Pleurotus Macrofungi-Assisted Nanoparticle Synthesis and Its Potential Applications: A Review

. 2020 Dec 09 ; 6 (4) : . [epub] 20201209

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33317038

Grantová podpora
VT2019-2021 UHK CEP - Centrální evidence projektů

Research and innovation in nanoparticles (NPs) synthesis derived from biomaterials have gained much attention due to their unique characteristics, such as low-cost, easy synthesis methods, high water solubility, and eco-friendly nature. NPs derived from macrofungi, including various mushroom species, such as Agaricus bisporus, Pleurotus spp., Lentinus spp., and Ganoderma spp. are well known to possess high nutritional, immune-modulatory, antimicrobial (antibacterial, antifungal and antiviral), antioxidant, and anticancerous properties. Fungi have intracellular metal uptake ability and maximum wall binding capacity; because of which, they have high metal tolerance and bioaccumulation ability. Primarily, two methods have been comprehended in the literature to synthesize metal NPs from macrofungi, i.e., the intracellular method, which refers to NP synthesis inside fungal cells by transportation of ions in the presence of enzymes; and the extracellular method, which refers to the treatment of fungal biomolecules aqueous filtrate with a metal precursor. Pleurotus derived metal NPs are known to inhibit the growth of numerous foodborne pathogenic bacteria and fungi. To the best of our knowledge, there is no such review article reported in the literature describing the synthesis and complete application and mechanism of NPs derived from macrofungi. Herein, we intend to summarize the progressive research on macrofungi derived NPs regarding their synthesis as well as applications in the area of antimicrobial (antibacterial & antifungal), anticancer, antioxidant, catalytic and food preservation. Additionally, the challenges associated with NPs synthesis will also be discussed.

Zobrazit více v PubMed

Bhardwaj K., Dhanjal D.S., Sharma A., Nepovimova E., Kalia A., Thakur S., Bhardwaj S., Chopra C., Singh R., Verma R., et al. Conifer-derived metallic nanoparticles: Green synthesis and biological applications. Int. J. Mol. Sci. 2020;21:9028. doi: 10.3390/ijms21239028. PubMed DOI PMC

Kumar H., Bhardwaj K., Kuča K., Kalia A., Nepovimova E., Verma R., Kumar D. Flower-Based Green Synthesis of Metallic Nanoparticles: Applications beyond Fragrance. Nanomaterials. 2020;10:766. doi: 10.3390/nano10040766. PubMed DOI PMC

Owaid M.N. Biomedical Applications of Nanoparticles Synthesized from Mushrooms. In: Patra J., Fraceto L., Das G., Campos E., editors. Green Nanoparticles. Springer; Cham, Switzerland: 2020. pp. 289–303.

Xu H., Yao L., Sun H., Wu Y. Chemical composition and antitumor activity of different polysaccharides from the roots of Actinidia eriantha. Carbohydr. Polym. 2009;78:316–322. doi: 10.1016/j.carbpol.2009.04.007. DOI

Sykes E.A., Chen J., Zheng G., Chan W.C.W. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano. 2014;8:5696–5706. doi: 10.1021/nn500299p. PubMed DOI

Shankar S.S., Rai A., Ankamwar B., Singh A., Ahmad A., Sastry M. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 2004;3:482–488. doi: 10.1038/nmat1152. PubMed DOI

Philip D. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009;73:374–381. doi: 10.1016/j.saa.2009.02.037. PubMed DOI

Maftoun P., Johari H., Soltani M., Malik R., Othman N.Z., El Enshasy H.A. The edible mushroom Pleurotus spp.: I. Biodiversity and nutritional values. Int. J. Biotechnol. Wellness Ind. 2015;4:67–83.

Raman J., Jang K.-Y., Oh Y.-L., Oh M., Im J.-H., Lakshmanan H., Sabaratnam V. Cultivation and Nutritional Value of Prominent Pleurotus spp.: An Overview. Mycobiology. 2020:1–14. doi: 10.1080/12298093.2020.1835142. PubMed DOI PMC

Kumla J., Suwannarach N., Jaiyasen A., Bussaban B., Lumyong S. Development of an edible wild strain of Thai oyster mushroom for economic mushroom production. Chiang Mai J. Sci. 2013;40:161–172.

Mirunalini S., Arulmozhi V., Deepalakshmi K., Krishnaveni M. Intracellular biosynthesis and antibacterial activity of silver nanoparticles using edible mushrooms. Not. Sci. Biol. 2012;4:55–61. doi: 10.15835/nsb448051. DOI

Mowsurni F.R., Chowdhury M.B.K. Oyster mushroom: Biochemical and medicinal prospects. Bangladesh J. Med. Biochem. 2010;3:23–28. doi: 10.3329/bjmb.v3i1.13804. DOI

Lok C.N., Ho C.M., Chen R., He Q.Y., Yu W.Y., Sun H., Tam P.K.H., Chiu J.F., Che C.M. Silver nanoparticles: Partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 2007;12:527–534. doi: 10.1007/s00775-007-0208-z. PubMed DOI

Adebayo E.A., Oloke J.K., Ayandele A.A., Adegunlola C. Phytochemical, antioxidant and antimicrobial assay of mushroom metabolite from Pleurotus pulmonarius—LAU 09 (JF736658) J. Microbiol. Biotechnol. Res. 2012;2:366–374.

Owaid M.N., Ibraheem I.J. Mycosynthesis of nanoparticles using edible and medicinal mushrooms. Eur. J. Nanomed. 2017;9:5–23. doi: 10.1515/ejnm-2016-0016. DOI

Duhan J.S., Kumar R., Kumar N., Kaur P., Nehra K., Duhan S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017;15:11–23. doi: 10.1016/j.btre.2017.03.002. PubMed DOI PMC

McQuillan J.S., Groenaga Infante H., Stokes E., Shaw A.M. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology. 2012;6:857–866. doi: 10.3109/17435390.2011.626532. PubMed DOI

Gade A., Ingle A., Whiteley C., Rai M. Mycogenic metal nanoparticles: Progress and applications. Biotechnol. Lett. 2010;32:593–600. doi: 10.1007/s10529-009-0197-9. PubMed DOI

Kreibig U., Vollmer M. Optical Properties of Metal Clusters. Volume 25. Springer; Berlin/Heidelberg, Germany: 1995. (Springer Series in Materials Science).

Narayanan R., El-Sayed M.A. Effect of Catalytic Activity on the Metallic Nanoparticle Size Distribution: Electron-Transfer Reaction between Fe(CN)6 and Thiosulfate Ions Catalyzed by PVP—Platinum Nanoparticles. J. Phys. Chem. B. 2003;107:12416–12424. doi: 10.1021/jp035647v. DOI

Asmathunisha N., Kathiresan K. A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf. B Biointerfaces. 2013;103:283–287. doi: 10.1016/j.colsurfb.2012.10.030. PubMed DOI

Sastry M., Ahmad A., Khan M.I., Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci. 2003;85:162–170.

Owaid M.N. Green synthesis of silver nanoparticles by Pleurotus (oyster mushroom) and their bioactivity: Review. Environ. Nanotechnol. Monit. Manag. 2019;12:100256. doi: 10.1016/j.enmm.2019.100256. DOI

Naveen H.K., Kumar G., Rao B.K. Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch. Appl. Sci. Res. 2010;2:161–167.

Ingle A., Gade A., Pierrat S., Sonnichsen C., Rai M. Mycosynthesis of Silver Nanoparticles Using the Fungus Fusarium acuminatum and Its Activity against Some Human Pathogenic Bacteria. Curr. Nanosci. 2008;4:141–144. doi: 10.2174/157341308784340804. DOI

Jain N., Bhargava A., Majumdar S., Tarafdar J.C., Panwar J. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale. 2011;3:635–641. doi: 10.1039/C0NR00656D. PubMed DOI

Sanghi R., Verma P. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour. Technol. 2009;100:501–504. doi: 10.1016/j.biortech.2008.05.048. PubMed DOI

Soni N., Prakash S. Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Rep. Parasitol. 2012;2:7. doi: 10.2147/rip.s29033. DOI

Castro-Longoria E., Moreno-Velásquez S.D., Vilchis-Nestor A.R., Arenas-Berumen E., Avalos-Borja M. Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. J. Microbiol. Biotechnol. 2012;22:1000–1004. doi: 10.4014/jmb.1110.10085. PubMed DOI

Ahmad A., Senapati S., Khan M.I., Kumar R., Ramani R., Srinivas V., Sastry M. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology. 2003;14:824–828. doi: 10.1088/0957-4484/14/7/323. DOI

Durán N., Marcato P.D., Alves O.L., De Souza G.I.H., Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 2005;3:8. doi: 10.1186/1477-3155-3-8. PubMed DOI PMC

Nithya R., Ragunathan R. Synthesis of Silver Nanoparticle using Pleurotus Sajor Caju and Its Antimicrobial Study. Dig. J. Nanomater. Biostruct. 2009;4:623–629.

Bhat R., Deshpande R., Ganachari S.V., Huh D.S., Venkataraman A. Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorg. Chem. Appl. 2011;2011:650979. doi: 10.1155/2011/650979. PubMed DOI PMC

Sujatha S., Tamilselvi S., Subha K., Panneerselvam A. Studies on biosynthesis of silver nanoparticles using mushroom and its antibacterial activities. Int. J. Curr. Microbiol. Appl. Sci. 2013;2:605–614.

Owaid M.N. Ph.D. Thesis. College of Science, University of Anbar; Ramadi, Iraq: 2013. Testing Efficiency of Different Agriculture Media in Growth and Production of Four Species of Oyster Mushroom Pleurotus and Evaluation the Bioactivity of Tested Species.

Yehia R.S., Al-Sheikh H. Biosynthesis and characterization of silver nanoparticles produced by pleurotus ostreatus and their anticandidal and anticancer activities. World J. Microbiol. Biotechnol. 2014;30:2797–2803. doi: 10.1007/s11274-014-1703-3. PubMed DOI

Owaid M.N., Raman J., Lakshmanan H., Al-Saeedi S.S.S., Sabaratnam V., Ali Abed I. Mycosynthesis of silver nanoparticles by Pleurotus cornucopiae var. citrinopileatus and its inhibitory effects against Candida sp. Mater. Lett. 2015;153:186–190. doi: 10.1016/j.matlet.2015.04.023. DOI

Maurya S., Bhardwaj A.K., Gupta K.K., Agarwal S., Kushwaha A., Vk C., Pathak R.K., Gopal R., Uttam K.N., Singh A.K. Green synthesis of silver nanoparticles using Pleurotus and its bactericidal activity. Cell. Mol. Biol. 2016;62:131.

Madhanraj R., Eyini M., Balaji P. Antioxidant Assay of Gold and Silver Nanoparticles from Edible Basidiomycetes Mushroom Fungi. Free Radic. Antioxid. 2017;7:137–142. doi: 10.5530/fra.2017.2.20. DOI

Shivashankar M., Premkumari B., Chandan N. Comparative studies on biosynthesis, partial characterization of silver nanoparticles and antimicrobial activities in some edible mushroom. Nano Sci. Nano Technol. Indian J. 2013;8:8–14.

Shivashankar M., Premkumari B., Chandan N. Biosynthesis, partial characterization and antimicrobial activities of silver nanoparticles from pleurotus species. Int. J. Integr. Sci. Innov. Technol. 2013;2:13–23.

Raman J., Reddy G.R., Lakshmanan H., Selvaraj V., Gajendran B., Nanjian R., Chinnasamy A., Sabaratnam V. Mycosynthesis and characterization of silver nanoparticles from Pleurotus djamor var. roseus and their in vitro cytotoxicity effect on PC3 cells. Process Biochem. 2015;50:140–147. doi: 10.1016/j.procbio.2014.11.003. DOI

Manimaran K., Balasubramani G., Ragavendran C., Natarajan D., Murugesan S. Biological Applications of Synthesized ZnO Nanoparticles Using Pleurotus Djamor against Mosquito Larvicidal, Histopathology, Antibacterial, Antioxidant and Anticancer Effect. J. Clust. Sci. 2020:1–13. doi: 10.1007/s10876-020-01927-z. DOI

Manimaran K., Murugesan S., Ragavendran C., Balasubramani G., Natarajan D., Ganesan A., Seedevi P. Biosynthesis of TiO2 Nanoparticles Using Edible Mushroom (Pleurotus djamor) Extract: Mosquito Larvicidal, Histopathological, Antibacterial and Anticancer Effect. J. Clust. Sci. 2020:1–12. doi: 10.1007/s10876-020-01888-3. DOI

Acay H., Baran M.F. Biosynthesis and characterization of silver nanoparticles using king oyster (Pleurotus eryngii) extract: Effect on some microorganisms. Appl. Ecol. Environ. Res. 2019;17:9205–9214. doi: 10.15666/aeer/1704_92059214. DOI

Manzoor-ul-Haq R.V., Patil S., Singh D., Krishnaveni R. Isolation and Screening of Mushrooms for Potent Silver Nanoparticles Production from Bandipora District (Jammu and Kashmir) and their characterization. Int. J. Curr. Microbiol. Appl. Sci. 2014;3:704–714.

Kaur T., Kapoor S., Kalia A. Synthesis of Silver Nanoparticles from Pleurotus florida, Characterization and Analysis of their Antimicrobial Activity. Int. J. Curr. Microbiol. Appl. Sci. 2018;7:4085–4095. doi: 10.20546/ijcmas.2018.707.475. DOI

Bhat R., Sharanabasava V.G., Deshpande R., Shetti U., Sanjeev G., Venkataraman A. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. J. Photochem. Photobiol. B Biol. 2013;125:63–69. doi: 10.1016/j.jphotobiol.2013.05.002. PubMed DOI

Sen I.K., Maity K., Islam S.S. Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity. Carbohydr. Polym. 2013;91:518–528. doi: 10.1016/j.carbpol.2012.08.058. PubMed DOI

Gurunathan S., Han J.W., Park J.H., Kim J.H. A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res. Lett. 2014;9:248. doi: 10.1186/1556-276X-9-248. PubMed DOI PMC

Debnath G., Das P., Saha A.K. Green Synthesis of Silver Nanoparticles Using Mushroom Extract of Pleurotus giganteus: Characterization, Antimicrobial, and α-Amylase Inhibitory Activity. Bionanoscience. 2019;9:611–619. doi: 10.1007/s12668-019-00650-y. DOI

Al-Bahrani R., Raman J., Lakshmanan H., Hassan A.A., Sabaratnam V. Green synthesis of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Mater. Lett. 2017;186:21–25. doi: 10.1016/j.matlet.2016.09.069. DOI

Devika R., Elumalai S., Manikandan E., Eswaramoorthy D. Biosynthesis of Silver Nanoparticles Using the Fungus Pleurotus ostreatus and their Antibacterial Activity. Open Access Sci. Rep. 2012;1:557. doi: 10.4172/scientificreports.557. DOI

Bawadekji A., Oueslati M.H., Ali A., Basha J. Biosynthesis of Gold Nanoparticles using Pleurotus ostreatus (Jacq. ex. Fr.) Kummer Extract and their Antibacterial and Antifungal Activities. J. Appl. Environ. Biol. Sci. 2018;8:142–147.

Senapati U.S., Sarkar D. Characterization of biosynthesized zinc sulphide nanoparticles using edible mushroom Pleurotuss ostreatu. Indian J. Phys. 2014;88:557–562. doi: 10.1007/s12648-014-0456-z. DOI

Wu H.F., Kailasa S.K., Shastri L. Electrostatically self-assembled azides on zinc sulfide nanoparticles as multifunctional nanoprobes for peptide and protein analysis in MALDI-TOF MS. Talanta. 2010;82:540–547. doi: 10.1016/j.talanta.2010.05.026. PubMed DOI

Musa S.F., Yeat T.S., Kamal L.Z.M., Tabana Y.M., Ahmed M.A., El Ouweini A., Lim V., Keong L.C., Sandai D. Pleurotus sajor-caju can be used to synthesize silver nanoparticles with antifungal activity against Candida albicans. J. Sci. Food Agric. 2018;98:1197–1207. doi: 10.1002/jsfa.8573. PubMed DOI

Devi M.R., Krishnakumari S. Qualitative screening of phytoconstituents of Pleurotus sajor caju (Fries sing) and comparison between hot and cold-aqueous and silver nanoparticles extracts. J. Med. Plants Stud. 2015;3:172–176.

Vigneshwaran N., Kathe A.A., Varadarajan P.V., Nachane R.P., Balasubramanya R.H. Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir. 2007;23:7113–7117. doi: 10.1021/la063627p. PubMed DOI

Chaturvedi V.K., Yadav N., Rai N.K., Abd Ellah N.H., Bohara R.A., Rehan I.F., Marraiki N., Batiha G.E.S., Hetta H.F., Singh M.P. Pleurotus sajor-caju-Mediated Synthesis of Silver and Gold Nanoparticles Active against Colon Cancer Cell Lines: A New Era of Herbonanoceutics. Molecules. 2020;25:3091. doi: 10.3390/molecules25133091. PubMed DOI PMC

Dandapat S., Kumar M., Sinha M.P. Proceedings of the Exploring Basic and Applied Sciences (EBAS-2014), Jalandhar, India, 14–15 November 2014. Elsevier; Amsterdam, The Netherlands: 2014. Synthesis of White Nanopartials mediate by Pleurotus tuber-regium (Rumph. ex Fr.) Extract and Silver Nitrate; pp. 98–101.

Chan S., Mashitah M. Instantaneous biosynthesis of silver nanoparticles by selected macro fungi. Aust. J. Basic Appl. Sci. 2012;6:86–88.

Vala A.K., Shah S., Patel R. Biogenesis of silver nanoparticles by marine-derived fungus Aspergillus flavus from Bhavnagar Coast, Gulf of Khambhat, India. J. Mar. Biol. Ocean. 2014;3:1–3.

Narayanan K.B., Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 2010;156:1–13. doi: 10.1016/j.cis.2010.02.001. PubMed DOI

Thakkar K.N., Mhatre S.S., Parikh R.Y. Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2010;6:257–262. doi: 10.1016/j.nano.2009.07.002. PubMed DOI

Dhillon G.S., Brar S.K., Kaur S., Verma M. Green approach for nanoparticle biosynthesis by fungi: Current trends and applications. Crit. Rev. Biotechnol. 2012;32:49–73. doi: 10.3109/07388551.2010.550568. PubMed DOI

Gade A.K., Gadge Baba S., Ingle A., Marcato P.D., Duran N., Gade A.K., Bonde P., Ingle A.P., Marcato P.D., Durán N., et al. Exploitation of Aspergillus niger for fabrication of silver nanoparticles. J. Biobased Mater. Bioenergy. 2008;2:1–5. doi: 10.1166/jbmb.2008.401. DOI

Zhang X., Yan S., Tyagi R.D., Surampalli R.Y. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere. 2011;82:489–494. doi: 10.1016/j.chemosphere.2010.10.023. PubMed DOI

Khandel P., Shahi S.K. Mycogenic nanoparticles and their bio-prospective applications: Current status and future challenges. J. Nanostruct. Chem. 2018;8:369–391. doi: 10.1007/s40097-018-0285-2. DOI

Durán N., Marcato P.D., De Souz G.I., Alves O.L., Esposito E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotech. 2007;3:203–208. doi: 10.1166/jbn.2007.022. DOI

Mukherjee P., Roy M., Mandal B.P., Dey G.K., Mukherjee P.K., Ghatak J., Tyagi A.K., Kale S.P. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology. 2008;19:075103. doi: 10.1088/0957-4484/19/7/075103. PubMed DOI

Nanda A., Majeed S. Enhanced antibacterial efficacy of biosynthesized AgNPs from Penicillium glabrum (MTCC1985) pooled with different drugs. Int. J. PharmTech Res. 2014;6:217–223.

Guilger-Casagrande M., de Lima R. Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Front. Bioeng. Biotechnol. 2019;7:287. doi: 10.3389/fbioe.2019.00287. PubMed DOI PMC

Devi L., Joshi S. Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J. Microsc. Ultrastruct. 2015;3:29. doi: 10.1016/j.jmau.2014.10.004. PubMed DOI PMC

Mehra R.K., Winge D.R. Metal ion resistance in fungi: Molecular mechanisms and their regulated expression. J. Cell. Biochem. 1991;45:30–40. doi: 10.1002/jcb.240450109. PubMed DOI

Singh J., Dutta T., Kim K.H., Rawat M., Samddar P., Kumar P. “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018;16:84. doi: 10.1186/s12951-018-0408-4. PubMed DOI PMC

Kumar H., Bhardwaj K., Sharma R., Nepovimova E., Kuča K., Dhanjal D.S., Verma R., Bhardwaj P., Sharma S., Kumar D. Fruit and Vegetable Peels: Utilization of High Value Horticultural Waste in Novel Industrial Applications. Molecules. 2020;25:2812. doi: 10.3390/molecules25122812. PubMed DOI PMC

Kumar H., Bhardwaj K., Nepovimova E., Kuča K., Singh Dhanjal D., Bhardwaj S., Bhatia S.K., Verma R., Kumar D. Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress. Nanomaterials. 2020;10:1334. doi: 10.3390/nano10071334. PubMed DOI PMC

Kumar H., Bhardwaj K., Dhanjal D.S., Nepovimova E., Șen F., Regassa H., Singh R., Verma R., Kumar V., Kumar D., et al. Fruit Extract Mediated Green Synthesis of Metallic Nanoparticles: A New Avenue in Pomology Applications. Int. J. Mol. Sci. 2020;21:8458. doi: 10.3390/ijms21228458. PubMed DOI PMC

Latha S. Ph.D. Thesis. Bharathidasan University; Tiruchirappalli, India: 2010. Extracellular Biosynthesis, Characterization and In Vitro Antimicrobial Potential of Silver Nanoparticles Using Myconanofactoris.

Borovaya M., Pirko Y., Krupodorova T., Naumenko A., Blume Y., Yemets A. Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm. Biotechnol. Biotechnol. Equip. 2015;29:1156–1163. doi: 10.1080/13102818.2015.1064264. DOI

Borovaya M.N., Naumenko A.P., Matvieieva N.A., Blume Y.B., Yemets A.I. Biosynthesis of luminescent CdS quantum dots using plant hairy root culture. Nanoscale Res. Lett. 2014;9:686. doi: 10.1186/1556-276X-9-686. PubMed DOI PMC

Mazumdar H., Haloi N. A study on Biosynthesis of Iron nanoparticles by Pleurotus sp. J. Microbiol. Biotechnol. Res. Sch. Res. Libr. J. Microbiol. Biotech. Res. 2011;1:39–49.

Wong K. Preparation of highly stable selenium nanoparticles with strong anti-tumor activity using tiger milk mushroom. Apoptosis. 2012;134:253–261.

Wu H., Li X., Liu W., Chen T., Li Y., Zheng W., Man C.W.Y., Wong M.K., Wong K.H. Surface decoration of selenium nanoparticles by mushroom polysaccharides-protein complexes to achieve enhanced cellular uptake and antiproliferative activity. J. Mater. Chem. 2012;22:9602–9610. doi: 10.1039/c2jm16828f. DOI

Kaur G., Kalia A., Kapoor S., Sodhi H.S., Khanna P.K. Scanning electron microscopy of Pleurotus ostreatus in response to inorganic selenium; Proceedings of the Indian Mushroom Conference; Ludhiana, India. 16–17 April 2013; pp. 17–18.

El-Batal A.I., Al-Hazmi N.E., Mosallam F.M., El-Sayyad G.S. Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microb. Pathog. 2018;118:159–169. doi: 10.1016/j.micpath.2018.03.013. PubMed DOI

Vittal R.R., Aswathanarayan J.B. Nanoparticles and their potential application as antimicrobials. In: Méndez-Vilas A., editor. Science against Microbial Pathogens: Communicating Current Research and Technological Advances. Formatex; Badajoz, Spain: 2011. pp. 197–209.

Warnes S.L., Caves V., Keevil C.W. Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environ. Microbiol. 2012;14:1730–1743. doi: 10.1111/j.1462-2920.2011.02677.x. PubMed DOI

Beyth N., Houri-Haddad Y., Domb A., Khan W., Hazan R. Alternative antimicrobial approach: Nano-antimicrobial materials. Evidence-Based Complement. Altern. Med. 2015;2015:246012. doi: 10.1155/2015/246012. PubMed DOI PMC

Chiriac V., Stratulat D.N., Calin G., Nichitus S., Burlui V., Stadoleanu C., Popa M., Popa I.M. IOP Conference Series: Materials Science and Engineering. Volume 133. IOP Publishing; Bristol, UK: 2016. Antimicrobial property of zinc based nanoparticles; p. 012055.

Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC

Mehta M., Sharma P., Kaur S., Dhanjal D.S., Singh B., Vyas M., Gupta G., Chellappan D.K., Nammi S., Singh T.G., et al. Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems. Elsevier; Amsterdam, The Netherlands: 2020. Plant-based drug delivery systems in respiratory diseases; pp. 517–539.

Addae E., Dong X., McCoy E., Yang C., Chen W., Yang L. Investigation of antimicrobial activity of photothermal therapeutic gold/copper sulfide core/shell nanoparticles to bacterial spores and cells. J. Biol. Eng. 2014;8:11. doi: 10.1186/1754-1611-8-11. PubMed DOI PMC

Dhanjal D.S., Bhardwaj S., Sharma R., Bhardwaj K., Kumar D., Chopra C., Nepovimova E., Singh R., Kuca K. Plant Fortification of the Diet for Anti-Ageing Effects: A Review. Nutrients. 2020;12:3008. doi: 10.3390/nu12103008. PubMed DOI PMC

Acay H., Baran M. Determination of Antioxidant and cytotoxic activities of king oyster mushroom mediated AgNPs synthesized with environmentally friendly methods. Medicine. 2020;9:760–765. doi: 10.5455/medscience.2020.02.014. DOI

Sharma P., Mehta M., Dhanjal D.S., Kaur S., Gupta G., Singh H., Thangavelu L., Rajeshkumar S., Tambuwala M., Bakshi H.A., et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact. 2019;309:108720. doi: 10.1016/j.cbi.2019.06.033. PubMed DOI

Mehta M., Dhanjal D.S., Paudel K.R., Singh B., Gupta G., Rajeshkumar S., Thangavelu L., Tambuwala M.M., Bakshi H.A., Chellappan D.K., et al. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: An update. Inflammopharmacology. 2020;28:795–817. doi: 10.1007/s10787-020-00698-3. PubMed DOI

Mehta M., Dhanjal D.S., Satija S., Wadhwa R., Paudel K.R., Chellappan D.K., Mohammad S., Haghi M., Hansbro P.M., Dua K. Advancing of Cellular Signaling Pathways in Respiratory Diseases Using Nanocarrier Based Drug Delivery Systems. Curr. Pharm. Des. 2020;26 doi: 10.2174/1381612826999201116161143. PubMed DOI

Sankar R., Karthik A., Prabu A., Karthik S., Shivashangari K.S., Ravikumar V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surfaces B Biointerfaces. 2013;108:80–84. doi: 10.1016/j.colsurfb.2013.02.033. PubMed DOI

Gliga A.R., Skoglund S., Odnevall Wallinder I., Fadeel B., Karlsson H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014;11:11. doi: 10.1186/1743-8977-11-11. PubMed DOI PMC

Ismail A.F.M., Ahmed M.M., Salem A.A.M. Biosynthesis of silver nanoparticles using mushroom extracts: Induction of apoptosis in HepG2 and MCF-7 Cells via caspases stimulation and regulation of BAX and Bcl-2 gene expressions. J. Pharm. Biomed. Sci. 2015;5:1–9.

Singh P., Sathishkumar S.R., Bhaskararao K.V. Biosynthesis of Silver Nanoparticles using Actinobacteria and Evaluating Its Antimicrobial and Cytotoxicity Activity. Int. J. Pharm. Pharm. Sci. 2013;5:709–712.

Kim J.H., Lee Y., Kim E.J., Gu S., Sohn E.J., Seo Y.S., An H.J., Chang Y.S. Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ. Sci. Technol. 2014;48:3477–3485. doi: 10.1021/es4043462. PubMed DOI

El-Batal A.I., Elkenawy N.M., Yassin A.S., Amin M.A. Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol. Rep. 2015;5:31–39. doi: 10.1016/j.btre.2014.11.001. PubMed DOI PMC

Bagewadi Z.K., Mulla S.I., Ninnekar H.Z. Optimization of laccase production and its application in delignification of biomass. Int. J. Recycl. Org. Waste Agric. 2017;6:351–365. doi: 10.1007/s40093-017-0184-4. DOI

Panigrahi S., Basu S., Praharaj S., Pande S., Jana S., Pal A., Ghosh S.K., Pal T. Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic process. J. Phys. Chem. C. 2007;111:4596–4605. doi: 10.1021/jp067554u. DOI

Lim S.H., Ahn E.Y., Park Y. Green Synthesis and Catalytic Activity of Gold Nanoparticles Synthesized by Artemisia capillaris Water Extract. Nanoscale Res. Lett. 2016;11:474. doi: 10.1186/s11671-016-1694-0. PubMed DOI PMC

Rostami-Vartooni A., Nasrollahzadeh M., Alizadeh M. Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo red. J. Alloy. Compd. 2016;680:309–314. doi: 10.1016/j.jallcom.2016.04.008. DOI

Gopalakrishnan R., Loganathan B., Dinesh S., Raghu K. Strategic Green Synthesis, Characterization and Catalytic Application to 4-Nitrophenol Reduction of Palladium Nanoparticles. J. Clust. Sci. 2017;28:2123–2131. doi: 10.1007/s10876-017-1207-z. DOI

Sharma D., Dhanjal D.S. Bio-Nanotechnology for Active Food Packaging. J. Appl. Pharm. Sci. 2016;6:220–226. doi: 10.7324/JAPS.2016.60933. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...