-899x/299/1/012070. DOI
Samrot A.V., Angalene J.L.A., Roshini S.M., Raji P., Stefi S.M., Preethi R., Selvarani A.J., Madankumar A. Bioactivity and Heavy Metal Removal Using Plant Gum Mediated Green Synthesized Silver Nanoparticles. J. Clust. Sci. 2019;30:1599–1610. doi: 10.1007/s10876-019-01602-y. DOI
Kajani A.A., Bordbar A.-K., Esfahani S.H.Z., Razmjou A. Gold nanoparticles as potent anticancer agent: Green synthesis, characterization, and in vitro study. RSC Adv. 2016;6:63973–63983. doi: 10.1039/C6RA09050H. DOI
Noruzi M., Zare D., Davoodi D. A rapid biosynthesis route for the preparation of gold nanoparticles by aqueous extract of cypress leaves at room temperature. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2012;94:84–88. doi: 10.1016/j.saa.2012.03.041. PubMed DOI
Kheshtzar R., Berenjian A., Taghizadeh S.-M., Ghasemi Y., Asad A.G., Ebrahiminezhad A. Optimization of reaction parameters for the green synthesis of zero valent iron nanoparticles using pine tree needles. Green Process. Synth. 2019;8:846–855. doi: 10.1515/gps-2019-0055. DOI
Hernández L.G., Islas D.A., Guerrero M.U.F., Ortega P.A.R., Lechuga L.G. Proceedings of the TMS 2015 144th Annual Meeting & Exhibition. Springer Science and Business Media LLC; Cham, Switzerland: 2015. Use of Extract of Cupressus Goveniana for Synthesis and Stabilization of Nanoparticles Silver; pp. 1105–1112.
Ebrahiminezhad A., Taghizadeh S., Ghasemi Y. Green Synthesis of Silver Nanoparticles using Mediterranean Cypress (Cupressus sempervirens) Leaf Extract. Am. J. Biochem. Biotechnol. 2017;13:1–6. doi: 10.3844/ajbbsp.2017.1.6. DOI
Rajput K., Bhatt A., Agrawal P.K. Plant mediated biosynthesis, characterization and application of silver nanoparticles by leaves extract of cupressus torulosa. Int. J. Adv. Res. 2016;4:1199–1207. doi: 10.21474/IJAR01/983. DOI
Ibrahim E.H., Kilany M., Ghramh H.A., Khan K.A., Islam S.U. Cellular proliferation/cytotoxicity and antimicrobial potentials of green synthesized silver nanoparticles (AgNPs) using Juniperus procera. Saudi J. Biol. Sci. 2019;26:1689–1694. doi: 10.1016/j.sjbs.2018.08.014. PubMed DOI PMC
Kanawaria S.K., Sankhla A., Jatav P.K., Yadav R.S., Verma K.S., Velraj P., Kachhwaha S., Kothari S.L. Rapid biosynthesis and characterization of silver nanoparticles: An assessment of antibacterial and antimycotic activity. Appl. Phys. A. 2018;124:320. doi: 10.1007/s00339-018-1701-7. DOI
Bhor G.L., Kharate S., Nikam S., Kulkarni V.D. Synthesis of Silver Nanoparticles using thuja leaf extract. Res. J. Mater. Sci. 2016;4:4–6.
Riat A.K., Geyi D., Rafi M., Kaur G. Efficacy of Thuja occidentalis plant mediated synthesis of Silver nanoparticles against Culex quinquefasciatus Larvae. Res. J. Pharm. Technol. 2018;11:4981. doi: 10.5958/0974-360X.2018.00908.3. DOI
Barua S., Konwarh R., Bhattacharya S.S., Das P., Devi K.S.P., Maiti T.K., Mandal M., Karak N. Non-hazardous anticancerous and antibacterial colloidal ‘green’silver nanoparticles. Colloids Surf. B. Biointerfaces. 2013;105:37–42. doi: 10.1016/j.colsurfb.2012.12.015. PubMed DOI
Barua S., Banerjee P.P., Sadhu A., Sengupta A., Chatterjee S., Sarkar S., Barman S., Chattopadhyay A., Bhattacharya S., Mondal N.C., et al. Silver Nanoparticles as Antibacterial and Anticancer Materials Against Human Breast, Cervical and Oral Cancer Cells. J. Nanosci. Nanotechnol. 2017;17:968–976. doi: 10.1166/jnn.2017.12636. PubMed DOI
Kalpana D., Han J.H., Park W.S., Lee S.M., Wahab R., Lee Y.S. Green biosynthesis of silver nanoparticles using Torreya nucifera and their antibacterial activity. Arab. J. Chem. 2019;12:1722–1732. doi: 10.1016/j.arabjc.2014.08.016. DOI
Sarli S., Ghasemi N. Optimization of biosynthesized Zn nanoparticles by poisonous Taxus baccata leaves extract and evaluation of their effect on the bacterias and MCF-7 cancer cells. Eurasian Chem. Commun. 2020;2:302–318. doi: 10.33945/sami/ecc.2020.3.2. DOI
Fernando S.I.D., Judan-Cruz K.G., De Guia A.C.M. Biologically synthesized gold nanoparticles (Aunp) using pine (Pinus kesiya) pollen extract show antifungal activity against Candida albicans. Int. J. Agric. Technol. 2017;13:2615–2622.
Khan N., Khan I., Nadhman A., Azam S., Ullah I., Ahmad F., Khan H.A. Pinus wallichiana-synthesized silver nanoparticles as biomedical agents: In-vitro and in-vivo approach. Green Chem. Lett. Rev. 2020;13:69–82. doi: 10.1080/17518253.2020.1733105. DOI
Das S., Das J., Samadder A., Bhattacharyya S.S., Das D., Khuda-Bukhsh A.R. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Colloids Surfaces B: Biointerfaces. 2013;101:325–336. doi: 10.1016/j.colsurfb.2012.07.008. PubMed DOI
Deshmukh S., Patil S., Mullani S., Delekar S.D. Silver nanoparticles as an effective disinfectant: A review. Mater. Sci. Eng. C. 2019;97:954–965. doi: 10.1016/j.msec.2018.12.102. PubMed DOI PMC
Anand R., Bhagat M. Silver nanoparticles (AgNPs): As nanopesticides and nanofertilizers. MOJ Biol. Med. 2019;4:19–20.
Srikar S.K., Giri D.D., Pal D.B., Mishra P.K., Upadhyay S.N. Green Synthesis of Silver Nanoparticles: A Review. Green Sustain. Chem. 2016;6:34–56. doi: 10.4236/gsc.2016.61004. DOI
Das P., Barua S., Sarkar S., Karak N., Bhattacharyya P., Raza N., Kim K.-H., Bhattacharya S.S. Plant extract–mediated green silver nanoparticles: Efficacy as soil conditioner and plant growth promoter. J. Hazard. Mater. 2018;346:62–72. doi: 10.1016/j.jhazmat.2017.12.020. PubMed DOI
Mashwani Z.-U.-R., Khan M.A., Khan T., Nadhman A. Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv. Colloid Interface Sci. 2016;234:132–141. doi: 10.1016/j.cis.2016.04.008. PubMed DOI
Khullar P., Goshisht M.K., Moudgil L., Singh G., Mandial D., Kumar H., Ahluwalia G.K., Bakshi M.S. Mode of Protein Complexes on Gold Nanoparticles Surface: Synthesis and Characterization of Biomaterials for Hemocompatibility and Preferential DNA Complexation. ACS Sustain. Chem. Eng. 2016;5:1082–1093. doi: 10.1021/acssuschemeng.6b02373. DOI
Lazarides A., Kelly K.L., Jensen T., Schatz G. Optical properties of metal nanoparticles and nanoparticle aggregates important in biosensors. J. Mol. Struct. Theochem. 2000;529:59–63. doi: 10.1016/S0166-1280(00)00532-7. DOI
Usman A.I., Aziz A.A., Abu Noqta O. Application of Green Synthesis of Gold Nanoparticles: A Review. J. Teknol. 2018;81:1–5. doi: 10.11113/jt.v81.11409. DOI
Anand K., Rajamanikandan R., Sharma A.S., Ilanchelian M., Khan F.I., Tiloke C., Katari N.K., Boomi P., Balakumar C., Saravanan M., et al. Human serum albumin interaction, in silico and anticancer evaluation of Pine-Gold nanoparticles. Process Biochem. 2020;89:98–109. doi: 10.1016/j.procbio.2019.09.036. DOI
Velmurugan P., Lee S.-M., Iydroose M., Lee K.-J., Oh B.-T. Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens. Appl. Microbiol. Biotechnol. 2013;97:361–368. doi: 10.1007/s00253-012-3892-8. PubMed DOI
Jamdagni P., Khatri P., Rana J. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King Saud Univ. Sci. 2018;30:168–175. doi: 10.1016/j.jksus.2016.10.002. DOI
Bala N., Saha S.K., Chakraborty M., Maiti M.K., Das S.K., Basu R., Nandy P. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 2015;5:4993–5003. doi: 10.1039/C4RA12784F. DOI
Chen L., Batjikh I., Hurh J., Han Y., Huo Y., Ali H., Li J.F., Rupa E.J., Ahn J.C., Mathiyalagan R., et al. Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue. Optik. 2019;184:324–329. doi: 10.1016/j.ijleo.2019.03.051. DOI
Suárez-Cerda J., Espinoza-Gómez H., Alonso-Núñez G., Rivero I.A., Gochi-Ponce Y., Flores-López L.Z. A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J. Saudi Chem. Soc. 2017;21:341–348. doi: 10.1016/j.jscs.2016.10.005. DOI
Xu P., Zeng G., Huang D.L., Feng C.L., Hu S., Zhao M.H., Lai C., Wei Z., Huang C., Xie G.X., et al. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total. Environ. 2012;424:1–10. doi: 10.1016/j.scitotenv.2012.02.023. PubMed DOI
Mak S.-Y., Chen D.-H. Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles. Dye. Pigment. 2004;61:93–98. doi: 10.1016/j.dyepig.2003.10.008. DOI
Sylvester P., Westerhoff P., Möller T., Badruzzaman M., Boyd O. A Hybrid Sorbent Utilizing Nanoparticles of Hydrous Iron Oxide for Arsenic Removal from Drinking Water. Environ. Eng. Sci. 2007;24:104–112. doi: 10.1089/ees.2007.24.104. DOI
Parham H., Zargar B., Shiralipour R. Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole. J. Hazard. Mater. 2012;205:94–100. doi: 10.1016/j.jhazmat.2011.12.026. PubMed DOI
Zargar B., Parham H., Hatamie A. Fast removal and recovery of amaranth by modified iron oxide magnetic nanoparticles. Chemosphere. 2009;76:554–557. doi: 10.1016/j.chemosphere.2009.02.065. PubMed DOI
Shahwan T., Abu-Sirriah S., Nairat M., Boyacı E., Eroğlu A.E., Scott T.B., Hallam K.R. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 2011;172:258–266. doi: 10.1016/j.cej.2011.05.103. DOI
Dakal T.C., Kumar A., Majumdar R.S., Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016;7:1831. doi: 10.3389/fmicb.2016.01831. PubMed DOI PMC
Abbaszadegan A., Ghahramani Y., Gholami A., Hemmateenejad B., Dorostkar S., Nabavizadeh M., Sharghi H. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study. J. Nanomater. 2015;2015:1–8. doi: 10.1155/2015/720654. DOI
Losasso C., Belluco S., Cibin V., Zavagnin P., Mičetić I., Gallocchio F., Zanella M., Bregoli L., Biancotto G., Ricci A. Antibacterial activity of silver nanoparticles: Sensitivity of different Salmonella serovars. Front. Microbiol. 2014;5:227. doi: 10.3389/fmicb.2014.00227. PubMed DOI PMC
Qing Y., Cheng L., Li R., Liu G., Zhang Y., Tang X., Wang J., Liu H., Qin Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomed. 2018;13:3311–3327. doi: 10.2147/IJN.S165125. PubMed DOI PMC
Gordon O., Slenters T.V., Brunetto P.S., Villaruz A.E., Sturdevant D.E., Otto M., Landmann R., Fromm K.M. Silver Coordination Polymers for Prevention of Implant Infection: Thiol Interaction, Impact on Respiratory Chain Enzymes, and Hydroxyl Radical Induction. Antimicrob. Agents Chemother. 2010;54:4208–4218. doi: 10.1128/AAC.01830-09. PubMed DOI PMC
Husen A. Medicinal Plant Product-Based Fabrication Nanoparticles (Au and Ag) and Their Anticancer Effects. CRC Press; Boca Raton, FL, USA: 2019. pp. 133–147.
Gherbawy Y.A., Elhariry H.M. Endophytic fungi associated with high-altitude Juniperus trees and their antimicrobial activities. Plant Biosyst. 2016;150:131–140. doi: 10.1080/11263504.2014.984011. DOI
Khatami M., Mortazavi S.M., Kishani-Farahani Z., Amini A., Amini E., Heli H. Biosynthesis of Silver Nanoparticles Using Pine Pollen and Evaluation of the Antifungal Efficiency. Iran. J. Biotechnol. 2017;15:95–101. doi: 10.15171/ijb.1436. PubMed DOI PMC
Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551. PubMed DOI
Kumar H., Bhardwaj K., Dhanjal D.S., Nepovimova E., Șen F., Regassa H., Singh R., Verma R., Kumar V., Kumar D., et al. Fruit Extract Mediated Green Synthesis of Metallic Nanoparticles: A New Avenue in Pomology Applications. Int. J. Mol. Sci. 2020;21:8458. doi: 10.3390/ijms21228458. PubMed DOI PMC
Rao P.V., Nallappan D., Madhavi K., Rahman S., Wei L.J., Gan S.H. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents. Oxidative Med. Cell. Longev. 2016;2016:1–15. doi: 10.1155/2016/3685671. PubMed DOI PMC
Patil M.P., Kim G.-D. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl. Microbiol. Biotechnol. 2017;101:79–92. doi: 10.1007/s00253-016-8012-8. PubMed DOI
Conde J., Doria G., Baptista P. Noble Metal Nanoparticles Applications in Cancer. J. Drug Deliv. 2011;2012:1–12. doi: 10.1155/2012/751075. PubMed DOI PMC
Sharma P., Mehta M., Dhanjal D.S., Kaur S., Gupta G., Singh H., Thangavelu L., Kumar S.R., Tambuwala M., Bakshi H.A., et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Interactions. 2019;309:108720. doi: 10.1016/j.cbi.2019.06.033. PubMed DOI
Mehta M., Dhanjal D.S., Paudel K.R., Singh B., Gupta G., RajeshKumar S., Thangavelu L., Tambuwala M., Bakshi H.A., Chellappan D.K., et al. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: An update. Inflammopharmacology. 2020;28:795–817. doi: 10.1007/s10787-020-00698-3. PubMed DOI
Amalinei R.L.M., Trifan A., Cioanca O., Miron S.D., Mihai C.T., Rotinberg P., Miron A. Polyphenol-rich extract from Pinus sylvestris L. bark--chemical and antitumor studies. Med Surg. J. 2014;118:551–557. PubMed
Dhanjal D.S., Bhardwaj S., Sharma R., Bhardwaj K., Kumar D., Chopra C., Nepovimova E., Singh R., Kuca K. Plant Fortification of the Diet for Anti-Ageing Effects: A Review. Nutrients. 2020;12:3008. doi: 10.3390/nu12103008. PubMed DOI PMC
Kumar H., Bhardwaj K., Nepovimova E., Kuca K., Dhanjal D.S., Bhardwaj S., Bhatia S.K., Verma R., Kumar D. Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress. Nanomaterials. 2020;10:1334. doi: 10.3390/nano10071334. PubMed DOI PMC
Bedlovičová Z., Strapáč I., Baláž M., Salayová A. A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles. Molecules. 2020;25:3191. doi: 10.3390/molecules25143191. PubMed DOI PMC
Roy A., Bulut O., Some S., Mandal A.K., Yilmaz M.D. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9:2673–2702. doi: 10.1039/C8RA08982E. PubMed DOI PMC
Watters J.L., A Satia J., Kupper L.L., A Swenberg J., Schroeder J.C., Switzer B.R., Florin T.A., Fryer G.E., Miyoshi T., Weitzman M., et al. Associations of Antioxidant Nutrients and Oxidative DNA Damage in Healthy African-American and White Adults. Cancer Epidemiol. Biomark. Prev. 2007;16:1428–1436. doi: 10.1158/1055-9965.EPI-06-1030. PubMed DOI
Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential
Pleurotus Macrofungi-Assisted Nanoparticle Synthesis and Its Potential Applications: A Review