Applications of Fruit Polyphenols and Their Functionalized Nanoparticles Against Foodborne Bacteria: A Mini Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VT2019-2021
UHK
CEP - Centrální evidence projektů
PTDC/PSI-GER/28076/2017
Portuguese Foundation for Science and Technology under the Horizon 2020 Program
PubMed
34204121
PubMed Central
PMC8201231
DOI
10.3390/molecules26113447
PII: molecules26113447
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial activity, extraction of polyphenols, fruit types, safety,
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- Bacteria účinky léků metabolismus MeSH
- biofilmy účinky léků MeSH
- lidé MeSH
- nanočástice MeSH
- ovoce chemie MeSH
- polyfenoly chemie farmakologie MeSH
- potravinářská mikrobiologie MeSH
- potravinářské konzervační látky chemie farmakologie MeSH
- rostlinné extrakty chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky MeSH
- polyfenoly MeSH
- potravinářské konzervační látky MeSH
- rostlinné extrakty MeSH
The ingestion of contaminated water and food is known to cause food illness. Moreover, on assessing the patients suffering from foodborne disease has revealed the role of microbes in such diseases. Concerning which different methods have been developed for protecting food from microbes, the treatment of food with chemicals has been reported to exhibit an unwanted organoleptic effect while also affecting the nutritional value of food. Owing to these challenges, the demand for natural food preservatives has substantially increased. Therefore, the interest of researchers and food industries has shifted towards fruit polyphenols as potent inhibitors of foodborne bacteria. Recently, numerous fruit polyphenols have been acclaimed for their ability to avert toxin production and biofilm formation. Furthermore, various studies have recommended using fruit polyphenols solely or in combination with chemical disinfectants and food preservatives. Currently, different nanoparticles have been synthesized using fruit polyphenols to curb the growth of pathogenic microbes. Hence, this review intends to summarize the current knowledge about fruit polyphenols as antibacterial agents against foodborne pathogens. Additionally, the application of different fruit extracts in synthesizing functionalized nanoparticles has also been discussed.
Biomedical Research Center University Hospital Hradec Kralove 50003 Hradec Kralove Czech Republic
Faculty of Medicine University of Porto Alameda Prof Hernani Monteiro 4200 319 Porto Portugal
Institute for Research and Innovation in Health University of Porto 4200 135 Porto Portugal
Lal Bahadur Shashtri Government Degree College Saraswati Nagar Shimla 171206 India
School of Bioengineering and Biosciences Lovely Professional University Phagwara Punjab 144411 India
Zobrazit více v PubMed
Addis M., Sisay D. A review on major food borne bacterial illnesses. J. Trop. Dis. 2015;3:4.
Bintsis T. Foodborne pathogens. AIMS Microbiol. 2017;3:529–563. doi: 10.3934/microbiol.2017.3.529. PubMed DOI PMC
Kumar H., Bhardwaj K., Kaur T., Nepovimova E., Kuča K., Kumar V., Bhatia S.K., Dhanjal D.S., Chopra C., Singh R., et al. Detection of Bacterial Pathogens and Antibiotic Residues in Chicken Meat: A Review. Foods. 2020;9:1504. doi: 10.3390/foods9101504. PubMed DOI PMC
Kirk M.D., McKay I., Hall G.V., Dalton C.B., Stafford R., Unicomb L., Gregory J., Angulo F.J. Food Safety: Foodborne Disease in Australia: The OzFoodNet Experience. Clin. Infect. Dis. 2008;47:392–400. doi: 10.1086/589861. PubMed DOI
Elias S.D.O., DeCol L.T., Tondo E.C. Foodborne outbreaks in Brazil associated with fruits and vegetables: 2008 through 2014. Food Qual. Saf. 2018;2:173–181. doi: 10.1093/fqsafe/fyy022. DOI
Glasset B., Herbin S., Guillier L., Cadel-Six S., Vignaud M., Grout A., Pairaud S., Michel V., Hennekinne J., Ramarao N., et al. Bacillus cereus-induced foodborne outbreaks in France, 2007 to 2014: Epidemiology and genetic characterization. Eurosurveillance. 2016;21:30413. doi: 10.2807/1560-7917.ES.2016.21.48.30413. PubMed DOI PMC
Werber D., Dreesman J., Feil F., Van Treeck U., Fell G., Ethelberg S., Hauri A.M., Roggentin P., Prager R., Fisher I.S.T., et al. International outbreak of Salmonella Oranienburg due to German chocolate. BMC Infect. Dis. 2005;5:7. doi: 10.1186/1471-2334-5-7. PubMed DOI PMC
Mellou K., Kyritsi M., Chrysostomou A., Sideroglou T., Georgakopoulou T., Hadjichristodoulou C. Clostridium perfringens Foodborne Outbreak during an Athletic Event in Northern Greece, June 2019. Int. J. Environ. Res. Public Health. 2019;16:3967. doi: 10.3390/ijerph16203967. PubMed DOI PMC
Debnath F., Mukhopadhyay A.K., Chowdhury G., Saha R.N., Dutta S. An Outbreak of Foodborne Infection Caused by Shigella sonnei in West Bengal, India. JPN J. Infect. Dis. 2018;71:162–166. doi: 10.7883/yoken.JJID.2017.304. PubMed DOI
Mermin J.H., Griffin P.M. Public health in crisis: Outbreaks of Escherichia coli O157:H7 infections in Japan. Am. J. Epidemiol. 1999;150:797–803. doi: 10.1093/oxfordjournals.aje.a010083. PubMed DOI
Al-Ghamdi A.S., Al-Sekaiti M.H., Al-Mazroa M. Foodborne Salmonella outbreak in a college, Riyadh, Saudi Arabia, October 2009 (1430 H) Saudi Epidemiol. Bull. 2010;17:9–10.
Quinto E.J., Caro I., Villalobos-Delgado L.H., Mateo J., De-Mateo-Silleras B., Redondo-Del-Río M.P. Food Safety through Natural Antimicrobials. Antibiotics. 2019;8:208. doi: 10.3390/antibiotics8040208. PubMed DOI PMC
Dhalaria R., Verma R., Kumar D., Puri S., Tapwal A., Kumar V., Nepovimova E., Kuca K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants. 2020;9:1123. doi: 10.3390/antiox9111123. PubMed DOI PMC
Papuc C., Goran G.V., Predescu C.N., Nicorescu V., Stefan G. Plant Polyphenols as Antioxidant and Antibacterial Agents for Shelf-Life Extension of Meat and Meat Products: Classification, Structures, Sources, and Action Mechanisms. Compr. Rev. Food Sci. Food Saf. 2017;16:1243–1268. doi: 10.1111/1541-4337.12298. PubMed DOI
Tressera-Rimbau A., Arranz S., Eder M., Vallverdu-Queralt A. Dietary Polyphenols in the Prevention of Stroke. Oxidative Med. Cell. Longev. 2017;2017:7467962. doi: 10.1155/2017/7467962. PubMed DOI PMC
Nasrollahzadeh M., Shafiei N., Nezafat Z., Bidgoli N.S.S., Soleimani F., Varma R.S. Valorisation of Fruits, their Juices and Residues into Valuable (Nano)materials for Applications in Chemical Catalysis and Environment. Chem. Rec. 2020;20:1338–1393. doi: 10.1002/tcr.202000078. PubMed DOI
Arvaniti O.S., Samaras Y., Gatidou G., Thomaidis N.S., Stasinakis A.S. Review on fresh and dried figs: Chemical analysis and occurrence of phytochemical compounds, antioxidant capacity and health effects. Food Res. Int. 2019;119:244–267. doi: 10.1016/j.foodres.2019.01.055. PubMed DOI
Yang J., Xiao Y.-Y. Grape Phytochemicals and Associated Health Benefits. Crit. Rev. Food Sci. Nutr. 2013;53:1202–1225. doi: 10.1080/10408398.2012.692408. PubMed DOI
Purewal S.S., Sandhu K.S. Nutritional Profile and Health Benefits of Kinnow: An Updated Review. Int. J. Fruit Sci. 2020;20:S1385–S1405. doi: 10.1080/15538362.2020.1792390. DOI
Favela-Hernández J.M.J., González-Santiago O., Ramírez-Cabrera M.A., Esquivel-Ferriño P.C., Camacho-Corona M.D.R. Chemistry and pharmacology of Citrus sinensis. Molecules. 2016;21:247. doi: 10.3390/molecules21020247. PubMed DOI PMC
Chhikara N., Kour R., Jaglan S., Gupta P., Gat Y., Panghal A. Citrus medica: Nutritional, phytochemical composition and health benefits-areview. Food Funct. 2018;9:1978–1992. PubMed
Bhattacharjya D., Sadat A., Biswas K., Nesa J., Kati A., Saha S., Mandal A.K. Nutraceutical and Medicinal Property of Mulberry Fruits: A Review on Its Pharmacological Potential. [(accessed on 18 November 2020)]; Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjc48zZ0aLuAhV4zTgGHf79BW0QFjABegQIARAC&url=https%3A%2F%2Fwww.preprints.org%2Fmanuscript%2F202004.0105%2Fv1%2Fdownload&usg=AOvVaw0Zq0wUll5BXZc9hbpkribt.
Silvan J.M., Michalska-Ciechanowska A., Martinez-Rodriguez A.J. Modulation of antibacterial, antioxidant, and anti-inflammatory properties by drying of Prunus domestica L. plum juice extracts. Microorganisms. 2020;8:119. doi: 10.3390/microorganisms8010119. PubMed DOI PMC
Shen X., Sun X., Xie Q., Liu H., Zhao Y., Pan Y., Hwang C.A., Wu V.C.H. Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts again stthe growth of Listeria monocytogenes and Salmonella Enteritidis. Food Contr. 2014;35:159–165. doi: 10.1016/j.foodcont.2013.06.040. DOI
McCune L.M., Kubota C., Stendell-Hollis N.R., Thomson C.A. Cherries and health: A review. Crit. Rev. Food Sci. Nutr. 2011;51:1–12. doi: 10.1080/10408390903001719. PubMed DOI
Baliga M.S., Bhat H.P., Baliga B.R.V., Wilson R., Palatty P.L. Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam.(blackplum): A review. Food Res. Int. 2011;44:1776–1789. doi: 10.1016/j.foodres.2011.02.007. DOI
Boyer J., Liu R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004;3:5. doi: 10.1186/1475-2891-3-5. PubMed DOI PMC
Singh B., Singh J.P., Kaur A., Singh N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punicagranatum L.) peel: A review. Food Chem. 2018;261:75–86. doi: 10.1016/j.foodchem.2018.04.039. PubMed DOI
Gutiérrez R.M.P., Mitchell S., Solis R.V. Psidium guajava:A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2008;117:1–27. doi: 10.1016/j.jep.2008.01.025. PubMed DOI
Seeram N.P. Strawberry Phytochemicals and Human Health: Areview. [(accessed on 8 August 2020)]; Available online: https://www.researchgate.net/publication/228983423_Strawberry_phytochemicals_and_human_health_a_review.
Sidhu J.S., Zafar T.A. Bioactive compounds in banana fruits and their health benefits. Food Qual. Saf. 2018;2:183–188. doi: 10.1093/fqsafe/fyy019. DOI
Oranusi S.U., Braide W., Umeze R.U. Antimicrobial activities and chemical compositions of Chrysophyllum cainito (starapple) fruit. Microbiol. Res. Int. 2015;3:41–50.
Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998;56:317–333. doi: 10.1111/j.1753-4887.1998.tb01670.x. PubMed DOI
Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2:1231–1246. doi: 10.3390/nu2121231. PubMed DOI PMC
Brouillard R. Flavonoids and flower colour. In: Harborne J.B., editor. The Flavonoids. Advances in Research Since 1980. Springer; London, UK: 1988. pp. 525–538.
Gorham J., Tori M., Asakawa Y. The Biochemistry of the Stilbenoids. Chapman & Hall; London, UK: 1995.
Zhang N.L., Zhu Y.H., Huang R.M., Fu M.Q., Su Z.W., Cai J.Z., Hu Y.J., Qiu S.X. Two new stilbenoids from Cajanus cajan. Z. Nat. B. 2012;67:1314–1318. doi: 10.5560/znb.2012-0184. DOI
Manach C., Scalbert A., Morand C., Rémésy C., Jimenez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747. doi: 10.1093/ajcn/79.5.727. PubMed DOI
Chung K.T., Wong T.Y., Wei C.I., Huang Y.W., Lin Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 1998;38:421–464. doi: 10.1080/10408699891274273. PubMed DOI
Mozer E.B., Hrnčic M.K., Škerget M., Knez Ž., Bren U. Polyphenols: Extraction methods, antioxidativeaction, bioavailability and anticarcinogenic effects. Molecules. 2016;21:901. PubMed PMC
Stalikas C. D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007;30:3268–3295. doi: 10.1002/jssc.200700261. PubMed DOI
Qiu Y., Liu Q., Beta T. Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolicacids. Food Chem. 2010;121:140–147. doi: 10.1016/j.foodchem.2009.12.021. DOI
Metivier R.P., Francis F.J., Clydesdale F.M. Solvent extraction of anthocyanins from wine pomace. J. Food Sci. 1980;45:1099–1100. doi: 10.1111/j.1365-2621.1980.tb07534.x. DOI
Prior R.L., Lazarus S.A., Cao G., Muccitelli H., Hammerstone J.F. Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium spp.) using high performance liquid chromatography/mass spectrometry. J. Agric. Food Chem. 2001;49:1270–1276. doi: 10.1021/jf001211q. PubMed DOI
Guyot S., Marnet N., Drilleau J. Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states. J. Agric. Food Chem. 2001;49:14–20. doi: 10.1021/jf000814z. PubMed DOI
Labarbe B., Cheynier V., Brossaud F., Souquet J.M., Moutounet M. Quantitative fractionation of grape proanthocyanidins according to their degree of polymerization. J. Agric. Food Chem. 1999;47:2719–2723. doi: 10.1021/jf990029q. PubMed DOI
Nardini M., Cirillo E., Natella F., Mencarelli D., Comisso A., Scaccini C. Detection of bound phenolicacids: Prevention by ascorbic acid and ethylenediaminetetraacetic acid of degradation of phenolic acids during alkaline hydrolysis. Food Chem. 2002;79:119–124. doi: 10.1016/S0308-8146(02)00213-3. DOI
Solanaa M., Boschiero I., Dall’Acquab S., Bertucco A. A comparison between supercritical fluid and pressurized liquid extraction methods for obtaining phenolic compounds from Asparagus officinalis L. J. Supercrit. Fluids. 2015;100:201–208. doi: 10.1016/j.supflu.2015.02.014. DOI
King M.B., Bott T.R. Extraction of Natural Products Using Near-Critical Solvents. Chapman & Hall; Glasgow, UK: 1993. pp. 84–100.
McHugh M.A., Krukonis V.J. Supercritical Fluid Extraction: Principles and Practice. Butterworths; Stoneham, MA, USA: 1986.
Lack E., Simandy B. High Pressure technology: Fundamentals and application. In: Bertucco A., Vetter G., editors. Industrial Chemistry Library. Volume 9. Elsevier; Amsterdam, The Netherlands: 2000. pp. 537–575.
Kikic I., Lora M., Bertucco A. A Thermodynamic analysis of three-phase equilibria in binary and ternary systems for applications in rapid expansion of a supercritical solution (ress), particles from gas-saturated solutions (pgss), and supercritical antisolvent (SAS) Ind. Eng. Chem. Res. 1997;36:5507–5515. doi: 10.1021/ie970376u. DOI
Brunner G. Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Steinkopff; Darmstadt, Germany: Springer; New York, NY, USA: 1994.
Dai J., Mumper J.R. Plant Phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15:7313–7352. doi: 10.3390/molecules15107313. PubMed DOI PMC
Fernandez D.P., Goodwin A.R.H., Lemmon E.W., Levelt-Sengers J.M.H., Williams R.C. A formulation for the static permittivity of water and steam at temperatures features from 238K to 873K at pressures up to 1200MPa, Including derivatives and Debye-Hückel coefficients. J. Phys. Chem. 1997;26:1126–1166.
Miller D.J., Hawthorne S.B. Solubility of liquid organic flavor and fragrance compounds in subcritical (hot/liquid) water from 298 to 473K. J. Chem Eng. Data. 2000;45:315–318. doi: 10.1021/je990278a. DOI
Cowan M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999;12:564–582. doi: 10.1128/CMR.12.4.564. PubMed DOI PMC
Kumar S., Pandey A.K. Chemistry and biological activities of flavonoids: An overview. World Sci. J. 2013;2013:162750. doi: 10.1155/2013/162750. PubMed DOI PMC
Field J.A., Lettinga G. Toxicity of tannic compounds to microorganisms. In: Hemingway R.W., Laks P.E., editors. Plant Polyphenols. Springer; London, UK: 1992. pp. 673–692.
Brown L., Wolf J.M., Prados-Rosales R., Casadevall A. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 2015;13:620–630. doi: 10.1038/nrmicro3480. PubMed DOI PMC
Takahashi O., Cai Z., Toda M., Hara Y., Shimamura T. Appearance of antibacterial activity of oxacillin against methicillin resistant Staphylococcus aureus (MRSA) in the presence of catechin. Kansenshogaku Zasshi. 1995;69:1126–1134. doi: 10.11150/kansenshogakuzasshi1970.69.1126. PubMed DOI
Zhao W.H., Hu Z.Q., Okubo S., Hara Y., Shimamura T. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2001;45:1737–1742. doi: 10.1128/AAC.45.6.1737-1742.2001. PubMed DOI PMC
Zhao W.H., Hu Z.Q., Hara Y., Shimamura T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob. Agents Chemother. 2002;46:2266–2268. doi: 10.1128/AAC.46.7.2266-2268.2002. PubMed DOI PMC
Yoda Y., Hu Z.Q., Shimamura T., Zhao W.H. Different susceptibilities of Staphylococcus and Gram-negative rods toepigallocatechin gallate. J. Infect. Chemother. 2004;10:55–58. doi: 10.1007/s10156-003-0284-0. PubMed DOI
Nohynek L.J., Alakomi H.L., Kähkönen M.P., Heinonen M., Helander I.M., Oksman-Caldentey K.M., Puupponen-Pimiä R.H. Berryphenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer. 2006;54:18–32. doi: 10.1207/s15327914nc5401_4. PubMed DOI
Delehanty J.B., Johnson B.J., Hickey T.E., Pons T., Ligler F.S. Binding and neutralization of lipopolysaccharides by plant proanthocyanidins. J. Nat. Prod. 2007;70:1718–1724. doi: 10.1021/np0703601. PubMed DOI
Johnson B.J., Delehanty J., Lin B., Ligler F.S. Immobilized proanthocyanidins for the capture of bacterial lipopolysaccharides. Anal. Chem. 2008;80:2113–2117. doi: 10.1021/ac7024128. PubMed DOI
Hisano M., Bruschini H., Nicodemo A.C., Srougi M. Cranberries and lower urinary tract infection prevention. Clinics. 2012;67:661–668. doi: 10.6061/clinics/2012(06)18. PubMed DOI PMC
Nazzaro F., Fratianni F., DeMartino L., Coppola R., DeFeo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 2013;6:1451–1474. doi: 10.3390/ph6121451. PubMed DOI PMC
Wu T., He M., Zang X., Zhou Y., Qiu T., Pan S., Xu X. A structure-activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochim. Biophys. Acta Biomembr. 2013;1828:2751–2756. doi: 10.1016/j.bbamem.2013.07.029. PubMed DOI
Borges A., Ferreira C., Saavedra M.J., Simões M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013;19:256–265. doi: 10.1089/mdr.2012.0244. PubMed DOI
Lou Z., Wang H., Rao S., Sun J., Ma C., Li J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Contr. 2012;25:550–554. doi: 10.1016/j.foodcont.2011.11.022. DOI
Opoku-Temeng C., Sintim H. Inhibition of cyclic diadenylate cyclase, DisA, bypolyphenols. Sci. Rep. 2016;6:25445. doi: 10.1038/srep25445. PubMed DOI PMC
Witte C.E., Whiteley A.T., Burke T.P., Sauer J.D., Portnoy D.A., Woodward J.J. Cyclicdi-AMPiscritical for Listeria monocytogenes growth, cell wall homeostasis, and establish mentof infection. mBio. 2013;4:e00282-13. doi: 10.1128/mBio.00282-13. PubMed DOI PMC
Sureka K., Choi P.H., Precit M., Delince M., Pensinger D.A., Huynh T.N., Jurado A.R., Goo Y.A., Sadilek M., Iavarone A.T., et al. The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell. 2014;158:1389–1401. doi: 10.1016/j.cell.2014.07.046. PubMed DOI PMC
Huynh T.N., Luo S., Pensinger D., Sauer J.D., Tong L., Woodward J.J. AnHD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proc. Natl. Acad. Sci. USA. 2015;112:E747–E756. doi: 10.1073/pnas.1416485112. PubMed DOI PMC
Xiao Z.T., Zhu Q., Zhang H.Y. Identifying antibacterial target sofflavonoids by comparative genomics and molecular modeling. Open J. Genom. 2014;3:1–8. doi: 10.13055/ojgen_3_1_1.140317. DOI
Lee J.H., Regmi S.C., Kim J.A., Cho M.H., Yun H., Lee C.S., Lee J. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect. Immun. 2011;79:4819–4827. doi: 10.1128/IAI.05580-11. PubMed DOI PMC
Hossain M.F., Akhtar S., Anwar M. Nutritional value and medicinal benefits of pineapple. Int. J. Nutr. Food Sci. 2015;4:84–88. doi: 10.11648/j.ijnfs.20150401.22. DOI
Zharfan R.S., Purwono P.B., Mustika A. Antimicrobial activity of pineapple (Ananascosmosus L. Merr) extract against multidrug-resistant of Pseudomonas aeruginosa: An in vitro study. Indones. J. Trop. Infect. Dis. 2017;6:118–123. doi: 10.20473/ijtid.v6i5.4159. DOI
Farhana J.A., Hossain M.F., Mowlah A. Antibacterial effects of guava (Psidium guajava L.) extracts against food borne pathogens. Int. J. Nutr. Food Sci. 2017;6:1–5. doi: 10.11648/j.ijnfs.20170601.11. DOI
Almulaiky Y., Zeyadi M., Saleh R., Baothman O., Al-shawafi W., Al-Talhi H. Assessment of antioxidant and antibacterial properties in two types of Yemeni guava cultivars. Biocatal. Agric. Biotechnol. 2018;16:90–97. doi: 10.1016/j.bcab.2018.07.025. DOI
Vallejo C.V., Minahk C.J., Rollán G.C., Rodríguez-Vaquero M.J. Inactivation of Listeria monocytogenes and Salmonella Typhimurium in strawberry juice enriched with strawberry polyphenols. J. Sci. Food Agric. 2021;101:441–448. doi: 10.1002/jsfa.10653. PubMed DOI
Tumpa S.I., Hossain M.I., Ishika T. Antimicrobial activities of Psidium guajava, Carica papaya and Mangifera indica against some gram positive and gram negative bacteria. J. Pharm. 2015;3:125–129.
Ukaegbu-Obi K.M., Anyaegbunam C.P., Enya E. Antibacterial activity of Carica papaya seeds on some human pathogens. Ann. West. Univ. Timis. Ser. Biol. 2018;21:11–16.
Nozohour Y., Golmohammadi R., Mirnejad R., Fartashvand M. Antibacterial activity of pomegranate (Punicagranatum L.) seed and peel alcoholic extracts on Staphylococcus aureus and Pseudomonas aeruginosa isolated from health centers. J. Appl. Biotechnol. Rep. 2018;5:32–36. doi: 10.29252/JABR.01.01.06. DOI
Dey D., Debnath S., Hazra S., Ghosh S., Ray R., Hazra B. Pomegranate pericarp extract enhances the antibacterial activity of ciprofloxacin against extended-spectrumβ-lactamase(ESBL) and metallo-β-lactamase (MBL) producing Gram-negative bacilli. Food Chem. Toxicol. 2012;50:4302–4309. doi: 10.1016/j.fct.2012.09.001. PubMed DOI
Fawole O.A., Makunga N.P., Opara U.L. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract. BMC Complement. Altern. Med. 2012;12:200. doi: 10.1186/1472-6882-12-200. PubMed DOI PMC
Dabesor A.P., Asowata-Ayodele A.M., Umoiette P. Phytochemical compositions and antimicrobial activities of Ananascomosuspeel (M.) and Cocos nucifera kernel (L.) on selected food borne pathogens. Am. J. Plant. Biol. 2017;2:73–76.
Loon Y.K., Satari M.H., Dewi W. Antibacterial effect of pineapple (Ananascomosus) extract towards Staphylococcus aureus. Padjadjaran J. Dent. 2018;30:1–6. doi: 10.24198/pjd.vol30no1.16099. DOI
Haque R., Sumiya M.K., Sakib N., Sarkar O.S., Siddique T.T.I., Hossain S., Islam I., Parvez A.K., Talukder A.A., Dey S.K. Antimicrobial activity of jambul (Syzygiumcumini) fruit extract on enteric pathogenic bacteria. Adv. Microbiol. 2017;7:195–204. doi: 10.4236/aim.2017.73016. DOI
Singh J.P., Kaur A., Singh N., Nim L., Shevkani K., Kaur H., Arora D.S. In vitro antioxidant and antimicrobial properties of jambolan (Syzygiumcumini) fruit polyphenols. LWT Food Sci. Technol. 2016;65:1025–1030. doi: 10.1016/j.lwt.2015.09.038. DOI
Karabıyıklı S., Değirmenci H., Karapınar M. Inhibitory effect of sour orange (Citrus aurantium) juice on Salmonella typhimurium and Listeria monocytogenes. LWT Food Sci. Technol. 2014;55:421–425. doi: 10.1016/j.lwt.2013.10.037. DOI
Oikeh E.I., Oviasogie F.E., Omoregie E.S. Quantitative phytochemical analysis and antimicrobial activities of fresh and dry ethanol extracts of Citrus sinensis (L.) Osbeck (sweet Orange) peels. Clin. Phytoscience. 2020;6:46. doi: 10.1186/s40816-020-00193-w. DOI
Dubey D., Balamurugan K., Agrawal R.C., Verma R., Jain R. Evalution of antibacterial and antioxidant activity of methanolic and hydromethanolic extract of sweet or angepeels. Recent Res. Sci. Technol. 2011;3:22–25.
Xu C., Yagiz Y., Hsu W.Y., Simonne A., Lu J., Marshall M.R. Antioxidant, antibacterial and antibiofilm properties of polyphenols from muscadine grape (Vitis rotundifolia Michx.) pomace against selected foodborne pathogens. J. Agric. Food Chem. 2014;62:6640–6649. doi: 10.1021/jf501073q. PubMed DOI
Xu Y., Burton S., Kim C., Sismour E. Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia-grown grape varieties. Food Sci. Nutr. 2015;4:125–133. doi: 10.1002/fsn3.264. PubMed DOI PMC
Sun X.H., Hao L.R., Xie Q.C., Lan W.Q., Zhao Y., Pan Y.J., Wu V.C.H. Antimicrobial effects and membrane damage mechanism of blueberry (Vaccinium corymbosum L.) extract against Vibrio parahaemolyticus. Food Contr. 2020;111:107020. doi: 10.1016/j.foodcont.2019.107020. DOI
Hosainzadegan H., Alizadeh M., Karimi F., Pakzad P. Study of antibacterial effects of ripped and raw fig alone and in combination. J. Med. Plant. Res. 2012;6:2864–2867. doi: 10.5897/JMPR11.1478. DOI
Venkatesh K.V., Girish K.K., Pradeepa K., Santosh K.S.R. Antibacterial activity of ethanol extract of Musa paradisiacacv. Puttabale and Musa acuminate cv. Grand Naine. Asian J. Pharm. Clin. Res. 2013;6:169–172.
Jouneghani R.S., Castro A.H.F., Panda S.K., Swennen R., Luyten W. Antimicrobial activity of selected banana cultivars against important human pathogens, including Candida biofilms. Foods. 2020;9:435. doi: 10.3390/foods9040435. PubMed DOI PMC
Raphaelli C.O., Dannenberg G., Dalmazo G.O., Pereira E.S., Radünz M., Vizzotto M., Fiorentini A.M., Gandra E.A., Nora L. Antibacterial and antioxidant properties of phenolic-rich extracts from apple (Malus domesticacv.Gala) Int. Food Res. J. 2019;26:1133–1142.
Timoszyk A. A review of thebiological synthesis of gold nanoparticles using fruit extracts: Scientific potential and application. Bull. Mater. Sci. 2018;41:154. doi: 10.1007/s12034-018-1673-4. DOI
Kumar H., Bhardwaj K., Dhanjal D.S., Nepovimova E., Şen F., Regassa H., Singh R., Verma R., Kumar V., Kumar D., et al. Fruit extract mediated green synthesis of metallic nanoparticles: A new avenue in pomology applications. Int. J. Mol. Sci. 2020;21:8458. doi: 10.3390/ijms21228458. PubMed DOI PMC
Khani R., Roostaei B., Bagherzade G., Moudi M. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd: Application for adsorption of triphenylmethane dye and antibacterial assay. J. Mol. Liq. 2018;255:541–549. doi: 10.1016/j.molliq.2018.02.010. DOI
Ebrahimi K., Shiravand S., Mahmoudvand H. Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. Marmara Pharm. J. 2017;21:866–871. doi: 10.12991/mpj.2017.31. DOI
Shende S., Ingle A.P., Gade A., Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 2015;31:865–873. doi: 10.1007/s11274-015-1840-3. PubMed DOI
Hemmati S., Ahmeda A., Salehabadi Y., Zangeneh A., Zangeneh M.M. Synthesis, characterization, and evaluation of cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing effects of copper nanoparticles using the aqueous extract of Strawberry fruit and L-Ascorbicacid. Polyhedron. 2020;180:114425. doi: 10.1016/j.poly.2020.114425. DOI
Ibrahim M.H., Ibrahiem A.A., Dalloul T.R. Biosynthesis of silver nanoparticles using pomegranate juice extract and its antibacterial activity. Int. J. Appl. Sci. Biotechnol. 2016;4:254–258. doi: 10.3126/ijasbt.v4i3.15417. DOI
Jassim A.M.N., Mohammed M.T., Farhan S.A., Dadoosh R.M., Majeed Z.N., Abdula A.M. Green synthesis of silver nanoparticles using Carica papaya juice and study of their biochemical application. J. Pharm. Sci. Res. 2019;11:1025–1034.
Zia M., Gull S., Akhtar J., Haq I.U., Abbasi B.H., Hussain A., Naz S., Chaudhary M.F. Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities. IET Nanobiotechnol. 2017;11:193–199. doi: 10.1049/iet-nbt.2015.0099. PubMed DOI PMC
Phongtongpasuk S., Poadang S., Yongvanich N. Environmental-friendly method for synthesis of silver nanoparticles from dragon fruit peel extract and their antibacterial activities. Energy Procedia. 2016;89:239–247. doi: 10.1016/j.egypro.2016.05.031. DOI
Kalia A., Manchanda P., Bhardwaj S., Singh G. Biosynthesized silver nanoparticles from aqueous extracts of sweet lime fruit and callus tissues possess variable antioxidant and antimicrobial potentials. Inorg. Nano Met. Chem. 2020;50:1053–1062. doi: 10.1080/24701556.2020.1735420. DOI
GnanaJobitha G., Rajeshkumar S., Annadurai G., Kannan C. Preparation and characterization of fruit-mediated silver nanoparticles using pomegranate extract and assessment of its antimicrobial activities. J. Environ. Nanotechnol. 2013;2:4–10.
Arooj N., Dar N., Samra Z.Q. Stable silver nanoparticles synthesis by Citrus sinensis (Orange) and assessing activity against food poisoning microbes. Biomed. Environ. Sci. 2014;27:815–818. PubMed
Ajmal N., Saraswat K., Sharma V., Zafar M.E. Synthesis and antibacterial activity of silver nanoparticles from Prunus armeniaca (Apricot) fruit peel extract. Bull. Environ. Pharm. Life Sci. 2016;5:91–94.
Ahmad R.A.R., Harun Z., Othman M.H.D., Basri H., Yunos M.Z., Ahmad A., Akhair S.H.M., Rashid A.Q.A., Azhar F.H., Alias S.S., et al. Biosynthesis of zinc oxide nanoparticles by using fruits extracts of Ananas comosus and its antibacterial activity. Malays. J. Fund. Appl. Sci. 2019;15:268–273. doi: 10.11113/mjfas.v15n2.1217. DOI
Pavithra N.S., Lingaraju K., Raghu G.K., Nagaraju G. Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: Applications to photocatalytic, electrochemical sensor and antibacterial activities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017;185:11–19. doi: 10.1016/j.saa.2017.05.032. PubMed DOI
Bhardwaj K., Sharma A., Tejwan N., Bhardwaj S., Bhardwaj P., Nepovimova N., Shami A., Kalia A., Kumar A., Abd-Esalam K.A., et al. Pleurotus macrofungi-assisted nanoparticles synthesis and its potential applications: A review. J. Fungi. 2020;6:351. doi: 10.3390/jof6040351. PubMed DOI PMC
Johnson W.D., Morrissey R.L., Usborne A.L., Kapetanovic I., Crowell J.A., Muzzio M., McCormick D.L. Subchronic oral toxicity and cardiovascular safety pharmacology studies of resveratrol, a naturally occurring polyphenol with cancer preventive activity. Food Chem. Toxicol. 2011;49:3319–3327. doi: 10.1016/j.fct.2011.08.023. PubMed DOI PMC
Sangeetha M.K., Vallabi D.E., Sali V.K., Thanka J., Vasanthi H.R. Sub-acutetoxicity profile of a modified resveratrol supplement. Food Chem. Toxicol. 2013;59:492–500. doi: 10.1016/j.fct.2013.06.037. PubMed DOI
Charradi K., Mahmoudi M., Bedhiafi T., Jebari K., ElMay M.V., Limam F., Aouani E. Safety evaluation, anti-oxidative and anti-inflammatory effects of subchronically dietary supplemented high dosing grape seed powder (GSP) to healthy rat. Biomed. Pharm. 2018;107:534–546. doi: 10.1016/j.biopha.2018.08.031. PubMed DOI
Rasheed N.O.A., Ahmed L.A., Abdallah D.M., El-Sayeh B.M. Paradoxical cardiotoxicity of intraperitoneally-injected epigallocatechin gallate preparation in diabetic mice. Sci. Rep. 2018;8:7880. doi: 10.1038/s41598-018-25901-y. PubMed DOI PMC
Mazzanti G., Di S.A., Vitalone A. Hepatotoxicity of green tea: An update. Arch. Toxicol. 2015;89:1175–1191. doi: 10.1007/s00204-015-1521-x. PubMed DOI
Crowe K.M., Francis C. Position of the academy of nutrition and dietetics: Functional foods. J. Acad. Nutr. Diet. 2013;113:1096–1103. doi: 10.1016/j.jand.2013.06.002. PubMed DOI
Williamson G., Holst B. Dietary reference intake (DRI) value for dietary polyphenols: Are we heading in the right direction? Brit. J. Nutr. 2008;99:S55–S58. doi: 10.1017/S0007114508006867. PubMed DOI
Martins S., Mussatto S.I., Martínez-avila G., Montañez-saenz J., Aguilar C.N., Teixeira J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011;29:365–373. doi: 10.1016/j.biotechadv.2011.01.008. PubMed DOI
Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology