Applications of Fruit Polyphenols and Their Functionalized Nanoparticles Against Foodborne Bacteria: A Mini Review

. 2021 Jun 06 ; 26 (11) : . [epub] 20210606

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34204121

Grantová podpora
VT2019-2021 UHK CEP - Centrální evidence projektů
PTDC/PSI-GER/28076/2017 Portuguese Foundation for Science and Technology under the Horizon 2020 Program

The ingestion of contaminated water and food is known to cause food illness. Moreover, on assessing the patients suffering from foodborne disease has revealed the role of microbes in such diseases. Concerning which different methods have been developed for protecting food from microbes, the treatment of food with chemicals has been reported to exhibit an unwanted organoleptic effect while also affecting the nutritional value of food. Owing to these challenges, the demand for natural food preservatives has substantially increased. Therefore, the interest of researchers and food industries has shifted towards fruit polyphenols as potent inhibitors of foodborne bacteria. Recently, numerous fruit polyphenols have been acclaimed for their ability to avert toxin production and biofilm formation. Furthermore, various studies have recommended using fruit polyphenols solely or in combination with chemical disinfectants and food preservatives. Currently, different nanoparticles have been synthesized using fruit polyphenols to curb the growth of pathogenic microbes. Hence, this review intends to summarize the current knowledge about fruit polyphenols as antibacterial agents against foodborne pathogens. Additionally, the application of different fruit extracts in synthesizing functionalized nanoparticles has also been discussed.

Zobrazit více v PubMed

Addis M., Sisay D. A review on major food borne bacterial illnesses. J. Trop. Dis. 2015;3:4.

Bintsis T. Foodborne pathogens. AIMS Microbiol. 2017;3:529–563. doi: 10.3934/microbiol.2017.3.529. PubMed DOI PMC

Kumar H., Bhardwaj K., Kaur T., Nepovimova E., Kuča K., Kumar V., Bhatia S.K., Dhanjal D.S., Chopra C., Singh R., et al. Detection of Bacterial Pathogens and Antibiotic Residues in Chicken Meat: A Review. Foods. 2020;9:1504. doi: 10.3390/foods9101504. PubMed DOI PMC

Kirk M.D., McKay I., Hall G.V., Dalton C.B., Stafford R., Unicomb L., Gregory J., Angulo F.J. Food Safety: Foodborne Disease in Australia: The OzFoodNet Experience. Clin. Infect. Dis. 2008;47:392–400. doi: 10.1086/589861. PubMed DOI

Elias S.D.O., DeCol L.T., Tondo E.C. Foodborne outbreaks in Brazil associated with fruits and vegetables: 2008 through 2014. Food Qual. Saf. 2018;2:173–181. doi: 10.1093/fqsafe/fyy022. DOI

Glasset B., Herbin S., Guillier L., Cadel-Six S., Vignaud M., Grout A., Pairaud S., Michel V., Hennekinne J., Ramarao N., et al. Bacillus cereus-induced foodborne outbreaks in France, 2007 to 2014: Epidemiology and genetic characterization. Eurosurveillance. 2016;21:30413. doi: 10.2807/1560-7917.ES.2016.21.48.30413. PubMed DOI PMC

Werber D., Dreesman J., Feil F., Van Treeck U., Fell G., Ethelberg S., Hauri A.M., Roggentin P., Prager R., Fisher I.S.T., et al. International outbreak of Salmonella Oranienburg due to German chocolate. BMC Infect. Dis. 2005;5:7. doi: 10.1186/1471-2334-5-7. PubMed DOI PMC

Mellou K., Kyritsi M., Chrysostomou A., Sideroglou T., Georgakopoulou T., Hadjichristodoulou C. Clostridium perfringens Foodborne Outbreak during an Athletic Event in Northern Greece, June 2019. Int. J. Environ. Res. Public Health. 2019;16:3967. doi: 10.3390/ijerph16203967. PubMed DOI PMC

Debnath F., Mukhopadhyay A.K., Chowdhury G., Saha R.N., Dutta S. An Outbreak of Foodborne Infection Caused by Shigella sonnei in West Bengal, India. JPN J. Infect. Dis. 2018;71:162–166. doi: 10.7883/yoken.JJID.2017.304. PubMed DOI

Mermin J.H., Griffin P.M. Public health in crisis: Outbreaks of Escherichia coli O157:H7 infections in Japan. Am. J. Epidemiol. 1999;150:797–803. doi: 10.1093/oxfordjournals.aje.a010083. PubMed DOI

Al-Ghamdi A.S., Al-Sekaiti M.H., Al-Mazroa M. Foodborne Salmonella outbreak in a college, Riyadh, Saudi Arabia, October 2009 (1430 H) Saudi Epidemiol. Bull. 2010;17:9–10.

Quinto E.J., Caro I., Villalobos-Delgado L.H., Mateo J., De-Mateo-Silleras B., Redondo-Del-Río M.P. Food Safety through Natural Antimicrobials. Antibiotics. 2019;8:208. doi: 10.3390/antibiotics8040208. PubMed DOI PMC

Dhalaria R., Verma R., Kumar D., Puri S., Tapwal A., Kumar V., Nepovimova E., Kuca K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants. 2020;9:1123. doi: 10.3390/antiox9111123. PubMed DOI PMC

Papuc C., Goran G.V., Predescu C.N., Nicorescu V., Stefan G. Plant Polyphenols as Antioxidant and Antibacterial Agents for Shelf-Life Extension of Meat and Meat Products: Classification, Structures, Sources, and Action Mechanisms. Compr. Rev. Food Sci. Food Saf. 2017;16:1243–1268. doi: 10.1111/1541-4337.12298. PubMed DOI

Tressera-Rimbau A., Arranz S., Eder M., Vallverdu-Queralt A. Dietary Polyphenols in the Prevention of Stroke. Oxidative Med. Cell. Longev. 2017;2017:7467962. doi: 10.1155/2017/7467962. PubMed DOI PMC

Nasrollahzadeh M., Shafiei N., Nezafat Z., Bidgoli N.S.S., Soleimani F., Varma R.S. Valorisation of Fruits, their Juices and Residues into Valuable (Nano)materials for Applications in Chemical Catalysis and Environment. Chem. Rec. 2020;20:1338–1393. doi: 10.1002/tcr.202000078. PubMed DOI

Arvaniti O.S., Samaras Y., Gatidou G., Thomaidis N.S., Stasinakis A.S. Review on fresh and dried figs: Chemical analysis and occurrence of phytochemical compounds, antioxidant capacity and health effects. Food Res. Int. 2019;119:244–267. doi: 10.1016/j.foodres.2019.01.055. PubMed DOI

Yang J., Xiao Y.-Y. Grape Phytochemicals and Associated Health Benefits. Crit. Rev. Food Sci. Nutr. 2013;53:1202–1225. doi: 10.1080/10408398.2012.692408. PubMed DOI

Purewal S.S., Sandhu K.S. Nutritional Profile and Health Benefits of Kinnow: An Updated Review. Int. J. Fruit Sci. 2020;20:S1385–S1405. doi: 10.1080/15538362.2020.1792390. DOI

Favela-Hernández J.M.J., González-Santiago O., Ramírez-Cabrera M.A., Esquivel-Ferriño P.C., Camacho-Corona M.D.R. Chemistry and pharmacology of Citrus sinensis. Molecules. 2016;21:247. doi: 10.3390/molecules21020247. PubMed DOI PMC

Chhikara N., Kour R., Jaglan S., Gupta P., Gat Y., Panghal A. Citrus medica: Nutritional, phytochemical composition and health benefits-areview. Food Funct. 2018;9:1978–1992. PubMed

Bhattacharjya D., Sadat A., Biswas K., Nesa J., Kati A., Saha S., Mandal A.K. Nutraceutical and Medicinal Property of Mulberry Fruits: A Review on Its Pharmacological Potential. [(accessed on 18 November 2020)]; Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjc48zZ0aLuAhV4zTgGHf79BW0QFjABegQIARAC&url=https%3A%2F%2Fwww.preprints.org%2Fmanuscript%2F202004.0105%2Fv1%2Fdownload&usg=AOvVaw0Zq0wUll5BXZc9hbpkribt.

Silvan J.M., Michalska-Ciechanowska A., Martinez-Rodriguez A.J. Modulation of antibacterial, antioxidant, and anti-inflammatory properties by drying of Prunus domestica L. plum juice extracts. Microorganisms. 2020;8:119. doi: 10.3390/microorganisms8010119. PubMed DOI PMC

Shen X., Sun X., Xie Q., Liu H., Zhao Y., Pan Y., Hwang C.A., Wu V.C.H. Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts again stthe growth of Listeria monocytogenes and Salmonella Enteritidis. Food Contr. 2014;35:159–165. doi: 10.1016/j.foodcont.2013.06.040. DOI

McCune L.M., Kubota C., Stendell-Hollis N.R., Thomson C.A. Cherries and health: A review. Crit. Rev. Food Sci. Nutr. 2011;51:1–12. doi: 10.1080/10408390903001719. PubMed DOI

Baliga M.S., Bhat H.P., Baliga B.R.V., Wilson R., Palatty P.L. Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam.(blackplum): A review. Food Res. Int. 2011;44:1776–1789. doi: 10.1016/j.foodres.2011.02.007. DOI

Boyer J., Liu R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004;3:5. doi: 10.1186/1475-2891-3-5. PubMed DOI PMC

Singh B., Singh J.P., Kaur A., Singh N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punicagranatum L.) peel: A review. Food Chem. 2018;261:75–86. doi: 10.1016/j.foodchem.2018.04.039. PubMed DOI

Gutiérrez R.M.P., Mitchell S., Solis R.V. Psidium guajava:A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2008;117:1–27. doi: 10.1016/j.jep.2008.01.025. PubMed DOI

Seeram N.P. Strawberry Phytochemicals and Human Health: Areview. [(accessed on 8 August 2020)]; Available online: https://www.researchgate.net/publication/228983423_Strawberry_phytochemicals_and_human_health_a_review.

Sidhu J.S., Zafar T.A. Bioactive compounds in banana fruits and their health benefits. Food Qual. Saf. 2018;2:183–188. doi: 10.1093/fqsafe/fyy019. DOI

Oranusi S.U., Braide W., Umeze R.U. Antimicrobial activities and chemical compositions of Chrysophyllum cainito (starapple) fruit. Microbiol. Res. Int. 2015;3:41–50.

Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998;56:317–333. doi: 10.1111/j.1753-4887.1998.tb01670.x. PubMed DOI

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2:1231–1246. doi: 10.3390/nu2121231. PubMed DOI PMC

Brouillard R. Flavonoids and flower colour. In: Harborne J.B., editor. The Flavonoids. Advances in Research Since 1980. Springer; London, UK: 1988. pp. 525–538.

Gorham J., Tori M., Asakawa Y. The Biochemistry of the Stilbenoids. Chapman & Hall; London, UK: 1995.

Zhang N.L., Zhu Y.H., Huang R.M., Fu M.Q., Su Z.W., Cai J.Z., Hu Y.J., Qiu S.X. Two new stilbenoids from Cajanus cajan. Z. Nat. B. 2012;67:1314–1318. doi: 10.5560/znb.2012-0184. DOI

Manach C., Scalbert A., Morand C., Rémésy C., Jimenez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747. doi: 10.1093/ajcn/79.5.727. PubMed DOI

Chung K.T., Wong T.Y., Wei C.I., Huang Y.W., Lin Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 1998;38:421–464. doi: 10.1080/10408699891274273. PubMed DOI

Mozer E.B., Hrnčic M.K., Škerget M., Knez Ž., Bren U. Polyphenols: Extraction methods, antioxidativeaction, bioavailability and anticarcinogenic effects. Molecules. 2016;21:901. PubMed PMC

Stalikas C. D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007;30:3268–3295. doi: 10.1002/jssc.200700261. PubMed DOI

Qiu Y., Liu Q., Beta T. Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolicacids. Food Chem. 2010;121:140–147. doi: 10.1016/j.foodchem.2009.12.021. DOI

Metivier R.P., Francis F.J., Clydesdale F.M. Solvent extraction of anthocyanins from wine pomace. J. Food Sci. 1980;45:1099–1100. doi: 10.1111/j.1365-2621.1980.tb07534.x. DOI

Prior R.L., Lazarus S.A., Cao G., Muccitelli H., Hammerstone J.F. Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium spp.) using high performance liquid chromatography/mass spectrometry. J. Agric. Food Chem. 2001;49:1270–1276. doi: 10.1021/jf001211q. PubMed DOI

Guyot S., Marnet N., Drilleau J. Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states. J. Agric. Food Chem. 2001;49:14–20. doi: 10.1021/jf000814z. PubMed DOI

Labarbe B., Cheynier V., Brossaud F., Souquet J.M., Moutounet M. Quantitative fractionation of grape proanthocyanidins according to their degree of polymerization. J. Agric. Food Chem. 1999;47:2719–2723. doi: 10.1021/jf990029q. PubMed DOI

Nardini M., Cirillo E., Natella F., Mencarelli D., Comisso A., Scaccini C. Detection of bound phenolicacids: Prevention by ascorbic acid and ethylenediaminetetraacetic acid of degradation of phenolic acids during alkaline hydrolysis. Food Chem. 2002;79:119–124. doi: 10.1016/S0308-8146(02)00213-3. DOI

Solanaa M., Boschiero I., Dall’Acquab S., Bertucco A. A comparison between supercritical fluid and pressurized liquid extraction methods for obtaining phenolic compounds from Asparagus officinalis L. J. Supercrit. Fluids. 2015;100:201–208. doi: 10.1016/j.supflu.2015.02.014. DOI

King M.B., Bott T.R. Extraction of Natural Products Using Near-Critical Solvents. Chapman & Hall; Glasgow, UK: 1993. pp. 84–100.

McHugh M.A., Krukonis V.J. Supercritical Fluid Extraction: Principles and Practice. Butterworths; Stoneham, MA, USA: 1986.

Lack E., Simandy B. High Pressure technology: Fundamentals and application. In: Bertucco A., Vetter G., editors. Industrial Chemistry Library. Volume 9. Elsevier; Amsterdam, The Netherlands: 2000. pp. 537–575.

Kikic I., Lora M., Bertucco A. A Thermodynamic analysis of three-phase equilibria in binary and ternary systems for applications in rapid expansion of a supercritical solution (ress), particles from gas-saturated solutions (pgss), and supercritical antisolvent (SAS) Ind. Eng. Chem. Res. 1997;36:5507–5515. doi: 10.1021/ie970376u. DOI

Brunner G. Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Steinkopff; Darmstadt, Germany: Springer; New York, NY, USA: 1994.

Dai J., Mumper J.R. Plant Phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15:7313–7352. doi: 10.3390/molecules15107313. PubMed DOI PMC

Fernandez D.P., Goodwin A.R.H., Lemmon E.W., Levelt-Sengers J.M.H., Williams R.C. A formulation for the static permittivity of water and steam at temperatures features from 238K to 873K at pressures up to 1200MPa, Including derivatives and Debye-Hückel coefficients. J. Phys. Chem. 1997;26:1126–1166.

Miller D.J., Hawthorne S.B. Solubility of liquid organic flavor and fragrance compounds in subcritical (hot/liquid) water from 298 to 473K. J. Chem Eng. Data. 2000;45:315–318. doi: 10.1021/je990278a. DOI

Cowan M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999;12:564–582. doi: 10.1128/CMR.12.4.564. PubMed DOI PMC

Kumar S., Pandey A.K. Chemistry and biological activities of flavonoids: An overview. World Sci. J. 2013;2013:162750. doi: 10.1155/2013/162750. PubMed DOI PMC

Field J.A., Lettinga G. Toxicity of tannic compounds to microorganisms. In: Hemingway R.W., Laks P.E., editors. Plant Polyphenols. Springer; London, UK: 1992. pp. 673–692.

Brown L., Wolf J.M., Prados-Rosales R., Casadevall A. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 2015;13:620–630. doi: 10.1038/nrmicro3480. PubMed DOI PMC

Takahashi O., Cai Z., Toda M., Hara Y., Shimamura T. Appearance of antibacterial activity of oxacillin against methicillin resistant Staphylococcus aureus (MRSA) in the presence of catechin. Kansenshogaku Zasshi. 1995;69:1126–1134. doi: 10.11150/kansenshogakuzasshi1970.69.1126. PubMed DOI

Zhao W.H., Hu Z.Q., Okubo S., Hara Y., Shimamura T. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2001;45:1737–1742. doi: 10.1128/AAC.45.6.1737-1742.2001. PubMed DOI PMC

Zhao W.H., Hu Z.Q., Hara Y., Shimamura T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob. Agents Chemother. 2002;46:2266–2268. doi: 10.1128/AAC.46.7.2266-2268.2002. PubMed DOI PMC

Yoda Y., Hu Z.Q., Shimamura T., Zhao W.H. Different susceptibilities of Staphylococcus and Gram-negative rods toepigallocatechin gallate. J. Infect. Chemother. 2004;10:55–58. doi: 10.1007/s10156-003-0284-0. PubMed DOI

Nohynek L.J., Alakomi H.L., Kähkönen M.P., Heinonen M., Helander I.M., Oksman-Caldentey K.M., Puupponen-Pimiä R.H. Berryphenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer. 2006;54:18–32. doi: 10.1207/s15327914nc5401_4. PubMed DOI

Delehanty J.B., Johnson B.J., Hickey T.E., Pons T., Ligler F.S. Binding and neutralization of lipopolysaccharides by plant proanthocyanidins. J. Nat. Prod. 2007;70:1718–1724. doi: 10.1021/np0703601. PubMed DOI

Johnson B.J., Delehanty J., Lin B., Ligler F.S. Immobilized proanthocyanidins for the capture of bacterial lipopolysaccharides. Anal. Chem. 2008;80:2113–2117. doi: 10.1021/ac7024128. PubMed DOI

Hisano M., Bruschini H., Nicodemo A.C., Srougi M. Cranberries and lower urinary tract infection prevention. Clinics. 2012;67:661–668. doi: 10.6061/clinics/2012(06)18. PubMed DOI PMC

Nazzaro F., Fratianni F., DeMartino L., Coppola R., DeFeo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 2013;6:1451–1474. doi: 10.3390/ph6121451. PubMed DOI PMC

Wu T., He M., Zang X., Zhou Y., Qiu T., Pan S., Xu X. A structure-activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochim. Biophys. Acta Biomembr. 2013;1828:2751–2756. doi: 10.1016/j.bbamem.2013.07.029. PubMed DOI

Borges A., Ferreira C., Saavedra M.J., Simões M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013;19:256–265. doi: 10.1089/mdr.2012.0244. PubMed DOI

Lou Z., Wang H., Rao S., Sun J., Ma C., Li J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Contr. 2012;25:550–554. doi: 10.1016/j.foodcont.2011.11.022. DOI

Opoku-Temeng C., Sintim H. Inhibition of cyclic diadenylate cyclase, DisA, bypolyphenols. Sci. Rep. 2016;6:25445. doi: 10.1038/srep25445. PubMed DOI PMC

Witte C.E., Whiteley A.T., Burke T.P., Sauer J.D., Portnoy D.A., Woodward J.J. Cyclicdi-AMPiscritical for Listeria monocytogenes growth, cell wall homeostasis, and establish mentof infection. mBio. 2013;4:e00282-13. doi: 10.1128/mBio.00282-13. PubMed DOI PMC

Sureka K., Choi P.H., Precit M., Delince M., Pensinger D.A., Huynh T.N., Jurado A.R., Goo Y.A., Sadilek M., Iavarone A.T., et al. The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell. 2014;158:1389–1401. doi: 10.1016/j.cell.2014.07.046. PubMed DOI PMC

Huynh T.N., Luo S., Pensinger D., Sauer J.D., Tong L., Woodward J.J. AnHD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proc. Natl. Acad. Sci. USA. 2015;112:E747–E756. doi: 10.1073/pnas.1416485112. PubMed DOI PMC

Xiao Z.T., Zhu Q., Zhang H.Y. Identifying antibacterial target sofflavonoids by comparative genomics and molecular modeling. Open J. Genom. 2014;3:1–8. doi: 10.13055/ojgen_3_1_1.140317. DOI

Lee J.H., Regmi S.C., Kim J.A., Cho M.H., Yun H., Lee C.S., Lee J. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect. Immun. 2011;79:4819–4827. doi: 10.1128/IAI.05580-11. PubMed DOI PMC

Hossain M.F., Akhtar S., Anwar M. Nutritional value and medicinal benefits of pineapple. Int. J. Nutr. Food Sci. 2015;4:84–88. doi: 10.11648/j.ijnfs.20150401.22. DOI

Zharfan R.S., Purwono P.B., Mustika A. Antimicrobial activity of pineapple (Ananascosmosus L. Merr) extract against multidrug-resistant of Pseudomonas aeruginosa: An in vitro study. Indones. J. Trop. Infect. Dis. 2017;6:118–123. doi: 10.20473/ijtid.v6i5.4159. DOI

Farhana J.A., Hossain M.F., Mowlah A. Antibacterial effects of guava (Psidium guajava L.) extracts against food borne pathogens. Int. J. Nutr. Food Sci. 2017;6:1–5. doi: 10.11648/j.ijnfs.20170601.11. DOI

Almulaiky Y., Zeyadi M., Saleh R., Baothman O., Al-shawafi W., Al-Talhi H. Assessment of antioxidant and antibacterial properties in two types of Yemeni guava cultivars. Biocatal. Agric. Biotechnol. 2018;16:90–97. doi: 10.1016/j.bcab.2018.07.025. DOI

Vallejo C.V., Minahk C.J., Rollán G.C., Rodríguez-Vaquero M.J. Inactivation of Listeria monocytogenes and Salmonella Typhimurium in strawberry juice enriched with strawberry polyphenols. J. Sci. Food Agric. 2021;101:441–448. doi: 10.1002/jsfa.10653. PubMed DOI

Tumpa S.I., Hossain M.I., Ishika T. Antimicrobial activities of Psidium guajava, Carica papaya and Mangifera indica against some gram positive and gram negative bacteria. J. Pharm. 2015;3:125–129.

Ukaegbu-Obi K.M., Anyaegbunam C.P., Enya E. Antibacterial activity of Carica papaya seeds on some human pathogens. Ann. West. Univ. Timis. Ser. Biol. 2018;21:11–16.

Nozohour Y., Golmohammadi R., Mirnejad R., Fartashvand M. Antibacterial activity of pomegranate (Punicagranatum L.) seed and peel alcoholic extracts on Staphylococcus aureus and Pseudomonas aeruginosa isolated from health centers. J. Appl. Biotechnol. Rep. 2018;5:32–36. doi: 10.29252/JABR.01.01.06. DOI

Dey D., Debnath S., Hazra S., Ghosh S., Ray R., Hazra B. Pomegranate pericarp extract enhances the antibacterial activity of ciprofloxacin against extended-spectrumβ-lactamase(ESBL) and metallo-β-lactamase (MBL) producing Gram-negative bacilli. Food Chem. Toxicol. 2012;50:4302–4309. doi: 10.1016/j.fct.2012.09.001. PubMed DOI

Fawole O.A., Makunga N.P., Opara U.L. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract. BMC Complement. Altern. Med. 2012;12:200. doi: 10.1186/1472-6882-12-200. PubMed DOI PMC

Dabesor A.P., Asowata-Ayodele A.M., Umoiette P. Phytochemical compositions and antimicrobial activities of Ananascomosuspeel (M.) and Cocos nucifera kernel (L.) on selected food borne pathogens. Am. J. Plant. Biol. 2017;2:73–76.

Loon Y.K., Satari M.H., Dewi W. Antibacterial effect of pineapple (Ananascomosus) extract towards Staphylococcus aureus. Padjadjaran J. Dent. 2018;30:1–6. doi: 10.24198/pjd.vol30no1.16099. DOI

Haque R., Sumiya M.K., Sakib N., Sarkar O.S., Siddique T.T.I., Hossain S., Islam I., Parvez A.K., Talukder A.A., Dey S.K. Antimicrobial activity of jambul (Syzygiumcumini) fruit extract on enteric pathogenic bacteria. Adv. Microbiol. 2017;7:195–204. doi: 10.4236/aim.2017.73016. DOI

Singh J.P., Kaur A., Singh N., Nim L., Shevkani K., Kaur H., Arora D.S. In vitro antioxidant and antimicrobial properties of jambolan (Syzygiumcumini) fruit polyphenols. LWT Food Sci. Technol. 2016;65:1025–1030. doi: 10.1016/j.lwt.2015.09.038. DOI

Karabıyıklı S., Değirmenci H., Karapınar M. Inhibitory effect of sour orange (Citrus aurantium) juice on Salmonella typhimurium and Listeria monocytogenes. LWT Food Sci. Technol. 2014;55:421–425. doi: 10.1016/j.lwt.2013.10.037. DOI

Oikeh E.I., Oviasogie F.E., Omoregie E.S. Quantitative phytochemical analysis and antimicrobial activities of fresh and dry ethanol extracts of Citrus sinensis (L.) Osbeck (sweet Orange) peels. Clin. Phytoscience. 2020;6:46. doi: 10.1186/s40816-020-00193-w. DOI

Dubey D., Balamurugan K., Agrawal R.C., Verma R., Jain R. Evalution of antibacterial and antioxidant activity of methanolic and hydromethanolic extract of sweet or angepeels. Recent Res. Sci. Technol. 2011;3:22–25.

Xu C., Yagiz Y., Hsu W.Y., Simonne A., Lu J., Marshall M.R. Antioxidant, antibacterial and antibiofilm properties of polyphenols from muscadine grape (Vitis rotundifolia Michx.) pomace against selected foodborne pathogens. J. Agric. Food Chem. 2014;62:6640–6649. doi: 10.1021/jf501073q. PubMed DOI

Xu Y., Burton S., Kim C., Sismour E. Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia-grown grape varieties. Food Sci. Nutr. 2015;4:125–133. doi: 10.1002/fsn3.264. PubMed DOI PMC

Sun X.H., Hao L.R., Xie Q.C., Lan W.Q., Zhao Y., Pan Y.J., Wu V.C.H. Antimicrobial effects and membrane damage mechanism of blueberry (Vaccinium corymbosum L.) extract against Vibrio parahaemolyticus. Food Contr. 2020;111:107020. doi: 10.1016/j.foodcont.2019.107020. DOI

Hosainzadegan H., Alizadeh M., Karimi F., Pakzad P. Study of antibacterial effects of ripped and raw fig alone and in combination. J. Med. Plant. Res. 2012;6:2864–2867. doi: 10.5897/JMPR11.1478. DOI

Venkatesh K.V., Girish K.K., Pradeepa K., Santosh K.S.R. Antibacterial activity of ethanol extract of Musa paradisiacacv. Puttabale and Musa acuminate cv. Grand Naine. Asian J. Pharm. Clin. Res. 2013;6:169–172.

Jouneghani R.S., Castro A.H.F., Panda S.K., Swennen R., Luyten W. Antimicrobial activity of selected banana cultivars against important human pathogens, including Candida biofilms. Foods. 2020;9:435. doi: 10.3390/foods9040435. PubMed DOI PMC

Raphaelli C.O., Dannenberg G., Dalmazo G.O., Pereira E.S., Radünz M., Vizzotto M., Fiorentini A.M., Gandra E.A., Nora L. Antibacterial and antioxidant properties of phenolic-rich extracts from apple (Malus domesticacv.Gala) Int. Food Res. J. 2019;26:1133–1142.

Timoszyk A. A review of thebiological synthesis of gold nanoparticles using fruit extracts: Scientific potential and application. Bull. Mater. Sci. 2018;41:154. doi: 10.1007/s12034-018-1673-4. DOI

Kumar H., Bhardwaj K., Dhanjal D.S., Nepovimova E., Şen F., Regassa H., Singh R., Verma R., Kumar V., Kumar D., et al. Fruit extract mediated green synthesis of metallic nanoparticles: A new avenue in pomology applications. Int. J. Mol. Sci. 2020;21:8458. doi: 10.3390/ijms21228458. PubMed DOI PMC

Khani R., Roostaei B., Bagherzade G., Moudi M. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd: Application for adsorption of triphenylmethane dye and antibacterial assay. J. Mol. Liq. 2018;255:541–549. doi: 10.1016/j.molliq.2018.02.010. DOI

Ebrahimi K., Shiravand S., Mahmoudvand H. Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. Marmara Pharm. J. 2017;21:866–871. doi: 10.12991/mpj.2017.31. DOI

Shende S., Ingle A.P., Gade A., Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 2015;31:865–873. doi: 10.1007/s11274-015-1840-3. PubMed DOI

Hemmati S., Ahmeda A., Salehabadi Y., Zangeneh A., Zangeneh M.M. Synthesis, characterization, and evaluation of cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing effects of copper nanoparticles using the aqueous extract of Strawberry fruit and L-Ascorbicacid. Polyhedron. 2020;180:114425. doi: 10.1016/j.poly.2020.114425. DOI

Ibrahim M.H., Ibrahiem A.A., Dalloul T.R. Biosynthesis of silver nanoparticles using pomegranate juice extract and its antibacterial activity. Int. J. Appl. Sci. Biotechnol. 2016;4:254–258. doi: 10.3126/ijasbt.v4i3.15417. DOI

Jassim A.M.N., Mohammed M.T., Farhan S.A., Dadoosh R.M., Majeed Z.N., Abdula A.M. Green synthesis of silver nanoparticles using Carica papaya juice and study of their biochemical application. J. Pharm. Sci. Res. 2019;11:1025–1034.

Zia M., Gull S., Akhtar J., Haq I.U., Abbasi B.H., Hussain A., Naz S., Chaudhary M.F. Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities. IET Nanobiotechnol. 2017;11:193–199. doi: 10.1049/iet-nbt.2015.0099. PubMed DOI PMC

Phongtongpasuk S., Poadang S., Yongvanich N. Environmental-friendly method for synthesis of silver nanoparticles from dragon fruit peel extract and their antibacterial activities. Energy Procedia. 2016;89:239–247. doi: 10.1016/j.egypro.2016.05.031. DOI

Kalia A., Manchanda P., Bhardwaj S., Singh G. Biosynthesized silver nanoparticles from aqueous extracts of sweet lime fruit and callus tissues possess variable antioxidant and antimicrobial potentials. Inorg. Nano Met. Chem. 2020;50:1053–1062. doi: 10.1080/24701556.2020.1735420. DOI

GnanaJobitha G., Rajeshkumar S., Annadurai G., Kannan C. Preparation and characterization of fruit-mediated silver nanoparticles using pomegranate extract and assessment of its antimicrobial activities. J. Environ. Nanotechnol. 2013;2:4–10.

Arooj N., Dar N., Samra Z.Q. Stable silver nanoparticles synthesis by Citrus sinensis (Orange) and assessing activity against food poisoning microbes. Biomed. Environ. Sci. 2014;27:815–818. PubMed

Ajmal N., Saraswat K., Sharma V., Zafar M.E. Synthesis and antibacterial activity of silver nanoparticles from Prunus armeniaca (Apricot) fruit peel extract. Bull. Environ. Pharm. Life Sci. 2016;5:91–94.

Ahmad R.A.R., Harun Z., Othman M.H.D., Basri H., Yunos M.Z., Ahmad A., Akhair S.H.M., Rashid A.Q.A., Azhar F.H., Alias S.S., et al. Biosynthesis of zinc oxide nanoparticles by using fruits extracts of Ananas comosus and its antibacterial activity. Malays. J. Fund. Appl. Sci. 2019;15:268–273. doi: 10.11113/mjfas.v15n2.1217. DOI

Pavithra N.S., Lingaraju K., Raghu G.K., Nagaraju G. Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: Applications to photocatalytic, electrochemical sensor and antibacterial activities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017;185:11–19. doi: 10.1016/j.saa.2017.05.032. PubMed DOI

Bhardwaj K., Sharma A., Tejwan N., Bhardwaj S., Bhardwaj P., Nepovimova N., Shami A., Kalia A., Kumar A., Abd-Esalam K.A., et al. Pleurotus macrofungi-assisted nanoparticles synthesis and its potential applications: A review. J. Fungi. 2020;6:351. doi: 10.3390/jof6040351. PubMed DOI PMC

Johnson W.D., Morrissey R.L., Usborne A.L., Kapetanovic I., Crowell J.A., Muzzio M., McCormick D.L. Subchronic oral toxicity and cardiovascular safety pharmacology studies of resveratrol, a naturally occurring polyphenol with cancer preventive activity. Food Chem. Toxicol. 2011;49:3319–3327. doi: 10.1016/j.fct.2011.08.023. PubMed DOI PMC

Sangeetha M.K., Vallabi D.E., Sali V.K., Thanka J., Vasanthi H.R. Sub-acutetoxicity profile of a modified resveratrol supplement. Food Chem. Toxicol. 2013;59:492–500. doi: 10.1016/j.fct.2013.06.037. PubMed DOI

Charradi K., Mahmoudi M., Bedhiafi T., Jebari K., ElMay M.V., Limam F., Aouani E. Safety evaluation, anti-oxidative and anti-inflammatory effects of subchronically dietary supplemented high dosing grape seed powder (GSP) to healthy rat. Biomed. Pharm. 2018;107:534–546. doi: 10.1016/j.biopha.2018.08.031. PubMed DOI

Rasheed N.O.A., Ahmed L.A., Abdallah D.M., El-Sayeh B.M. Paradoxical cardiotoxicity of intraperitoneally-injected epigallocatechin gallate preparation in diabetic mice. Sci. Rep. 2018;8:7880. doi: 10.1038/s41598-018-25901-y. PubMed DOI PMC

Mazzanti G., Di S.A., Vitalone A. Hepatotoxicity of green tea: An update. Arch. Toxicol. 2015;89:1175–1191. doi: 10.1007/s00204-015-1521-x. PubMed DOI

Crowe K.M., Francis C. Position of the academy of nutrition and dietetics: Functional foods. J. Acad. Nutr. Diet. 2013;113:1096–1103. doi: 10.1016/j.jand.2013.06.002. PubMed DOI

Williamson G., Holst B. Dietary reference intake (DRI) value for dietary polyphenols: Are we heading in the right direction? Brit. J. Nutr. 2008;99:S55–S58. doi: 10.1017/S0007114508006867. PubMed DOI

Martins S., Mussatto S.I., Martínez-avila G., Montañez-saenz J., Aguilar C.N., Teixeira J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011;29:365–373. doi: 10.1016/j.biotechadv.2011.01.008. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology

. 2022 ; 17 () : 2505-2533. [epub] 20220602

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...